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When ¢(z) = =z, our results for GV(4 ) complement the
descriptions of Pau and Peldez.
© 2023 The Authors. Published by Elsevier Masson SAS.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

For 0 < p < oo and a positive function w € L*(D,dA), the weighted Bergman spaces
AP and AZ® consist of all analytic functions defined on the unit disk D for which

117, = / FEP w2/ dA(z) < oo
D

and
£l aze = sup [£(2)| w(2)'/? < o0,
zeD

respectively, where dA is the normalized area measure on .

In this paper, we study generalized Volterra type integral operators between weighted
Bergman spaces for a certain class W of radial rapidly decreasing weights. The class W,
considered previously in [4] and [15], consists of the radial decreasing weights of the form
w(z) = e 2#(3) where ¢ € C?(D) is a radial function such that (Ac,o(z))fl/2 = 7(z2)
for some radial positive function 7(z) that decreases to 0 as |z| — 1~ and satisfies
lim,_,;- 7/(r) = 0. Here A denotes the standard Laplace operator. Furthermore, we

c

assume that there either exists a constant C' > 0 such that 7(r)(1 — r)~¢ increases for

r close to 1 or

1
li "(r)log — =0
r—lgl— 7(r)log 7(r)
See Section 7 of [15] for examples of weights in W, such as the following exponential
type weight

—b
wy,a(2) = (1 —[2])7 exp <m> ; ¥=20,a0>0,0>0.

For the weights w in W, the point evaluations L, : f — f(z) are bounded linear
functionals on A2 for each z € D, and so A2 is a reproducing kernel Hilbert space;
that is, for each 2z € D, there are functions K, € A2 with ||L,| = ||KZ||A3 such that
L.f= f(z) = <fa Kz>£d7 where

(. 9o = / £(2) 72 wl(z) dA(2).
D
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The function K, is called the reproducing kernel for the Bergman space A2 and has the

property that K, (§) = K¢(z). The Bergman spaces with exponential type weights have
attracted considerable attention in recent years because of novel techniques different
from those used for standard Bergman spaces; see, e.g., [2,5] and the references therein.
Various estimates for the reproducing kernel play an important role in our work and we
discuss them further in Section 2.1.

Let ¢ and g be analytic self-maps of . The generalized Volterra type integral oper-
ators G144y and GV 4) induced by the pair of symbols (¢, g) are defined by

Glipg)f / F(6(©) g(&)de and  GVig o f(2) / F(0(©) g(&)de,  (1.1)

where f € H(D) and z € D. When g = ¢, the operator GI4 4/ is the composition
operator Cy up to a certain constant—these operators acting between different large
Bergman spaces were recently studied in [1]. As another special case, when ¢(§) = &, we
obtain the Volterra integral operator

Vof(2) = GVig g f /f &)d¢, (1.2)

and its companion integral operator

z

Jof(2) = Clipg f(2) = / 1€ g(€)de. (1.3)

0

Previously Pau and Peldez characterized boundedness and compactness of Vy, : AP — A%

n [15] when 0 < p, ¢ < co. Via (1.2) and (1.3), our characterizations extend the previous
results to the full range 0 < p,q < oo and to all weights in W, and also deal with
the companion operator J; for the first time. The generalized Volterra type integral
operators G4 4) and GV 4y were previously studied by Mengestie [11-13] in standard
Fock spaces and by Li [6] in standard Bergman spaces and Bloch type spaces.

1.1. Main results

In this paper we study boundedness and compactness of the generalized Volterra type
integral operators G144 and GV .. Our results on Schatten class properties, compact
differences, and the essential norm of these operators will be published elsewhere.

For 0 < p,q < oo, our characterizations for boundedness and compactness are given
in terms of the integral transform

. JOEGGO e
GB 0(0) / (NI T E S O (€)"2 A, = €D,
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where n = 0,1 and &, . