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f(φ(ξ)) g(ξ) dξ,

acting between large Bergman spaces Ap
ω and Aq

ω for 0 <
p, q ≤ ∞. To prove our characterizations, which involve 
Berezin type integral transforms, we use the Littlewood-Paley 
formula of Constantin and Peláez and establish corresponding 
embedding theorems, which are also of independent interest. 
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When φ(z) = z, our results for GV(φ,g) complement the 
descriptions of Pau and Peláez.

© 2023 The Authors. Published by Elsevier Masson SAS. 
This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

For 0 < p < ∞ and a positive function ω ∈ L1(D, dA), the weighted Bergman spaces 
Ap

ω and A∞
ω consist of all analytic functions defined on the unit disk D for which

‖f‖p
Ap

ω
=
∫
D

|f(z)|p ω(z)p/2 dA(z) < ∞

and

‖f‖A∞
ω

= sup
z∈D

|f(z)|ω(z)1/2 < ∞,

respectively, where dA is the normalized area measure on D.
In this paper, we study generalized Volterra type integral operators between weighted 

Bergman spaces for a certain class W of radial rapidly decreasing weights. The class W, 
considered previously in [4] and [15], consists of the radial decreasing weights of the form 
ω(z) = e−2ϕ(z), where ϕ ∈ C2(D) is a radial function such that (Δϕ(z))−1/2 � τ(z)
for some radial positive function τ(z) that decreases to 0 as |z| → 1− and satisfies 
limr→1− τ ′(r) = 0. Here Δ denotes the standard Laplace operator. Furthermore, we 
assume that there either exists a constant C > 0 such that τ(r)(1 − r)−C increases for 
r close to 1 or

lim
r→1−

τ ′(r) log 1
τ(r) = 0.

See Section 7 of [15] for examples of weights in W, such as the following exponential 
type weight

ωγ,α(z) = (1 − |z|)γ exp
(

−b

(1 − |z|)α
)
, γ ≥ 0, α > 0, b > 0.

For the weights ω in W, the point evaluations Lz : f �−→ f(z) are bounded linear 
functionals on A2

ω for each z ∈ D, and so A2
ω is a reproducing kernel Hilbert space; 

that is, for each z ∈ D, there are functions Kz ∈ A2
ω with ‖Lz‖ = ‖Kz‖A2

ω
such that 

Lzf = f(z) = 〈f, Kz〉ω, where

〈f, g〉ω =
∫

f(z) g(z)ω(z) dA(z).

D

http://creativecommons.org/licenses/by/4.0/
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The function Kz is called the reproducing kernel for the Bergman space A2
ω and has the 

property that Kz(ξ) = Kξ(z). The Bergman spaces with exponential type weights have 
attracted considerable attention in recent years because of novel techniques different 
from those used for standard Bergman spaces; see, e.g., [2,5] and the references therein. 
Various estimates for the reproducing kernel play an important role in our work and we 
discuss them further in Section 2.1.

Let φ and g be analytic self-maps of D. The generalized Volterra type integral oper-
ators GI(φ,g) and GV(φ,g) induced by the pair of symbols (φ, g) are defined by

GI(φ,g)f(z) =
z∫

0

f ′(φ(ξ)) g(ξ)dξ and GV(φ,g)f(z) =
z∫

0

f(φ(ξ)) g(ξ)dξ, (1.1)

where f ∈ H(D) and z ∈ D. When g = φ′, the operator GI(φ,φ′) is the composition 
operator Cφ up to a certain constant—these operators acting between different large 
Bergman spaces were recently studied in [1]. As another special case, when φ(ξ) = ξ, we 
obtain the Volterra integral operator

Vgf(z) := GV(φ,g′)f(z) =
z∫

0

f(ξ) g′(ξ)dξ, (1.2)

and its companion integral operator

Jgf(z) := GI(φ,g)f(z) =
z∫

0

f ′(ξ) g(ξ)dξ. (1.3)

Previously Pau and Peláez characterized boundedness and compactness of Vg : Ap
ω → Aq

ω

in [15] when 0 < p, q < ∞. Via (1.2) and (1.3), our characterizations extend the previous 
results to the full range 0 < p, q ≤ ∞ and to all weights in W, and also deal with 
the companion operator Jg for the first time. The generalized Volterra type integral 
operators GI(φ,g) and GV(φ,g) were previously studied by Mengestie [11–13] in standard 
Fock spaces and by Li [6] in standard Bergman spaces and Bloch type spaces.

1.1. Main results

In this paper we study boundedness and compactness of the generalized Volterra type 
integral operators GI(φ,g) and GV(φ,v). Our results on Schatten class properties, compact 
differences, and the essential norm of these operators will be published elsewhere.

For 0 < p, q < ∞, our characterizations for boundedness and compactness are given 
in terms of the integral transform

GBφ
n,p,q(g)(z) =

∫
|kp,z(φ(ξ))|q (1 + ϕ′(φ(ξ))nq

(1 + ϕ′(ξ))q |g(ξ)|q ω(ξ)q/2 dA(ξ), z ∈ D,
D



4 H. Arroussi et al. / Bull. Sci. math. 182 (2023) 103226
where n = 0, 1 and kp,z is the normalized reproducing kernel of Ap
ω.

Theorem 1.1. Let ω ∈ W, φ : D → D be analytic, and g ∈ H(D).
(A) For 0 < p ≤ q < ∞, the operator GI(φ,g) : Ap

ω → Aq
ω is bounded if and only if

GBφ
1,p,q(g) ∈ L∞(D, dA),

and compact if and only if lim|z|→1− GBφ
1,p,q(g)(z) = 0.

(B) For 0 < p < ∞, GI(φ,g) : Ap
ω → A∞

ω is bounded if and only if

MIg,φ,ω(z) := |g(z)| (1 + ϕ′(φ(z))
(1 + ϕ′(z))

ω(z)1/2

ω(φ(z))1/2
Δϕ(φ(z))1/p ∈ L∞(D, dA), (1.4)

and compact if and only if lim|φ(z)|→1− MIg,φ,ω(z) = 0.
(C) The operator GI(φ,g) : A∞

ω → A∞
ω is bounded if and only if

NIg,φ,ω(z) := |g(z)| (1 + ϕ′(φ(z))
(1 + ϕ′(z))

ω(z)1/2

ω(φ(z))1/2
∈ L∞(D, dA), (1.5)

and compact if and only if lim|φ(z)|→1− NIg,φ,ω(z) = 0.
(D) For 0 < q < p ≤ ∞, both boundedness and compactness of GI(φ,g) : Ap

ω → Aq
ω are 

equivalent to the condition

GBφ
1,p,q(g) ∈ Ls(D, dλ),

where λ(z) = dA(z)/τ(z)2 and s = p/(p − q) if p < ∞ and s = 1 if p = ∞.

Theorem 1.2. Let ω ∈ W, φ : D → D be analytic, and g ∈ H(D).
(A) For 0 < p ≤ q < ∞, GV(φ,g) : Ap

ω → Aq
ω is bounded if and only if GBφ

0,p,q(g) ∈
L∞(D, dA), and compact if and only if lim|z|→1− GBφ

0,p,q(g) = 0.
(B) For 0 < p < ∞, the operator GV(φ,g) : Ap

ω → A∞
ω is bounded if and only if

MVg,φ,ω(z) := |g(z)|
(1 + ϕ′(z))

ω(z)1/2

ω(φ(z))1/2
Δϕ(φ(z))1/p ∈ L∞(D, dA), (1.6)

and compact if and only if lim|φ(z)|→1 MVg,φ,ω(z) = 0.
(C) The operator GV(φ,g) : A∞

ω → A∞
ω is bounded if and only if

NVg,φ,ω(z) := |g(z)|
(1 + ϕ′(z))

ω(z)1/2

ω(φ(z))1/2
∈ L∞(D, dA), (1.7)

and compact if and only if lim|φ(z)|→1 NVg,φ,ω(z) = 0.
(D) For 0 < q < p ≤ ∞, both boundedness and compactness of GV(φ,g) : Ap

ω → Aq
ω

are equivalent to the condition
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GBφ
0,p,q(g) ∈ Lr(D, dλ),

where r = p/(p − q) when p < ∞ and r = 1 when p = ∞.

We also prove the following simpler necessary conditions for boundedness and com-
pactness.

Proposition 1.3. Let ω ∈ W, φ : D → D be analytic, and g ∈ H(D).
(A) If 0 < p, q < ∞ and GI(φ,g) : Ap

ω → Aq
ω is bounded, then

z �→ |g(z)| τ(z)2/q

τ(φ(z))2/p
(1 + ϕ′(φ(z))
(1 + ϕ′(z))

ω(z)1/2

ω(φ(z))1/2
∈ L∞(D, dA); (1.8)

and if GI(φ,q) is compact, then the function in (1.8) vanishes as |z| → 1.
(B) If 0 < p ≤ q < ∞ and GV(φ,g) : Ap

ω → Aq
ω is bounded, then

z �→ τ(z)2/q

τ(φ(z))2/p
|g(z)|

(1 + ϕ′(z))
ω(z)1/2

ω(φ(z))1/2
∈ L∞(D, dA); (1.9)

and if V G(φ,g) is compact, then the function in (1.9) vanishes as |φ(z)| → 1.

As a consequence of the two main theorems, when φ(z) = z, we obtain character-
izations for boundedness and compactness of Vg and its companion operator Jg. The 
results for Jg are new while the descriptions for Vg had been partially obtained before 
as explained in the following remark.

Remark 1.4. Notice that (C) and (D) of Corollary 1.5 are analogous to the descriptions 
given in Theorem 3 of Constantin and Peláez [3] when Vg is acting between weighted 
Fock spaces, but the two cases require different methods due to fundamental differences 
between the two types of spaces. Further, Corollary 1.6 implies Theorem 2 of Pau and 
Peláez [15], that is, we show that the their conditions are equivalent of those in Theo-
rem 1.2 when φ(z) = z.

Corollary 1.5. Let ω ∈ W and g ∈ H(D).
(A) For 0 < p < q ≤ ∞, Jg : Ap

ω → Aq
ω is bounded if and only if g = 0.

(B) For p > q, Jg : Ap
ω → Aq

ω is compact if and only if g ∈ Ls(D, dA), where 
s = pq/(p − q).

(C) For 0 < p ≤ q ≤ ∞, Vg : Ap
ω → Aq

ω is bounded if and only if

z �→ |g′(z)|
(1 + ϕ′(z))Δϕ(z)

1
p− 1

q ∈ L∞(D, dA), (1.10)

and Vg : Ap
ω → Aq

ω is compact if the function in (1.10) vanishes as |z| → 1.
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(D) For 0 < q < p < ∞, Vg : Ap
ω → Aq

ω is bounded if and only if

|g′(z)|
(1 + ϕ′(z)) ∈ L

pq
p−q (D, dA). (1.11)

In the next corollary, we consider the weighted Bergman space Ap(ω) = Ap
ω2/p , that 

is,

Ap(ω) =

⎧⎨⎩f ∈ H(D) : ‖f‖pAp(w) =
∫
D

|f(z)|p ω(z) dA(z) < ∞

⎫⎬⎭ ,

where the weight ω ∈ W satisfies the condition

Δφ(z) � ((1 − |z|)tψω(z))−1, z ∈ D, for some t ≥ 1.

In particular, we obtain the conditions of Theorem 2 in [15] for boundedness and com-
pactness of the operator Vg : Ap(ω) → Aq(ω).

Corollary 1.6. Let 0 < p, q < ∞, ω ∈ W, and g ∈ H(D).

(I) For p = q, we have the following statements
(a) GBid

0,p,q(g′) ∈ L∞(D, dA) if and only if

ψω(z)|g′(z)| ∈ L∞(D, dA).

(b) lim|z|→1 GBid
0,p,q(g′) = 0 if and only if

lim
|z|→1

ψω(z)|g′(z)| = 0.

(II) Let ω ∈ W with

Δφ(z) � ((1 − |z|)tψω(z))−1, z ∈ D, for some t ≥ 1. (1.12)

For p < q, the following statements are equivalent:
(c) GBid

0,p,q(g′) ∈ L∞(D, dA).
(d) The function g is constant.

(III) For q < p,

GBid
0,p,q(g′) ∈ Lp/(p−q)(D, dλ) =⇒ g ∈ Apq/(p−q)(ω).
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1.2. Outline

In Section 2 we provide the basic definitions and results that are needed to deal with 
the weights ω in W, and consider useful estimates for the reproducing kernel of Ap

ω. 
In Section 3, we recall known geometric characterizations of Carleson measures, and in 
Section 4 we establish embedding theorems of Sp

ω into Lq(D, dμ), for 0 < p, q ≤ ∞ and 
ω ∈ W, where

Sp
ω :=

{
f ∈ H(D) : ‖f‖Sp

ω
=
∫
D

|f(z)|p ω(z)p/2

(1 + ϕ′(z))p dA(z) < ∞
}

(1.13)

and

S∞
ω :=

{
f ∈ H(D) : ‖f‖S∞

ω
= sup

z∈D
|f(z)| ω(z)1/2

1 + ϕ′(z) < ∞
}
. (1.14)

In Section 5, we prove Theorems 1.1 and 1.2 using the embedding theorems, the strong 
decay of the weights e−2ϕ and the following Littlewood-Paley type formulas (see (9.3) 
of [3] and [13]):

‖f‖p
Ap

ω
� |f(0)| +

∫
D

|f ′(z)|p ω(z)p/2

(1 + ϕ′(z))p dA(z), (1.15)

‖f‖A∞
ω

� |f(0)| + sup
z∈D

|f ′(z)| ω(z)1/2

(1 + ϕ′(z)) . (1.16)

Finally, Proposition 1.3 and Corollaries 1.5 and 1.6 are proved in Section 6.
Throughout the paper, we use the notation a � b to indicate that there is a constant 

C > 0 with a ≤ Cb. By a � b we mean that a � b and b � a. For simplicity, we write 
Lp
ω and Ap

ω for Lp(D, ωp/2 dA) and Ap(D, ωp/2 dA), respectively.

2. Preliminaries and basic properties

A positive function τ on D is said to be of class L if there are two constants c1 and 
c2 such that

τ(z) ≤ c1 (1 − |z|) for all z ∈ D (2.1)

and

|τ(z) − τ(ζ)| ≤ c2 |z − ζ| for all z, ζ ∈ D. (2.2)

For such c1 and c2, we set
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mτ := 1
4min(1, c−1

1 , c−1
2 ).

Given a ∈ D and δ > 0, we denote by Dδ(a) the Euclidean disc centered at a with radius 
δτ(a). It follows from (2.1) and (2.2) (see [15, Lemma 2.1]) that if τ ∈ L and z ∈ Dδ(a), 
then

1
2 τ(a) ≤ τ(z) ≤ 2 τ(a), (2.3)

whenever δ ∈ (0, mτ ). These inequalities will be used frequently in what follows.

Definition 2.1. We say that a weight ω is of class L∗ if it is of the form ω = e−2ϕ, where 
ϕ ∈ C2(D) with Δϕ > 0, and 

(
Δϕ(z)

)−1/2 � τ(z), with τ being a function in the class 
L. Here Δ denotes the classical Laplace operator.

It is straightforward to see that W ⊂ L∗. The following result (see [15, Lemma 2.2]) 
implies that the point evaluation functional at each z ∈ D is bounded on A2

ω.

Lemma A. Let ω ∈ L∗, 0 < p < ∞, and z ∈ D. If β ∈ R, there exists M ≥ 1 such that

|f(z)|pω(z)β ≤ M

δ2τ(z)2

∫
Dδ(z)

|f(ξ)|pω(ξ)β dA(ξ)

for all f ∈ H(D) and all sufficiently small δ > 0.

Using the preceding lemma and the fact that there exists r0 ∈ [0, 1) such that for all 
a ∈ D with 1 > |a| > r0, and any δ > 0 small enough we have

ϕ′(a) � ϕ′(z), z ∈ Dδ(a)

(see statement (d) in [3, Lemma 32]), one has

|f(z)|p ω(z)β

(1 + ϕ′(z))γ � 1
δ2τ(z)2

∫
Dδ(z)

|f(ξ)|p ω(ξ)β

(1 + ϕ′(ξ))γ dA(ξ), (2.4)

for β, γ ∈ R.
The next lemma provides upper estimates for the derivatives of functions in Ap

ω. Its 
proof is similar to the case of doubling measures Δϕ in Lemma 19 of [10], and it can be 
found in the following form in [5,14].

Lemma B. Let ω ∈ L∗ and 0 < p < ∞. For any δ0 > 0 sufficiently small there exists a 
constant C(δ0) > 0 such that



H. Arroussi et al. / Bull. Sci. math. 182 (2023) 103226 9
|f ′(z)|pω(z)p/2 ≤ C(δ0)
τ(z)2+p

( ∫
D(δ0τ(z)/2)

|f(ξ)|p ω(ξ)p/2dA(ξ)
)1/p

,

for all z ∈ D and f ∈ H(D).

The following lemma on coverings is due to Oleinik [14].

Lemma C. Let τ be a positive function on D of class L, and let δ ∈ (0, mτ ). Then there 
exists a sequence of points {zn} ⊂ D such that the following conditions are satisfied:

(i) zn /∈ Dδ(zk), n �= k.
(ii)

⋃
n Dδ(zn) = D.

(iii) D̃δ(zn) ⊂ D3δ(zn), where D̃δ(zn) =
⋃

z∈Dδ(zn) Dδ(z), n ∈ N.
(iv)

{
D3δ(zn)

}
is a covering of D of finite multiplicity N .

The multiplicity N in the previous lemma is independent of δ, and it is easy to see 
that one can take, for example, N = 256. Any sequence satisfying the conditions in 
Lemma C will be called a (δ, τ)-lattice. Note that |zn| → 1− as n → ∞. In what follows, 
the sequence {zn} will always refer to the sequence chosen in Lemma C.

2.1. Reproducing kernel estimates

The following norm estimates for the reproducing kernel Kz valid for all z ∈ D can 
be found in [2,7,15] when p = 2 and in [5] when p > 0, while for the estimate for the 
points close to the diagonal, see [8, Lemma 3.6].

Theorem A. Let Kz be the reproducing kernel of A2
ω. Then

(a) For ω ∈ W and 0 < p < ∞, one has

‖Kz‖Ap
ω
� ω(z)−1/2 τ(z)2(1−p)/p, z ∈ D. (2.5)

‖Kz‖A∞
ω

� ω(z)−1/2 τ(z)−2, z ∈ D. (2.6)

(b) For all sufficiently small δ ∈ (0, mτ ) and ω ∈ W, one has

|Kz(ζ)| � ‖Kz‖A2
ω
· ‖Kζ‖A2

ω
, ζ ∈ Dδ(z). (2.7)

The next lemma generalizes the statement (a) of the above theorem. For the proof, 
see [1].

Lemma D. Let Kz be the reproducing kernel of A2
ω where ω is a weight in the class W. 

For each z ∈ D, 0 < p < ∞ and β ∈ R, one has
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∫
D

|Kz(ξ)|p ω(ξ)p/2 τ(ξ)β dA(ξ) � ω(z)−p/2 τ(z)2(1−p)+β . (2.8)

The following result gives estimates for the normalized reproducing kernel kp,z in Ap
ω

defined by

kp,z = Kz/‖Kz‖Ap
ω

for z ∈ D.

Lemma 2.2. Let ω ∈ W. Then

(a) For each z ∈ D, 0 < p ≤ ∞, and 0 < q < ∞,

|kp,z(ζ)|q � τ(z)2(1−
q
p )|kq,z(ζ)|q, ζ ∈ D. (2.9)

(b) For q = ∞,

|kp,z(ζ)| � τ(z)−2/p|kq,z(ζ)|, ζ ∈ D.

(c) For all δ ∈ (0, mτ ) sufficiently small,

|kp,z(ζ)|p ω(ζ)p/2 � τ(z)−2, ζ ∈ Dδ(z). (2.10)

Proof. The proof is immediate from Theorem A. �
2.2. Test functions and some estimates

The following result on test functions was obtained in [15] and Lemma 3.3 in [2]. 
Without loss of generality, we modified the original version by taking ω(z)p/2 instead of 
ω(z) when 0 < p < ∞.

Lemma E. Let n ∈ N \ {0} and ω ∈ W. There is a number ρ0 ∈ (0, 1) such that for each 
a ∈ D with |a| > ρ0 there is a function Fa,n analytic in D with

|Fa,n(z)|ω(z)1/2 � 1 if |z − a| < τ(a), (2.11)

and

|Fa,n(z)|ω(z)1/2 � min
(

1,
min

(
τ(a), τ(z)

)
|z − a|

)3n

, z ∈ D. (2.12)

Moreover,



H. Arroussi et al. / Bull. Sci. math. 182 (2023) 103226 11
(a) For 0 < p < ∞, the function Fa,n belongs to Ap(ω) with

‖Fa,n‖Ap
ω
� τ(a)2/p.

(b) For p = ∞, the function Fa,n belongs to A∞
ω with

‖Fa,n‖A∞
ω

� 1.

As a consequence, we have the following pointwise estimates for the derivative of the 
test functions Fa,n. Its proof is a simple application of (2.11).

Lemma 2.3. Let n ∈ N \ {0} and ω ∈ W. For any δ > 0 small enough,

|F ′
a,n(z)|ω(z)1/2 � 1 + ϕ′(z), z ∈ Dδ(a). (2.13)

The next Proposition is a partial result about the atomic decomposition on Ap
ω and 

its proof follows easily from Lemma E.

Proposition 2.4. Let n ≥ 2 and ω ∈ W. Let {zk}k∈N ⊂ D be the sequence defined in 
Lemma C.

(a) For 0 < p < ∞, the function given by

F (z) :=
∞∑
k=0

λk
Fzk,n(z)
τ(zk)2/p

belongs to Ap
ω for every sequence λ = {λk} ∈ �p. Moreover,

‖F‖Ap
ω

� ‖λ‖�p .

(b) For p = ∞, the function given by

F (z) :=
∞∑
k=0

λk Fzk,n(z)

belongs to A∞
ω for every sequence λ = {λk} ∈ �∞. Moreover,

‖F‖A∞
ω

� ‖λ‖�∞ .

Proof. The proof of (a) can be found in [15, Proposition 2]. To prove (b), estimate the 
norm of F as follows
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‖F‖A∞
ω

= sup
z∈D

|F (z)|ω(z)1/2

� ‖λ‖�∞
∞∑
k=0

|Fzk,n(z)|ω(z)1/2

= ‖λ‖�∞

⎛⎝ ∑
zk∈Dδ(z)

|Fzk,n(z)|ω(z)1/2 +
∑

zk /∈Dδ(z)

|Fzk,n(z)|ω(z)1/2
⎞⎠

Now, using (2.11) and (iv) of Lemma C, we have

∑
zk∈Dδ(z)

|Fzk,n(z)|ω(z)1/2 � 1. (2.14)

It remains to show that ∑
zk /∈Dδ(z)

|Fzk,n(z)|ω(z)1/2 � 1.

Indeed, by Hölder’s inequality, we have∑
zk /∈Dδ(z)

|Fzk,n(z)|ω(z)1/2 ≤ I(z) · II(z), (2.15)

where

I(z) =
∑

zk /∈Dδ(z)

min
(
τ(zk), τ(z)

)2|Fzk,n(z)|ω(z)1/2,

and

II(z) =
∑

zk /∈Dδ(z)

|Fzk,n(z)|ω(z)1/2

min
(
τ(zk), τ(z)

)2 .
First we look for the upper bound of I(z). To do this, we need to consider the covering 
of {ξ ∈ D : |z − ξ| > δτ(z)} given by

Rj(z) = {ξ ∈ D : 2jδτ(z) < |z − ξ| ≤ 2j+1δτ(z)}, j = 0, 1, 2, . . .

and observe that, using (A) of properties of τ , it is easy to see that, for j = 0, 1, 2, . . . ,

Dδ(zk) ⊂ Dr(z), if zk ∈ Dt(z) with r = 5δ2j and t = δ2j+1.

This fact together with the finite multiplicity of the covering (see Lemma C) gives
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∑
zk∈Rj(z)

τ(zk)2 � A(Dr(z)) � 22jτ(z)2.

Therefore, by (2.12), we have

I(z) ≤
∑

zk /∈Dδ(z)

τ(zk)2|Fzk,n(z)|ω(z)1/2

�
∑

zk /∈Dδ(z)

τ(zk)2 min
(

1,
min

(
τ(zk), τ(z)

)
|z − zk|

)3n

≤ τ(z)3n
∞∑
j=0

∑
zk∈Rj(z)

τ(zk)2

|z − zk|3n

�
∞∑
j=0

2−3nj
∑

zk∈Rj(z)

τ(zk)2

� τ(z)2
∞∑
j=0

2(2−3n)j � τ(z)2.

(2.16)

To obtain an upper estimate for (II), notice that since n ≥ 2, (2.12) implies that

II(z) �
∑

zk /∈Dδ(z)

min
(
τ(zk), τ(z)

)3n−2

|z − zk|3n

≤ τ(z)3n−4
∞∑
j=0

∑
zk∈Rj(z)

τ(zk)2

|z − zk|3n

� τ(z)−4
∞∑
j=0

2−3nj
∑

zk∈Rj(z)

τ(zk)2

� τ(z)−2
∞∑
j=0

2(2−3n)j � τ(z)−2.

Combining this and (2.16) with (2.15) completes the proof. �
3. Geometric characterizations of Carleson measures

Let μ be a positive measure on D. Denote by μ̂δ the averaging function defined as

μ̂δ(z) = μ(Dδ(z)) · τ(z)−2, z ∈ D,

and define the general Berezin transform of μ by
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Gt(μ)(z) =
∫
D

|kt,z(ζ)|t ω(ζ)t/2 dμ(ζ),

for every t > 0 and z ∈ D.
In this section we recall recent characterizations of q-Carleson measures for Ap

ω for any 
0 < p, q ≤ ∞ in terms of the averaging function μ̂δ and the general Berezin transform 
Gt(μ). For the proofs of all theorems in this section, see Section 3 of [1].

3.1. Carleson measures

We begin with the definition of q-Carleson measures.

Definition 3.1. Let μ be a positive measure on D and fix 0 < p, q < ∞. We say that μ is 
a q-Carleson measure for Ap

ω if the inclusion Iμ : Ap
ω −→ Lq

ω is bounded.

The following theorem characterizes the q-Carleson measures when 0 < p ≤ q < ∞.

Theorem B. Let μ be a finite positive Borel measure on D. Assume 0 < p ≤ q < ∞, 
s = p/q, 0 < t < ∞. The following conditions are equivalent:

(a) The measure μ is a q-Carleson measure for Ap
ω.

(b) The function

τ(z)2(1−1/s)Gt(μ)(z)

belongs to L∞(D, dA).
(c) The function

τ(z)2(1−1/s)μ̂δ(z)

belongs to L∞(D, dA) for any sufficiently small δ > 0.

Now we characterize q-Carleson measures when 0 < q < p < ∞.

Theorem C. Let μ be a finite positive Borel measure on D. Assume 0 < q < p < ∞ and 
s = p/q. The following conditions are all equivalent:

(a) The measure μ is a q-Carleson measure for Ap
ω.

(b) For any (or some) r > 0, we have

μ̂r ∈ Lp/(p−q)(D, dA).

(c) For any t > 0,

Gt(μ) ∈ Lp/(p−q)(D, dA).
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3.2. Vanishing Carleson measures

Definition 3.2. Let μ be a positive measure on D and fix 0 < p, q < ∞. We say that μ
is a vanishing q-Carleson measure for Ap

ω if the inclusion Iμ : Ap
ω −→ Lq

ω is compact, or 
equivalently, if

∫
D

|fn(z)|q ω(z)q/2 dμ(z) → 0

whenever fn is bounded in Ap
ω and converges to zero uniformly on each compact subsets 

of D.

The following three theorems characterize vanishing q-Carleson measures for Ap
ω when 

0 < p ≤ ∞ and 0 < q < ∞.

Theorem D. Given τ ∈ L∗, let μ be a finite positive Borel measure on D. Assume 0 <
p ≤ q < ∞, s = p/q, 0 < t < ∞. The following statements are all equivalent:

(a) μ is a vanishing q-Carleson measure for Ap
ω.

(b) τ(z)2(1−1/s)Gt(μ)(z) → 0 as |z| → 1−.
(c) τ(z)2(1−1/s)μ̂δ(z) → 0 as |z| → 1−, for any small enough δ > 0.

Theorem E. Given τ ∈ L∗, let μ be a finite positive Borel measure on D. Assume 0 <
q < ∞. The following conditions are all equivalent:

(a) μ is a q-Carleson measure for A∞
ω .

(b) μ is a vanishing q-Carleson measure for A∞
ω .

(c) For any sufficiently small δ > 0, we have

μ̂δ ∈ L1(D, dA).

(d) For any t > 0, we have

Gt(μ) ∈ L1(D, dA).

Theorem 3.3. Given τ ∈ L∗, let μ be a finite positive Borel measure on D. Assume that 
0 < q < p < ∞. The following statements are equivalent:

(a) μ is a q-Carleson measure for Ap
ω.

(b) μ is a vanishing q-Carleson measure for Ap
ω.
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4. Embedding theorems

In this section we establish embedding theorems of Sp
ω into Lq(D, dμ) for 0 < p, q ≤ ∞

and ω ∈ W, where Sp
ω are given in (1.13) and (1.14). We start with the case 0 < p ≤

q < ∞.

Lemma 4.1. Let ω ∈ W and 0 < p ≤ q < ∞. Let μ be a positive Borel measure on D. 
Then

(a) Iμ : Sp
ω → Lq(D, dμ) is bounded if and only if for each δ > small enough,

Kμ,ω(z) = sup
z∈D

1
τ(z)2q/p

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ) < ∞. (4.1)

(b) Iμ : Sp
ω → Lq(D, dμ) is compact if and only if

lim
|z|→1−

1
τ(z)2q/p

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ) = 0. (4.2)

Proof. Suppose first that the condition (4.1) holds. Then, by Lemma C and (2.4), we 
get

‖f‖qLq(D,dμ) =
∫
D

|f(z)|q dμ(z) ≤
∞∑
k=0

∫
Dδ(zk)

|f(z)|q dμ(z)

=
∞∑
k=0

∫
Dδ(zk)

|f(z)|q ω(z)q/2

(1 + ϕ′(z))q (1 + ϕ′(z))q ω(z)−q/2 dμ(z)

�
∞∑
k=0

∫
Dδ(zk)

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

|f(s)|p ω(s)p/2

(1 + ϕ′(s))p dA(s)

⎞⎟⎠
q/p

(1 + ϕ′(z))qω(z)−q/2dμ(z)

�
∞∑
k=0

⎛⎜⎝ ∫
D3δ(zk)

|f(s)|p ω(s)p/2

(1 + ϕ′(s))p dA(s)

⎞⎟⎠
q/p ∫

Dδ(zk)

(1 + ϕ′(z))qω(z)−q/2

τ(z)2q/p
dμ(z),

for small enough δ > 0. By applying our assumption, we have

∫
|f(z)|q dμ(z) � Kμ,ω

∞∑
k=0

⎛⎜⎝ ∫
|f(s)|p ω(s)p/2

(1 + ϕ′(s))p dA(s)

⎞⎟⎠
q/p

.

D D3δ(zk)
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Using a similar argument as in the proof of Theorem 1.1 in [14], Minkowski’s inequality 
and the finite multiplicity N of the covering {D3δ(zk)}, we get

‖f‖qLq(D,dμ) � Kμ,ω

⎛⎜⎝ ∞∑
k=0

∫
D3δ(zk)

|f(s)|p ω(s)p/2

(1 + ϕ′(s))p dA(s)

⎞⎟⎠
q/p

� Kμ,ω Nq/p ‖f‖q
Sp
ω
.

This proves that the embedding Iμ : Sp
ω → Lq(D, dμ) is bounded with ‖Iμ‖qLq(D,dμ) ≤

Kμ,ω.
Conversely, suppose that Iμ : Sp

ω → Lq(D, dμ) is bounded. Let a ∈ D with |a| ≥ ρ0
that is defined in Lemma E. By Lemma 2.3,

|F ′
a,n(z)|ω(z)1/2 � (1 + ϕ′(z)), z ∈ Dδ(a),

(where Fa,n is the test function in Lemma E), and so∫
Dδ(a)

(1 + ϕ′(z))qω(z)−
q
2 dμ(z) �

∫
Dδ(a)

|F ′
a,n(z)|q dμ(z) �

∫
D

|F ′
a,n(z)|q dμ(z).

Using our assumption, (a) of Lemma E, and (1.15), we obtain∫
Dδ(a)

(1 + ϕ′(z))qω(z)−
q
2 dμ(z) � ‖Iμ‖q ‖F ′

a,n‖qSp
ω

≤ ‖Iμ‖q ‖Fa,n‖qAp
ω
� ‖Iμ‖q τ(a)2q/p.

Then dividing both sides by τ(a)2q/p gives

1
τ(a)2q/p

∫
Dδ(a)

(1 + ϕ′(z))qω(z)−
q
2 dμ(z) ≤ ‖Iμ‖q < ∞,

and so

sup
a∈D

1
τ(a)2q/p

∫
Dδ(a)

(1 + ϕ′(z))q ω(z)−q/2 dμ(z) ≤ ‖Iμ‖q < ∞,

which means that Kμ,ω � ‖Iμ‖q.
To prove (b), suppose that Iμ : Sp

ω → Lq(D, dμ) is compact. Consider the function

fa,n(z) := Fa,n(z)
τ(a)2q/p

, for |a| ≥ ρ0.

As in the proof of Theorem 1 of [15] and using Lemma E, we can show that the function 
fa,n is bounded and converges to zero uniformly on compact subsets of D when |a| → 1−. 
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Therefore, by Lemma B, f ′
a,n converges to zero uniformly on compact subsets of D as 

|a| → 1−.

1
τ(a)2q/p

∫
Dδ(a)

(1 + ϕ′(z))qω(z)−
q
2 dμ(z) �

∫
Dδ(a)

|f ′
a,n(z)|q dμ(z)

≤
∫
D

|f ′
a,n(z)|q dμ(z) = ‖Iμf ′

a,n‖Lq(μ).

Since Iμ is compact,

lim
|a|→1−

‖f ′
a,n‖Lq(μ) = 0,

and so

lim
|a|→1−

1
τ(a)2q/p

∫
Dδ(a)

(1 + ϕ′(z))qω(z)−
q
2 dμ(z) = 0.

This shows that (4.2) holds.
Conversely, suppose that (4.2) holds. Let {fn} ⊂ Sp

ω be a bounded sequence converging 
to zero uniformly on compact subsets of D and {zk} be a (δ, τ)-lattice. To prove that Iμ
is compact, it suffices to show that ‖fn‖Lq(μ) → 0. By the assumption, given any ε > 0, 
there exists 0 < r1 < 1 with

1
τ(a)2q/p

∫
Dδ(a)

(1 + ϕ′(z))qω(z)−
q
2 dμ(z) < ε, r1 < |a| < 1. (4.3)

Observe that there is r1 < r2 < 1 such that if a point zj of the sequence {zk} belongs to 
{z ∈ D : |z| ≤ r1}, then Dδ(zj) ⊂ {z ∈ D : |z| ≤ r2}. Therefore, since {fn} converges to 
zero uniformly on compact subsets of D, there exists an integer n0 such that

|fn(z)| < ε, for |z| ≤ r2 and n ≥ n0.

We split the integration of this function into two parts: the first integration is over 
|z| ≤ r2 and the other integration is over |z| ≥ r2. On the one hand,

∫
|z|≤r2

|fn(z)|q dμ(z) < εq. (4.4)

On the other hand, by Lemma C and Lemma B, we obtain
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∫
|z|>r2

|fn(z)|q dμ(z) ≤
∑

|zk|>r1

∫
Dδ(zk)

|fn(z)|q dμ(z)

�
∑

|zk|>r1

∫
Dδ(zk)

⎛⎜⎝ 1
τ(zk)2

∫
Dδ(z)

|fn(s)|p ω(s)p/2

(1 + ϕ′(s))p
dA(s)

⎞⎟⎠
q/p

(1 + ϕ′(z))qω(z)−
q
2 dμ(z)

�
∞∑

k=0

⎛⎜⎝ ∫
D3δ(zk)

|fn(s)|p ω(s)p/2

(1 + ϕ′(s))p
dA(s)

⎞⎟⎠
q/p ∫

Dδ(zk)

(1 + ϕ′(z))qω(z)−
q
2

τ(zk)2q/p
dμ(z)

� ε‖fn‖qSp
ω

sup
|zk|>r1

1
τ(zk)2q/p

∫
Dδ(zk)

(1 + ϕ′(z))qω(z)−
q
2 dμ(z) � ε ‖fn‖qSp

ω
� ε.

These together with (4.4) show that Iμ : Sp
ω → Lq(D, dμ) is compact. �

To characterize boundedness and compactness of Iμ : Sp
ω → Lq(D, dμ) with 0 < q <

p < ∞, consider the function Fδ,μ(ϕ) defined by

Fδ,μ(ϕ)(z) := 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ). (4.5)

We use Luecking’s approach in [9] based on Khinchine’s inequality. Recall that 
Rademacher functions Rn are defined by

R0(t) =
{

1 if 1 ≤ t− [t] < 1/2
−1 if 1/2 ≤ t− [t] < 1;

Rn(t) = R0(2nt), n ≥ 1,

where [t] denotes the largest integer not exceeding t.

Lemma F (Khinchine’s inequality [9]). For 0 < p < ∞, there exists a positive constant 
Cp such that

C−1
p

( n∑
k=1

|λk|2
)p/2

≤
1∫

0

∣∣∣ n∑
k=1

λkRk(t)
∣∣∣pdt ≤ Cp

( n∑
k=1

|λk|2
)p/2

,

for all n ∈ N and {λk}nk=1 ⊂ C.

Lemma 4.2. Let ω ∈ W and 0 < q < p < ∞. Let μ be a finite positive Borel measure on 
D. Then, the following statements are equivalent:

(a) The operator Iμ : Sp
ω → Lq(D, dμ) is bounded.

(b) The operator Iμ : Sp
ω → Lq(D, dμ) is compact.
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(c) The function

Fδ,μ(ϕ) ∈ Lp/(p−q)(D, dA). (4.6)

Proof. The implication (b) ⇒ (a) is obvious. To prove that (a) implies (c), suppose 
that the operator Iμ : Sp

ω → Lq(D, dμ) is bounded. Let {zk} be a (δ, τ)-lattice on D. 
Corresponding to each λ = {λm}m ∈ �p, we consider

f(z) =
∑

|zm|≥ρ0

λmfzm,n(z),

where fzm,n(z) = Fzm,n(z)
τ(zm)2/p and 0 < ρ0 < 1 as in Lemma E. By Proposition 2.4 and 

(1.15),

‖f ′‖Sp
ω

� ‖f‖Ap
ω

� ‖λ‖�p .

Note that as an application of Khinchine’s inequality (Lemma F), replace λm with the 
Rademacher functions Rm(t)λm, and then integrate with respect to t from 0 and 1, which 
yields ⎛⎝ ∑

|zm|≥ρ0

∣∣∣λm

∣∣∣2 ∣∣∣f ′
zm,n(z)

∣∣∣2
⎞⎠q/2

�
1∫

0

∣∣∣ ∑
|zm|≥ρ0

Rm(t)λm f ′
zm,n(z)

∣∣∣q dt
and so

∫
D

⎛⎝ ∑
|zm|≥ρ0

|λm|2|f ′
zm,n(z)|2 ω(z)

⎞⎠q/2

dμ(z)

�
∫
D

1∫
0

∣∣∣∣∣∣
∑

zm:|zm|≥ρ0

Rm(t)λm f ′
zm,n(z)

∣∣∣∣∣∣
q

ω(z)q/2dt dμ(z)

=
1∫

0

∫
D

∣∣∣∣∣∣
∑

zm:|zm|≥ρ0

Rm(t)λm f ′
zm,n(z)

∣∣∣∣∣∣
q

ω(z)q/2dμ(z) dt

�
1∫

0

‖f ′‖q
Sp
ω
dt = ‖f ′‖q

Sp
ω

� ‖f‖q
Ap

ω
� ‖λ‖q�p .

(4.7)

By Lemmas C and 2.3,

∑
|zm|≥ρ0

|λm|q
τ(zm)2/p

∫
(1 + ϕ′(ξ))qω(ξ)−

q
2 dμ(ξ)
D3δ(zm)
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�
∑

|zm|≥ρ0

|λm|q
∫

D3δ(zm)

|f ′
zm,n(ξ)|q dμ(ξ)

=
∫
D

∑
|zm|≥ρ0

|λm|q |f ′
zm,n(ξ)|qχD3δ(zm)(ξ) dμ(ξ),

where χD3δ(zm)(ξ) denotes the characteristic function of the set D3δ(zm). Now, by the 

fact that 
∑∞

s zkm ≤ (
∑∞

s zm)k , k ≥ 1, zm ≥ 0 for q ≥ 2, we get∫
D

∑
|zm|≥ρ0

|λm|q |f ′
zm,n(ξ)|qχD3δ(zm)(ξ) dμ(ξ)

=
∫
D

∑
|zm|≥ρ0

(
|λm|2 |f ′

zm,n(ξ)|2χD3δ(zm)(ξ)
)q/2

dμ(ξ)

�
∫
D

( ∑
|zm|≥ρ0

|λm|2 |f ′
zm,n(ξ)|2

)q/2
dμ(ξ).

For q < 2, by Hölder’s inequality and Lemma C, we get∫
D

∑
|zm|≥ρ0

|λm|q |f ′
zm,n(ξ)|qχD3δ(zm)(ξ) dμ(ξ)

≤
∫
D

⎛⎝ ∑
|zm|≥ρ0

|λm|2 |f ′
zm,n(ξ)|2

⎞⎠q/2⎛⎝ ∑
|zm|≥ρ0

χD3δ(zm)(ξ)

⎞⎠1− q
2

dμ(z)

� N1− q
2

∫
D

( ∑
|zm|≥ρ0

|λm|2 |f ′
zm,n(ξ)|2

)q/2
dμ(z).

Therefore, for q < 2 and q ≥ 2, we have

∑
|zm|≥ρ0

|λm|q
τ(zm)2/p

∫
D3δ(zm)

(1 + ϕ′(ξ))qω(ξ)−
q
2 dμ(ξ)

�
∫
D

∑
|zm|≥ρ0

|λm|q |f ′
zm,n(ξ)|qχD3δ(zm)(ξ) dμ(ξ)

� max(1, N1− q
2 )
∫
D

( ∑
|zm|≥ρ0

|λm|2 |f ′
zm,n(ξ)|2

)q/2
dμ(z).

By applying (4.7), we have

∑
|zm|≥ρ0

|λm|q
τ(zm)2/p

∫
(1 + ϕ′(ξ))qω(ξ)−

q
2 dμ(ξ) � ‖λ‖q�p .
D3δ(zm)
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Thus, taking |bm| = |λm|q ∈ �p/q and using the duality (�p)∗ = �q, we see that the 
sequence { 1

τ(zm)2/p

∫
D3δ(zm)

(1 + ϕ′(ξ))qω(ξ)−
q
2 dμ(ξ)

}
m

∈ �
p/(p−q)

.

Observe that there is ρ0 < r1 < 1 such that if a point zj of the sequence {zk} belongs 
to {z ∈ D : |z| ≤ ρ0}, then Dδ(zj) ⊂ {z ∈ D : |z| ≤ r1}. Thus, by Lemma C and (2.3), 
we get

∫
|z|≥r1

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ)

⎞⎟⎠
p/(p−q)

dA(z)

�
∑

|zm|≥ρ0

∫
Dδ(zm)

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ)

⎞⎟⎠
p/(p−q)

dA(z)

�
∑

|zm|≥ρ0

⎛⎜⎝ 1
τ(zm)2/p

∫
D3δ(zm)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ)

⎞⎟⎠
p/(p−q)

< ∞.

Therefore, since

∫
|z|≤r1

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(s))qω(s)−
q
2 dμ(s)

⎞⎟⎠
p/p−q

dμ(z) < ∞,

we obtain

∫
D

Fδ,μ(ϕ)(z)p/(p−q) dA(z) =
∫
D

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−
q
2 dμ(ξ)

⎞⎟⎠
p/(p−q)

dA(z)

�
∫

|z|<r1

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(s))qω(s)−
q
2 dμ(s)

⎞⎟⎠
p/p−q

dA(z)

+
∫

|z|>r1

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(s))qω(s)−
q
2 dμ(s)

⎞⎟⎠
p/p−q

dA(z) < ∞.

This proves the desired result.
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Finally, it remains to prove that (c) implies (b). Suppose that (4.6) holds and let {fn}
be a bounded sequence of functions belonging to Sp

ω that converges uniformly to zero 
on compact subsets of D. Since the function τ is decreasing and converges to zero as 
|z| → 1, there is r′ > 0 such that

Dδ/2(z) ⊂
{
ξ ∈ D : |ξ| > r/2

}
, if |z| > r > r′. (4.8)

On the other hand, it also follows from (2.4) that

|fn(z)|q ω(z)q/2

(1 + ϕ′(z))q � 1
τ(z)2

∫
Dδ(z)

|fn(s)|q ω(s)q/2

(1 + ϕ′(s))q dA(s).

Integrate with respect to dμ, and use (4.8) and (2.3) to obtain∫
|z|≥r

|fn(ξ)|q dμ(ξ)

�
∫

|ξ|≥r/2

|fn(ξ)|q ω(ξ)q/2

(1 + ϕ′(ξ))q

⎛⎜⎝ 1
τ(ξ)2

∫
Dδ(ξ)

(1 + ϕ′(z))q ω(z)−q/2 dμ(z)

⎞⎟⎠ dA(ξ)

(4.9)

By (c), for each ε > 0, there is an r0 > r′ such that

∫
|ξ|≥r0/2

⎛⎜⎝ 1
τ(ξ)2

∫
Dδ(ξ)

(1 + ϕ′(z))q ω(z)−q/2 dμ(z)

⎞⎟⎠
p/(p−q)

dA(ξ) < εp/(p−q).

Combining this with Hölder’s inequality, we have∫
|z|≥r0

|fn(ξ)|q dμ(ξ)

� ‖fn‖qSp
ω

⎛⎜⎜⎝ ∫
|ξ|≥r0/2

⎛⎜⎝ 1
τ(ξ)2

∫
Dδ(ξ)

(1 + ϕ′(z))q ω(z)−q/2 dμ(z)

⎞⎟⎠
p/(p−q)

dA(ξ)

⎞⎟⎟⎠
(p−q)/p

� ε.

(4.10)
This together with the fact that

lim
n→∞

∫
|fn(ξ)|q dμ(ξ) = 0
|z|≤r0
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gives limn→∞ ‖fn‖Lq(μ) = 0, which completes the proof. �
We finish this section with the case 0 < q < ∞ and p = ∞.

Lemma 4.3. Let ω ∈ W, 0 < q < ∞, and μ be a finite positive Borel measure on D. Then 
the following statements are equivalent;

(a) The operator Iμ : S∞
ω → Lq(D, dμ) is bounded.

(b) The operator Iμ : S∞
ω → Lq(D, dμ) is compact.

(c) The function

Fδ,μ(ϕ) ∈ L1(D, dA). (4.11)

Proof. Suppose first that the operator Iμ : S∞
ω → Lq(D, dμ) is bounded. Let {zm}m be 

a (δ, τ)-lattice on D. Corresponding to each λ = {λm}m ∈ �∞, we consider again

f(z) =
∑

|zm|≥ρ0

λmFzm,n(z),

where Fzm,n(z) is in Lemma E. By Proposition 2.4 and (1.16), we have

‖f ′‖S∞
ω

≤ ‖f‖A∞
ω

� ‖λ‖�∞ .

By our assumption, we get∫
D

∣∣∣ ∑
|zm|≥ρ0

λmF ′
zm,n(z)

∣∣∣q ω(z)q/2 dμ(z) � ‖λ‖q�∞

and so

∫
D

⎛⎝ ∑
|zm|≥ρ0

|λm|2|F ′
zm,n(z)|2 ω(z)

⎞⎠q/2

dμ(z) � ‖λ‖q�∞ .

This together with Lemma C, Lemma 2.3 and Hölder’s inequality imply that

∑
|zm|≥ρ0

|λm|q
∫

D3δ(zm)

(1 + ϕ′(ξ))qω(ξ)−
q
2 dμ(ξ)

� max(1, N1− q
2 )
∫
D

( ∑
|zm|≥ρ0

|λm|2 |F ′
zm,n(ξ)|2 ω(ξ)

)q/2
dμ(z) � ‖λ‖q�∞ .

Then, taking |λm| = 1 gives
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∑
|zm|≥ρ0

∫
D3δ(zm)

(1 + ϕ′(ξ))qω(ξ)−
q
2 dμ(ξ) � 1. (4.12)

As in the previous proof, by Lemma C, (2.3) and (4.12), we get

∫
|z|≥r1

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ)

⎞⎟⎠ dA(z)

�
∑

|zm|≥ρ0

∫
Dδ(zm)

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ)

⎞⎟⎠ dA(z)

�
∑

|zm|≥ρ0

∫
D3δ(zm)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ) < ∞.

Combining this with the fact that

∫
|z|≤r1

⎛⎜⎝ 1
τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμ(ξ)

⎞⎟⎠ dA(z) < ∞,

we have the desired result—see (4.5).
It remains to show that (c) implies (b). Let {fn} be a bounded sequence of functions 

in S∞
ω converging uniformly to zero on compact subsets of D. Since the function τ(z) is 

decreasing and converges to zero as |z| → 1, there is r′ > 0 such that

Dδ/2(z) ⊂
{
ξ ∈ D : |ξ| > r/2

}
, if |z| > r > r′. (4.13)

On the other hand, it follows from (2.4) that

|fn(z)|q ω(z)q/2

(1 + ϕ′(z))q � 1
τ(z)2

∫
Dδ(z)

|fn(s)|q ω(s)q/2

(1 + ϕ′(s))q dA(s).

Integrate with respect to dμ, and use (4.13), (2.3), and (2.4), to obtain∫
|z|≥r

|fn(ξ)|q dμ(ξ)

�
∫

|fn(ξ)|q ω(ξ)q/2

(1 + ϕ′(ξ))q

⎛⎜⎝ 1
τ(ξ)2

∫
(1 + ϕ′(z))q ω(z)−q/2 dμ(z)

⎞⎟⎠ dA(ξ)

|ξ|≥r/2 Dδ(ξ)
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� ‖fn‖qS∞
ω

∫
|ξ|≥r/2

1
τ(ξ)2

∫
Dδ(ξ)

(1 + ϕ′(z))q ω(z)−q/2 dμ(z)dA(ξ). (4.14)

Now the rest follows as in the previous proof. �
5. Proofs of Theorems 1.1 and 1.2

5.1. Proof of Theorem 1.1 (A)

Let 0 < p ≤ q < ∞. By (1.15),

‖GI(φ,g)f(z)‖q
Aq

ω
�
∫
D

|f ′(φ(z))|q |g(z)|q ω(z)q/2

(1 + ϕ′(z))q dA(z)

=
∫
D

|f ′(z)|q dμφ,ω,q(z) = ‖f ′‖qLq(D,dμφ,ω,g).

Therefore, GI(φ,g) : Ap
ω → Aq

ω is bounded if and only if Iμφ,ω,g
: Sp

ω → Lq(μφ,ω,g) is 
bounded. Using (a) of Lemma 4.1, this is equivalent to

sup
z∈D

1
τ(z)2q/p

∫
Dδ(z)

(1 + ϕ′(ξ))q ω(ξ)−q/2 dμφ,ω,g(ξ) < ∞,

which, by Theorem B, is equivalent to

sup
z∈D

τ(z)2(1−q/p)
∫
D

|kq,z(ξ)|qω(ξ)q/2 dνφ,ω,g(ξ) < ∞.

Now, by (a) of Lemma 2.2, we get

τ(z)2(1−q/p)
∫
D

|kq,z(ξ)|q ω(ξ)q/2 dvφ,ω,q(ξ)

�
∫
D

|kp,z(ξ)|q ω(ξ)q/2 dvφ,ω,q(ξ)

=
∫
D

|kp,z(ξ)|q (1 + ϕ′(φ(ξ))q dμφ,ω,q(ξ)

=
∫
D

|kp,z(ξ)|q |g(z)|q
(1 + ϕ′(φ(ξ)))q

(1 + ϕ′(ξ))q ω(z)q/2 dA(ξ)

= GBφ
1,p,q. (5.1)



H. Arroussi et al. / Bull. Sci. math. 182 (2023) 103226 27
Thus, GIφ,g is bounded if and only if GBφ
1,p,q(g(z)) ∈ L∞(D, dA). Compactness can be 

proved similarly using (b) of Lemma 4.1.

5.2. Proof of Theorem 1.1 (B)

Boundedness. Let 0 < p < q = ∞ and suppose first that (1.4) holds. Then by (1.16)
and our assumption, we have

‖GIφ,gf‖A∞
ω

� sup
z∈D

|f ′(φ(z))| |g(z)| ω(z)1/2

(1 + ϕ′(z))

≤ sup
z∈D

Mg,φ,ω(z) sup
z∈D

|f ′(φ(z))|ω(φ(z)) 1
2

(1 + ϕ′(φ(z))) Δϕ(φ(z))−1/p

≤ sup
z∈D

Mg,φ,ω(z) sup
z∈D

|f ′(φ(z))|ω(φ(z)) 1
2

(1 + ϕ′(φ(z))) τ(φ(z))2/p.

Therefore, by (2.4),

‖GI(φ,g)f‖A∞
ω

� sup
z∈D

⎛⎜⎝ ∫
Dδ(φ(z))

|f ′(ξ)|pω(ξ) p
2

(1 + ϕ′(ξ))p dA(ξ)

⎞⎟⎠
1/p

≤

⎛⎝∫
D

|f ′(ξ)|pω(ξ) p
2

(1 + ϕ′(ξ))p dA(ξ)

⎞⎠1/p

� ‖f‖Ap
ω
,

which implies that GI(φ,g) : Ap
ω → Aq

ω is bounded.
Conversely, suppose that the operator GI(φ,g) : Ap

ω → A∞
ω is bounded. Choose ξ ∈ D

so that |φ(ξ)| > ρ0, and consider the function fφ(ξ),n,p given by

fφ(ξ),n,p :=
Fφ(ξ),n,p

τ(φ(ξ))2/p
,

where Fφ(ξ),n,p is the test function in Lemma E. Notice that fφ(ξ),n,p is in Ap
ω and 

‖fφ(ξ),n,p‖Ap
ω
� 1. By our assumption, we get

‖GI(φ,g)(fφ(ξ),n,p)‖A∞
ω

≥ sup
z∈D

|f ′
φ(ξ),n,p(z)||g(z)|

(1 + ϕ′(z)) ω(z) 1
2

≥ sup
z∈D

|F ′
φ(ξ),n,p(z)||g(z)|

τ(φ(ξ))2/p(1 + ϕ′(z))
ω(z) 1

2

≥ sup
ξ∈D

|F ′
φ(ξ),n,p(φ(ξ))||g(ξ)|

τ(φ(ξ))2/p(1 + ϕ′(ξ))
ω(ξ) 1

2 .
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By Lemma 2.3,

|F ′
φ(ξ),n,p(z)|ω(z)1/2 � (1 + ϕ′(z)), z ∈ Dδ(φ(ξ)),

and so

∞ > ‖GI(φ,g)(fφ(ξ),n,p)‖A∞
ω

≥ |g(ξ)| (1 + ϕ′(φ(ξ)))
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2
τ(φ(ξ))−2/p

� |g(ξ)| (1 + ϕ′(φ(ξ)))
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2

Δϕ(φ(ξ))1/p

= Mg,φ,ω(ξ).

(5.2)

On the other hand, by taking f(z) = z and using the boundedness of the operator 
GI(φ,g) : Ap

ω → A∞
ω , we obtain

‖GI(φ,g)f‖A∞
ω

= sup
z∈D

|g(z)|
(1 + ϕ′(z)) ω(z) 1

2 � ‖f‖Ap
ω
< ∞.

Therefore, in the case of |φ(ξ)| ≤ ρ0, ξ ∈ D, we have

|Mg,φ,ω(ξ)| = |g(ξ)| (1 + ϕ′(φ(ξ)))
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2

Δϕ(φ(ξ))1/p

� |g(ξ)| (1 + ϕ′(φ(ξ)))
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2
τ(φ(ξ))−2/p

≤ C1
|g(ξ)|

(1 + ϕ′(ξ)) ω(ξ) 1
2 < ∞,

where

C1 = sup
|φ(ξ)|≤ρ0

{
(1 + ϕ′(φ(ξ)))ω(φ(ξ))

−1
2 τ(φ(ξ))−2/p

}
< ∞.

Combining this with (5.2) completes the proof of boundedness.
Compactness. Suppose now that GI(φ,g) : Ap

ω → A∞
ω is compact. Then, since fφ(ξ),n,p

converges to zero uniformly on compact subsets of D as |φ(ξ)| → 1 (see Lemma 3.1 of 
[15]), it follows that

‖GI(φ,g)(fφ(ξ),n,p)‖A∞
ω

→ 0

as |φ(ξ)| → 1. Thus, by (5.2),

0 = lim
−
‖GI(φ,g)(fφ(ξ),n,p)‖A∞

ω
� lim

−
Mg,φ,ω(ξ).
|φ(ξ)|→1 |φ(ξ)|→1
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To prove the converse, let {fn} be a bounded sequence of functions in Ap
ω converging 

uniformly to zero on compact subsets of D. Since (1.4) holds, for each ε > 0, there exists 
an r0 > 0 such that

Mg,φ,ω(ξ) = |g(ξ)| 1 + ϕ′(φ(ξ)
1 + ϕ′(ξ)

ω(ξ)1/2

ω(φ(ξ))1/2
Δϕ(φ(ξ))1/p < ε,

whenever |φ(ξ)| > r0. In addition, by (2.4),

|f ′
n(φ(ξ))||g(ξ)|
1 + ϕ′(ξ) ω(ξ) 1

2

�
( 1
τ(z)2

∫
Dδ(z)

|f ′
n(φ(s))|p

(1 + ϕ′(φ(s)))p ω(φ(s))
p
2 Δϕ(φ(ξ)) dA(s)

)1/p
Mg,φ,ω(ξ)

� ‖fn‖Ap
ω
Mg,φ,ω(ξ) < ε,

(5.3)

whenever |φ(ξ)| > r0.
For |φ(ξ)| ≥ r0, we have

sup
|φ(ξ)|≤r0

|f ′
n(φ(ξ))||g(ξ)|
1 + ϕ′(ξ) ω(ξ) 1

2 � sup
|φ(ξ)|≤r0

|f ′
n(φ(ξ))| → 0,

as n → ∞ because the sequence of functions f ′
n also converges uniformly to zero on 

compact subsets of D (see Lemma B). This together with (5.3) yields

‖GI(φ,g)(fn)‖A∞
ω
� sup

ξ∈D

|f ′
n(φ(z))||g(ξ)|
1 + ϕ′(ξ) ω(ξ) 1

2 → 0, n → ∞,

which shows the compactness of the operator GI(φ,g) : Ap
ω → A∞

ω .

5.3. Proof of Theorem 1.1 (C)

Boundedness. Let p = q = ∞ and suppose that (1.5) holds. Using (1.16), we get

‖GI(φ,g)f‖A∞
ω

� sup
z∈D

|f ′(φ(z))||g(z)|
(1 + ϕ′(z)) ω(z) 1

2

≤ sup
z∈D

Ng,φ,ω(z) sup
z∈D

|f ′(φ(z))|ω(φ(z)) 1
2

(1 + ϕ′(φ(z)))

≤ sup
z∈D

Ng,φ,ω(z) sup
z∈D

|f ′(z)|ω(z) 1
2

(1 + ϕ′(z)) � ‖f‖A∞
ω

which shows that GI(φ,g) is bounded.
Conversely, suppose that GI(φ,g) : A∞

ω → A∞
ω is bounded. Let ξ ∈ D be such that 

|φ(ξ)| > ρ0. Then Fφ(ξ),n,p ∈ A∞
ω and ‖Fφ(ξ),n,p‖A∞ � 1, and hence
ω
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∞ > ‖GI(φ,g)(Fφ(ξ),n,p)‖A∞
ω

= sup
z∈D

|F ′
φ(ξ),n,p(z)||g(z)|
(1 + ϕ′(z)) ω(z) 1

2

≥
|F ′

φ(ξ),n,p(φ(ξ))||g(ξ)|
(1 + ϕ′(ξ)) ω(ξ) 1

2 .

By Lemma 2.3,

|F ′
φ(ξ),n,p(z)|ω(z)1/2 � (1 + ϕ′(z)), z ∈ Dδ(φ(ξ)),

so

∞ > ‖GI(φ,g)(Fφ(ξ),n,p)‖A∞
ω

� |g(ξ)| (1 + ϕ′(φ(ξ)))
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2

= NIg,φ,ω(ξ). (5.4)

To deal with the case |φ(ξ)| ≤ ρ0, take f(z) = z and use the boundedness of the 
operator GI(φ,g) to obtain

‖GI(φ,g)f‖A∞
ω

= sup
z∈D

|g(z)|
(1 + ϕ′(z)) ω(z) 1

2 � ‖f‖A∞
ω

< ∞. (5.5)

Therefore, when |φ(ξ)| ≤ ρ0, ξ ∈ D, we have

|g(ξ)| (1 + ϕ′(φ(ξ)))
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2
≤ C2

|g(ξ)|
(1 + ϕ′(ξ)) ω(ξ) 1

2 < ∞,

where

C2 = sup
|φ(ξ)|≤ρ0

{
(1 + ϕ′(φ(ξ)))ω(φ(ξ))

−1
2

}
< ∞.

Combining this with (5.4) completes the proof of boundedness.
Compactness. If GI(φ,g) : A∞

ω → A∞
ω is compact, then, using (5.4) again, we get

lim
|φ(ξ)|→1−

NIg,φ,ω(ξ) � lim
|φ(ξ)|→1−

‖GI(φ,g)(fφ(ξ),n,p)‖A∞
ω

= 0.

To prove the converse, let {fn} be a bounded sequence of functions in A∞
ω converging 

uniformly to zero on compact subsets of D. By assumption, for any ε > 0, there exists 
r0 > 0 such that

NIg,φ,ω(ξ) = |g(z)| (1 + ϕ′(φ(z))
(1 + ϕ′(z))

ω(z)1/2

ω(φ(z))1/2
< ε,

whenever |φ(ξ)| > r0. Notice that
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|f ′
n(φ(ξ))||g(ξ)|
1 + ϕ′(ξ) ω(ξ) 1

2 � ‖fn‖A∞
ω
|g(ξ)| (1 + ϕ′(φ(ξ))

(1 + ϕ′(ξ))
ω(ξ)1/2

ω(φ(ξ))1/2

= ‖fn‖A∞
ω
Ng,φ,ω(ξ) < ε,

(5.6)

whenever |φ(ξ)| > r0. The rest follows as in the proof of (B).

5.4. Proof of Theorem 1.1 (D)

Let 0 < q < p < ∞ and suppose that GI(φ,g) : Ap
ω → Aq

ω is bounded. If {fn} ⊂ Ap
ω is 

a bounded sequence converging to zero uniformly on compact subsets of D, then

‖GI(φ,g)fn‖qAq
ω
�
∫
D

|f ′
n(φ(z))|q|g(z)|q
(1 + ϕ′(z))q ω(z)

q
2 dA(z) = ‖f ′

n‖qLq(μφ,ω,g), (5.7)

which goes to zero as n → ∞ because of the compactness of the embedding Iμφ,ω,g
.

We next prove that (a) and (c) are equivalent. By (5.7) and Lemma 4.2, we get 
GI(φ,g) : Ap

ω → Aq
ω is bounded if and only if Iμφ,ω,g

: Sp
ω → Lq(μφ,ω,g) is bounded if and 

only if Iμφ,ω,g
: Sp

ω → Lq(μφ,ω,g) is compact if and only if the function

Fδ,μφ,ω,g
(ϕ)(z) := 1

τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμφ,ω,g(ξ)

belongs to Lp/(p−q)(D, dA). By Theorem C, this is equivalent to∫
D

|kq,z(ξ)|q ω(ξ)q/2 dνφ,ω,g(ξ) ∈ Lp/(p−q)(D, dA),

which is as well equivalent to GBφ
1,p,q(g)(z) ∈ Lp/(p−q)(D, dλ), where dλ(z) =

dA(z)/τ(z)2, because of∫
D

Gq(νqφ,ω,g)
p/p−qdA(z)

=
∫
D

(
τ(z)2(1−q/p) Gq(νqφ,ω,g)

) p
p−q

dλ(z)

�
∫
D

(
τ(z)2(1−q/p)

∫
D

|kp,z(ξ)|qω(ξ)q/2 dνφ,ω,g(ξ)
) p

p−q

dλ(z)

=
∫
D

(
τ(z)2(1−q/p)

∫
D

|kp,z(ξ)|q (1 + ϕ′(ξ))q dμφ,ω,g(ξ)
) p

p−q

dλ(z)

=
∫
D

GBφ
1,p,q(g)(z)p/p−q dλ(z).
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This completes the proof of (D) when 0 < q < p < ∞.
Suppose that 0 < q < p = ∞. If GI(φ,g) : A∞

ω → Aq
ω is bounded and {fn} ⊂ A∞

ω is a 
bounded sequence converging to zero uniformly on compact subsets of D, then

‖GI(φ,g)fn‖qAq
ω
�
∫
D

|f ′
n(φ(z))|q|g(z)|q
(1 + ϕ′(z))q ω(z)

q
2 dA(z) = ‖f ′

n‖qLq(μφ,ω,g) → 0, (5.8)

where we used again the compactness of the embedding Iμφ,ω,g
, and so GI(φ,g) is compact.

It remains to prove that (a) and (c) are equivalent. By (5.8) and Lemma 4.3, we get 
GI(φ,g) : A∞

ω → Aqω is bounded if and only if Iμφ,ω,g
: S∞

ω → Lq(μφ,ω,g) is bounded if 
and only if Iμφ,ω,g

: S∞
ω → Lq(μφ,ω,g) is compact if and only if the function

Fδ,μφ,ω,g
(ϕ)(z) := 1

τ(z)2q/p

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμφ,ω,g(ξ)

belongs to L1(D, dA). By Theorem E, this is equivalent to

∫
D

|kq,z(ξ)|q ω(ξ)−q/2 dνφ,ω,g(ξ) ∈ L1(D, dA),

which is in turn equivalent to GBφ
1,p,q(g)(z) ∈ L1(D, dλ), where dλ(z) = dA(z)/τ(z)2, 

because of

GBφ
1,p,q(g)(z) � τ(z)2(1−q/p)

∫
D

|kq,z(ξ)|qω(ξ)q/2 dνqφ,ω,g(ξ).

5.5. Proof of Theorem 1.2 (A)

Boundedness. Let 0 < p ≤ q < ∞. By (1.15),

‖GV(φ,g)f‖qAq
ω
�
∫
D

|f(φ(z))|q|g(z)|q
(1 + ϕ′(z))q ω(z)

q
2 dA(z) =

∫
D

|f(z)|q ω(z)
q
2 dνφ,ω,g. (5.9)

Therefore, GV(φ,g) : Ap
ω → Aq

ω is bounded if and only if the measure νφ,ω,g is a q-Carleson 
measure for Ap

ω. According to Theorem B, this is equivalent to

sup
z∈D

τ(z)2(1−q/p)
∫
D

|kq,z(ξ)|qω(ξ)q/2 dνφ,ω,g(ξ) < ∞.

Now, using (a) of Lemma 2.2, we get
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τ(z)2(1−q/p)
∫
D

|kq,z(ξ)|q ω(ξ)q/2 dνφ,ω,q(ξ) �
∫
D

|kp,z(ξ)|q ω(ξ)q/2 dνφ,ω,q(ξ)

=
∫
D

|kp,z(φ(ξ))|q |g(z)|q
(1 + ϕ′(ξ))q ω(ξ)q/2dA(ξ)

= GBφ
0,p,q.

Thus, GV(φ,g) is bounded if and only if GBφ
0,p,q(g) ∈ L∞(D, dA).

Compactness. By above, GV(φ,g) : Ap
ω → Aq

ω is compact if and only if the measure 
νφ,ω,g is a vanishing q-Carleson measure for Ap

ω. This is equivalent to

lim
|z|→1−

τ(z)2(1−q/p)
∫
D

|kq,z(ξ)|qω(ξ)q/2 dνφ,ω,g(ξ) = 0.

Now, using (a) of Lemma 2.2, we get

τ(z)2(1−q/p)
∫
D

|kq,z(ξ)|q ω(ξ)q/2 dνφ,ω,q(ξ)

�
∫
D

|kp,z(ξ)|q ω(ξ)q/2 dνφ,ω,q(ξ)

=
∫
D

|kp,z(φ(ξ))|q |g(z)|q
(1 + ϕ′(ξ))q ω(z)q/2 dA(ξ)

= GBφ
0,p,q.

Therefore, lim|z|→1− GBφ
0,p,q(g) = 0 if and only if GV(φ,g) is compact.

5.6. Proof of Theorem 1.2 (B)

Boundedness. Let 0 < p < q = ∞ and suppose that (1.6) holds. Then, by (1.16), we 
have

‖GV(φ,g)f‖A∞
ω

� sup
z∈D

|f(φ(z))||g(z)|
(1 + ϕ′(z)) ω(z) 1

2

≤ sup
z∈D

MVg,φ,ω(z) sup
z∈D

|f(φ(z))|ω(φ(z)) 1
2 Δϕ(φ(z))−1/p

� sup
z∈D

MVg,φ,ω(z) sup
z∈D

|f(φ(z))|ω(φ(z)) 1
2 τ(φ(z))2/p.

By (2.4) for f ∈ Ap
ω, we obtain
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‖GV(φ,g)f‖A∞
ω

� sup
z∈D

⎛⎜⎝ ∫
Dδ(φ(z))

|f(ξ)|pω(ξ)
p
2 dA(ξ)

⎞⎟⎠
1/p

≤

⎛⎝∫
D

|f(ξ)|pω(ξ)
p
2 dA(ξ)

⎞⎠1/p

= ‖f‖Ap
ω
.

Therefore, the operator GV(φ,g) is bounded.
Conversely, suppose that the operator GV(φ,g) : Ap

ω → A∞
ω is bounded. Taking ξ ∈ D

such that |φ(ξ)| > ρ0, we consider the function fφ(ξ),n,p given by fφ(ξ),n,p := Fφ(ξ),n,p

τ(φ(ξ))2/p
where Fφ(ξ),n,p is the test function defined in Lemma E. These functions fφ(ξ),n,p belong 
to Ap

ω with ‖fφ(ξ),n,p‖Ap
ω
� 1. By (1.16),

∞ > ‖GV(φ,g)(fφ(ξ),n,p)‖A∞
ω

≥ sup
z∈D

|fφ(ξ),n,p(z)||g(z)|
(1 + ϕ′(z)) ω(z) 1

2

≥ sup
z∈D

|Fφ(ξ),n,p(z)||g(z)|
τ(φ(ξ))2/p(1 + ϕ′(z))

ω(z) 1
2

≥
|Fφ(ξ),n,p(φ(ξ))||g(ξ)|
τ(φ(ξ))2/p(1 + ϕ′(ξ))

ω(ξ) 1
2
ω(φ(ξ)) 1

2

ω(φ(ξ)) 1
2
.

In this case, by (2.11),

∞ > ‖GV(φ,g)(fφ(ξ),n,p)‖A∞
ω

≥ |g(ξ)|
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2
τ(φ(ξ))−2/p

� |g(ξ)|
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2

Δϕ(φ(ξ))1/p = MVg,φ,ω(ξ).

(5.10)

On the other hand, if we define f(z) = z and use the boundedness of the operator 
GV(φ,g) : Ap

ω → A∞
ω , we obtain

‖GV(φ,g)f‖A∞
ω

� sup
z∈D

|g(z)|
(1 + ϕ′(z)) ω(z) 1

2 � ‖f‖Ap
ω
< ∞. (5.11)

Therefore, in the case of |φ(ξ)| ≤ ρ0, ξ ∈ D, we have

|g(ξ)|
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2

Δϕ(φ(ξ))1/p � |g(ξ)|
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2
τ(φ(ξ))−2/p

≤ C1
|g(ξ)|

(1 + ϕ′(ξ)) ω(ξ) 1
2 < ∞,
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where

C1 = sup
|φ(ξ)|≤ρ0

{
ω(φ(ξ))

−1
2 τ(φ(ξ))−2/p

}
< ∞.

This, (1.6) holds.
Compactness. Suppose that the operator GV(φ,g) : Ap

ω → A∞
ω is compact and define

fφ(ξ),n,p :=
Fφ(ξ),n,p

τ(φ(ξ))2/p
, for |φ(ξ)| > ρ0,

which are in Ap
ω and converge uniformly to zero on compact subsets of D as |φ(ξ)| → 1. 

Thus,

‖GI(φ,g)(fφ(ξ),n,p)‖A∞
ω

→ 0

as |φ(ξ)| → 1. Thus, (5.10) shows that

lim
|φ(ξ)|→1−

MVg,φ,ω(ξ) � lim
|φ(ξ)|→1−

‖GV(φ,g)(fφ(ξ),n,p)‖A∞
ω

= 0.

Conversely, if {fn} is a bounded sequence of functions in Ap
ω converging uniformly to 

zero on compact subsets of D, then, as for GI(φ,g), it follows that

‖GV(φ,g)(fn)‖A∞
ω

= sup
ξ∈D

|fn(φ(ξ))||g(ξ)|
1 + ϕ′(ξ) ω(ξ) 1

2 → 0, n → ∞,

which proves the compactness of the operator GV(φ,g) : Ap
ω → A∞

ω .

5.7. Proof of Theorem 1.2 (C)

Boundedness. Let p = q = ∞. Suppose first that (1.7) holds. Then, by (1.16),

‖GV(φ,g)f‖A∞
ω

= sup
z∈D

|f(φ(z))||g(z)|
(1 + ϕ′(z)) ω(z) 1

2

≤ sup
z∈D

NVg,φ,ω(z) sup
z∈D

|f(φ(z))|ω(φ(z)) 1
2

≤ sup
z∈D

NVg,φ,ω(z) sup
z∈D

|f(z)|ω(z) 1
2 � ‖f‖A∞

ω
,

that is, GV(φ,g) bounded.
Conversely, suppose that GV(φ,g) : A∞

ω → A∞
ω is bounded and show that (1.7) holds. 

As before, if ξ ∈ D is such that |φ(ξ)| > ρ0, we use the test functions Fφ(ξ),n,p to obtain
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∞ > ‖GV(φ,g)(Fφ(ξ),n,p)‖A∞
ω

= sup
z∈D

|Fφ(ξ),n,p(z)||g(z)|
(1 + ϕ′(z)) ω(z) 1

2

≥
|Fφ(ξ),n,p(φ(ξ))||g(ξ)|

(1 + ϕ′(ξ)) ω(ξ) 1
2
ω(φ(ξ)) 1

2

ω(φ(ξ)) 1
2

≥ NVg,φ,ω(ξ) |Fφ(ξ),n,p(φ(ξ))|ω(φ(ξ)) 1
2 .

Now

∞ > ‖GV(φ,g)(Fφ(ξ),n,p)‖A∞
ω

≥ |g(ξ)|
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2

� |g(ξ)|
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2

= NVg,φ,ω(ξ).
(5.12)

If f(z) = z, the boundedness of the operator GV(φ,g) : A∞
ω → A∞

ω implies that

‖GV(φ,g)f‖A∞
ω

= sup
z∈D

|g(z)|
(1 + ϕ′(z)) ω(z) 1

2 � ‖f‖A∞
ω

< ∞. (5.13)

Therefore, in the case of |φ(ξ)| ≤ ρ0, ξ ∈ D, we have

|g(ξ)|
(1 + ϕ′(ξ))

ω(ξ) 1
2

ω(φ(ξ)) 1
2
≤ C2

|g(ξ)|
(1 + ϕ′(ξ)) ω(ξ) 1

2 < ∞,

where

C2 = sup
|φ(ξ)|≤ρ0

{
ω(φ(ξ))

−1
2

}
< ∞.

Combining this with (5.12) shows that (1.7) holds.
Compactness. This is similar to the proof of (C) of Theorem 1.1.

5.8. Proof of Theorem 1.2 (D)

Let 0 < q < p < ∞ and suppose that GV(φ,g) : Ap
ω → Aq

ω is bounded. According to 
(5.9), the measure νφ,ω,g is a q-Carleson measure for Ap

ω. Thus, by Theorem 3.3, νφ,ω,g

is a vanishing q-Carleson measure for Ap
ω. In this case, we have

‖GV(φ,g)fn‖qAq
ω
→ 0, n → ∞,

for any sequence {fn} ⊂ Ap
ω converges to zero uniformly on compact subsets of D. By 

Lemma 3.7 of [16], GV(φ,g) is compact.
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Next we show that (a) and (c) are equivalent. Suppose first that (c) holds. Then∫
D

Gq(vφ,ω,q)(z)p/(p−q)dA(z) =
∫
D

(
τ(z)2(1−

q
p )Gq(vφ,ω,q)(z)

)p/(p−q)
dλ(z)

�
∫
D

GBφ
0,p,q(g)p/(p−q)dλ(z)< ∞.

(5.14)

Thus, according to Theorem C, νφ,ω,q is a q-Carleson measure for Ap
ω. Then, by (1.15),

‖GV(φ,g)fn‖qAq
ω
�
∫
D

|f(z)|q ω(z)q/2 dνφ,ω,g(z) � ‖f‖q
Ap

ω
,

for any function f ∈ Ap
ω.

Conversely, suppose the operator GV(φ,g) : Ap
ω → Aq

ω is bounded. Then, for each 
function f ∈ Ap

ω, by (1.15),

‖GV(φ,g) f‖qAq
ω
�
∫
D

|f(z)|q ω(z)q/2 dνφ,ω,g(z).

Thus, the measure νφ,ω,g is a q-Carleson measure for Ap
ω. According to Theorem C, 

νφ,ω,g belongs to Lp/(p−q)(D, dA). Combining this with (5.14) yields that GBφ
0,p,q(g) ∈

Lp/(p−q)(D, dλ).
Let 0 < q < p = ∞ and suppose that GV(φ,g) : A∞

ω → Aq
ω is bounded. Then, by 

(1.15),

‖GV(φ,g)f‖qAq
ω
�
∫
D

|f(φ(z))|q|g(z)|q
(1 + ϕ′(z))q ω(z)

q
2 dA(z) � ‖f‖qA∞

ω
,

and it follows from Theorem E that the measure νφ,ω,g is a q-Carleson measure for 
A∞

ω . Thus, by Theorem 3.3, νφ,ω,g is a vanishing q-Carleson measure for A∞
ω . As in the 

previous case, this shows the compactness of the operator GV(φ,g).
It remains to prove that (1) and (3) are equivalent when p = ∞. Assume first that 

(3) holds. Then ∫
D

Gq(νφ,ω,q)(z) dA(z) =
∫
D

(
τ(z)2Gq(νφ,ω,q)(z)

)
dλ(z)

�
∫
D

GBφ
0,p,q(g)(z) dλ(z).

(5.15)

Thus, according to Theorem E, νφ,ω,q is a q-Carleson measure for A∞
ω . Then for any 

function f ∈ A∞
ω , we have
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‖GV(φ,g)fn‖qAq
ω
�
∫
D

|f(z)|q ω(z)q/2 dνφ,ω,g(z) � ‖f‖qA∞
ω
.

Conversely, suppose the operator GV(φ,g) : A∞
ω → Aq

ω is bounded. Then, for any 
function f ∈ A∞

ω , we have

‖GV(φ,g) f‖qAω
�
∫
D

|f(z)|q ω(z)q/2 dνφ,ω,g(z).

By assumption, this implies that the measure νφ,ω,g is a q-Carleson measure for A∞
ω . 

According to Theorem E, νφ,ω,g belongs to L1(D, dA). Combining this with (5.15) implies 
that GBφ

0,p,q(g) ∈ L1(D, dλ).

6. Proofs of Proposition 1.3 and Corollary 1.5

6.1. Proof of Proposition 1.3 (A)

Suppose that the operator GI(φ,g) : Ap
ω → Aq

ω is bounded. Let ξ ∈ D be such that 
|φ(ξ)| > ρ0. Using the test function of Lemma E, (2.4) and (1.15), we get

‖Fφ(ξ),n,p‖qAp
ω

� ‖GI(φ,g)Fφ(ξ),n,p‖qAq
ω
�
∫
D

|F ′
φ(ξ),n,p(φ(z))|q

(1 + ϕ′(z))q |g(z)|q ω(z)
q
2 dA(z)

� τ(ξ)2
|F ′

φ(ξ),n,p(φ(ξ))|q

(1 + ϕ′(ξ))q |g(ξ)|q ω(ξ)
q
2 ,

while Lemma 2.3 implies that

‖Fφ(ξ),n,p‖qAp
ω

� τ(ξ)2|g(ξ)|q (1 + ϕ′(φ(ξ)))q

(1 + ϕ′(ξ))q
ω(ξ) q

2

ω(φ(ξ) q
2
.

By Lemma E, we have

1 � |g(ξ)| τ(ξ)2/q

τ(φ(ξ))2/p
1 + ϕ′(φ(ξ))

1 + ϕ′(ξ)
ω(ξ) 1

2

ω(φ(ξ)) 1
2
. (6.1)

When |φ(ξ)| ≤ ρ0, we have

sup
φ(ξ)≤ρ0

|g(ξ)| τ(ξ)2/q

τ(φ(ξ))2/p
1 + ϕ′(φ(ξ))

1 + ϕ′(ξ)
ω(ξ) 1

2

ω(φ(ξ)) 1
2
< ∞.

Thus, (1.8) holds.
Suppose next that the operator GI(φ,g) : Ap

ω → Aq
ω is compact. Let ξ ∈ D be such 

that |φ(ξ)| > ρ0 and define
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fφ(ξ),n,p =
Fφ(ξ),n,p

τ(φ(ξ))2/p
, for |φ(ξ)| > ρ0,

which belongs to Ap
ω and converges uniformly to zero on compact subsets of D as |φ(ξ)| →

1. By (2.4) and Lemma 2.3, we get

‖GI(φ,g)fφ(ξ),n,p‖qAq
ω
�
∫
D

|f ′
φ(ξ),n,p(φ(z))|q

(1 + ϕ′(z))q |g(z)|q ω(z)
q
2 dA(z)

� τ(ξ)2
|f ′

φ(ξ),n,p(φ(ξ))|q

(1 + ϕ′(ξ))q |g(ξ)|q ω(ξ)
q
2

� |g(ξ)|q τ(ξ)2

τ(φ(ξ))2q/p
(1 + ϕ′(φ(ξ)))q

(1 + ϕ′(ξ))q
ω(ξ) q

2

ω(φ(ξ)) q
2
.

Using the compactness of the operator GI(φ,g), we have the desired conclusion and the 
proof is complete.

6.2. Proof of Proposition 1.3 (B)

Suppose that GV(φ,g) : Ap
ω → Aq

ω is bounded. By Theorem 1.2 (A), this is equivalent 
to GBφ

0,p,q(g) ∈ L∞(D, dA). By (2.4) and (2.10), we have

GBφ
0,p,q(g)(φ(z)) =

∫
D

|kp,φ(z)(φ(ξ))|q |g(ξ)|q
(1 + ϕ′(ξ))q ω(ξ)q/2 dA(ξ)

≥
∫

Dδ(z)

|kp,φ(z)(φ(ξ))|q |g(ξ)|q
(1 + ϕ′(ξ))q ω(ξ)q/2 dA(ξ)

� τ(z)2 |kp,φ(z)(φ(z))|q |g(z)|q
(1 + ϕ′(z))q ω(z)q/2

� τ(z)2

τ(φ(z))2q/p
ω(z)q/2

ω(φ(z))q/2
|g(z)|q

(1 + ϕ′(z))q ,

(6.2)

which proves that (1.9) holds. If GV(φ,g) is compact, then it follows from Theorem 1.2
(A) that GBφ

0,p,q(g)(φ(z)) → 0 as |z| → 1, which completes the proof.

6.3. Proof of Corollary 1.5

(A) Let p < q and suppose that GI(id,g) is bounded. By (2.10) and Lemma A, we have

|g(z)|q � τ(z)2q/p |g(z)|q |kp,z(z)|q ω(z)
q
2

� τ(z)2q/p

τ(z)2

∫
Dδ(z)

|g(s)|q |kp,z(s)|q ω(s)
q
2 dA(s) � τ(z)2q/p

τ(z)2 GBid
1,p,q(g)(z).
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Then, using the boundedness of GI(id,g), we obtain

sup
z∈D

|g(z)|q τ(z)2(1−q/p) � sup
z∈D

GBid
1,p,q(g)(z) < ∞.

Since τ(z)2(1−q/p) → ∞, as |z| → 1, the function g must be zero.

6.4. Proof of Corollary 1.5

(B) Let q < p. Using

‖GI(φ,g)f‖qAq
ω
�
∫
D

|f ′(φ(z))|q|g(z)|q
(1 + ϕ′(z))q ω(z)

q
2 dA(z) = ‖f ′‖qLq(μφ,ω,g) (6.3)

(see (1.15)) and Lemma 4.2, we get GI(φ,g) : Ap
ω → Aq

ω is bounded if and only if Iμφ,ω,g
:

Sp
ω → Lq(μφ,ω,g) is bounded if and only if Iμφ,ω,g

: Sp
ω → Lq(μφ,ω,g) is compact if and 

only if the function

Fδ,μφ,ω,g
(ϕ)(z) := 1

τ(z)2

∫
Dδ(z)

(1 + ϕ′(ξ))qω(ξ)−q/2 dμφ,ω,g(ξ) (6.4)

belongs to Lp/(p−q)(D, dA). Since φ = id, we have

dμφ,ω,g(z) = |g(z)|q
(1 + ϕ′(z))q ω(z)q/2 dA(z)

and invoking this in the condition (6.4), it becomes exactly

1
τ(z)2

∫
Dδ(z)

|g(ξ)|q dA(ξ) ∈ Lp/(p−q)(D, dA).

Applying Lemma A, we get that g ∈ Lr(D, dA), with r = pq/(p − q).
Conversely, suppose that g ∈ Lr(D, dA). By Hölder’s inequality and (1.15), we obtain

‖GI(id,g)f‖qAq
ω
�
∫
D

|f ′(z)|q|g(z)|q
(1 + ϕ′(z))q ω(z)

q
2 dA(z)

�

⎛⎝∫
D

|f ′(z)|pω(z) p
2

(1 + ϕ′(z))p dA(z)

⎞⎠
q
p
⎛⎝∫

D

|g(z)|r dA(z)

⎞⎠
q
r

� ‖f‖q
Ap

ω
‖g‖qLr(D,dA) � ‖f‖q

Ap
ω
,

(6.5)

which proves boundedness and completes the proof.
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6.5. Proof of Corollary 1.5 (C)

Let 0 < p ≤ q ≤ ∞. We characterize boundedness using Theorem 1.2. Suppose that 
GBid

0,p,q(g′) ∈ L∞(D, dA). It follows from (6.2) (changing g by g′ and φ = id),

GBid
0,p,q(g′)(z) =

∫
D

|kp,z(ξ)|q
|g′(ξ)|q

(1 + ϕ′(ξ))q ω(ξ)q/2 dA(ξ)

� τ(z)2

τ(z)2q/p
|g′(z)|q

(1 + ϕ′(z))q �
(

|g′(z)|
(1 + ϕ′(z)) Δϕ(z)

1
p− 1

q

)q

.

(6.6)

Thus,

|g′(z)|
(1 + ϕ′(z))Δϕ(z)

1
p− 1

q ∈ L∞(D, dA).

Conversely, suppose that

T (g, ϕ)(z) := |g′(z)|
(1 + ϕ′(z)) Δϕ(z)

1
p− 1

q ∈ L∞(D, dA).

By (2.9), we have

GBid
0,p,q(g′)(z) =

∫
D

|kp,z(ξ)|q
|g′(ξ)|q

(1 + ϕ′(ξ))q ω(ξ)q/2 dA(ξ)

�

⎛⎝τ(z)2(1−q/p)
∫
D

|kq,z(ξ)|q Δϕ(z)1−
q
p ω(ξ)q/2 dA(ξ)

⎞⎠ sup
z∈D

(T (g, ϕ)(z))q.

Since Δϕ(z) � τ(z)−2,

GBid
0,p,q(g′)(z) �

⎛⎝∫
D

|kq,z(ξ)|q ω(ξ)q/2 dA(ξ)

⎞⎠ sup
z∈D

(T (g, ϕ)(z))q

= ‖kq,z‖qAq
ω

sup
z∈D

(T (g, ϕ)(z))q = sup
z∈D

(T (g, ϕ)(z))q.

(6.7)

This finishes the proof of boundedness.
The characterization for compactness follows from Theorem 1.2, (6.7), and (6.6).

6.6. Proof of Corollary 1.5

(D) Let 0 < q < p < ∞. We first suppose that Vg : Ap
ω → Aq

ω is bounded, that is, 
GBid

0,p,q(g′) ∈ L
p

p−q (D, dλ) (see Theorem 1.2). Then, by (2.4), we have
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GBid
0,p,q(g′)(z) =

∫
D

|kp,z(ξ)|q
|g′(ξ)|q

(1 + ϕ′(ξ))q ω(ξ)q/2 dA(ξ)

� τ(z)2 |kp,z(z)|q
|g′(z)|q

(1 + ϕ′(z))q ω(z)q/2.

By Lemma 2.2, we obtain

GBid
0,p,q(g′)(z) � τ(z)2

τ(z)2q/p
|g′(z)|q

(1 + ϕ′(z))q �
(

|g′(z)|
(1 + ϕ′(z)) Δϕ(z)

1
p− 1

q

)q

.

In this case, we extract that

τ(z)2(
q
p−1)GBid

0,p,q(g′)(z) �
(

|g′(z)|
(1 + ϕ′(z))

)q

.

By our assumption and the fact that τ(z)2q/p is bounded, it follows that (1.11) holds.
Conversely, put r = pq

p−q . By Hölder’s inequality, we obtain

GBid
0,p,q(g′)(z)p/(p−q)

=

⎛⎝∫
D

|kp,z(ξ)|q |g′(ξ)|q
(1 + ϕ′(ξ))q

ω(ξ)q/2 dA(ξ)

⎞⎠p/(p−q)

≤ ‖Kz‖−r
A

p
ω

⎛⎝∫
D

|Kz(ξ)| r2
( |g′(ξ)|

1 + ϕ′(ξ)

)r

ω(ξ)
r
4 dA(ξ)

⎞⎠ ·

⎛⎝∫
D

|Kz(ξ)|
p
2 ω(ξ)

p
4 dA(ξ)

⎞⎠
q

(p−q)

=
‖Kz‖r/2

A
p/2
ω

‖Kz‖rAp
ω

∫
D

|Kz(ξ)| r2
( |g′(ξ)|

1 + ϕ′(ξ)

)r

ω(ξ)
r
4 dA(ξ).

By Theorem A, 
‖Kz‖r/2

A
p/2
ω

‖Kz‖r
A

p
ω

� ω(z) r
4 τ(z)r, and Fubini’s theorem implies that

∫
D

GBid
0,p,q(g′)(z)p/(p−q) dA(z)

τ(z)2

�
∫
D

(
|g′(ξ)|

1 + ϕ′(ξ)

)r

ω(ξ) r
4

⎛⎝∫
D

|Kξ(z)|
r
2 ω(z) r

4 τ(z)r−2 dA(z)

⎞⎠ dA(ξ).

Since

ω(ξ) r
4

⎛⎝∫
D

|Kξ(z)|
r
2 ω(z) r

4 τ(z)r−2 dA(z)

⎞⎠ � 1

(see Lemma D), the proof is complete.
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6.7. Proof of Corollary 1.6

(I) Let 0 < p = q < ∞. By (c) of Lemma 32 in [3],

ψω(r) � (1 + ϕ′(r))−1 for r ∈ [0, 1). (6.8)

Therefore,

GBid
0,p,p(g′)(z) =

∫
D

|kp,z(ξ)|p
|g′(ξ)|p

(1 + ϕ′(ξ))p ω(ξ)p/2 dA(ξ)

� sup
ξ∈D

(ψω(ξ)|g′(ξ)|)p
⎛⎝∫

D

|kp,z(ξ)|p ω(ξ)p/2 dA(ξ)

⎞⎠
= sup

ξ∈D
(ψω(ξ)|g′(ξ)|)p ‖kp,z‖pAp

ω
= sup

ξ∈D
(ψω(ξ)|g′(ξ)|)p .

(6.9)

The other assertion follows easily from (6.9).

6.8. Proof of Corollary 1.6

(II) Let 0 < p < q < ∞. Note that the weighted Bergman space Ap(ω), defined in 
[15], is the same as the Bergman spaces Ap

W , with W = ω2/p. Moreover,

GBid
0,p,q(g′)(z) =

∫
Dδ(z)

|kp,z(ξ)|q
|g′(ξ)|q

(1 + ϕ′(ξ))q ω(ξ) dA(ξ),

and (2.10) is transformed to

|kp,z(ζ)|q ω(ζ)q/p � τ(z)−2q/p, ζ ∈ Dδ(z), (6.10)

where kp,z(ξ) = Kz(ξ)/‖kp,z‖Ap(ω).
Let s = 2

p − 2
q . Then, by (6.8) and successively (2.4), (2.3) and (6.10), we get

(
‖Kz‖2s

A2(ω)ψω(z)|g′(z)|
)q

�
‖Kz‖2qs

A2(ω)

τ(z)2ω(z)1−
q
p

∫
Dδ(z)

|g′(ξ)|q
(1 + ϕ′(ξ))q ω(ξ)1−

q
p dA(ξ)

� 1
τ(z)2q/p

∫
Dδ(z)

|g′(ξ)|q
(1 + ϕ′(ξ))q ω(ξ)1−

q
p dA(ξ)

�
∫

Dδ(z)

|kp,z(ξ)|q
|g′(ξ)|q

(1 + ϕ′(ξ))q ω(ξ) dA(ξ)

� GBid
0,p,q(g′)(z) < ∞.
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Thus, to prove that the function g′ vanishes on D, it is enough to show that 
‖Kz‖2s

A2(ω)ψω(|z|) goes to infinity as |z| → 1. Indeed, by (2.5) and (1.12), we have

‖Kz‖2s
A2(ω)ψω(|z|) � τ(z)2(1−s)

(1 − |z|)tω(z)s ,

and so,

lim
|z|→1

‖Kz‖2s
A2(ω)ψω(z) = ∞

because of Lemma 2.3 in [15].

6.9. Proof of Corollary 1.6

(III) Let q < p, and suppose that GBid
0,p,q(g′) ∈ Lp/(p−q)(D, dλ). Then

GBid
0,p,q(g′)(z) �

∫
Dδ(z)

|kp,z(ξ)|q
|g′(ξ)|q

(1 + ϕ′(ξ))q ω(ξ) dA(ξ)

� τ(z)−2q/p
∫

Dδ(z)

|g′(ξ)|q
(1 + ϕ′(ξ))q ω(ξ)

p−q
p dA(ξ),

and so it follows from the assumption that

∫
D

⎛⎜⎝τ(z)−2
∫

Dδ(z)

|g′(ξ)|q
(1 + ϕ′(ξ))q ω(ξ)

p−q
p dA(ξ)

⎞⎟⎠
p

p−q

dA(z)

�
∫
D

(
GBid

0,p,q(g′)(z)
) p

p−q dλ(z) < +∞.

(6.11)

Thus, using (1.15), we get

‖g‖Apq/(p−q)(ω) �
∫
D

⎛⎜⎝τ(z)−2
∫

Dδ(z)

|g′(ξ)|q
(1 + ϕ′(ξ))q ω(ξ)

p−q
p dA(ξ)

⎞⎟⎠
p

p−q

dA(z).

This completes the proof of Corollary 1.6.
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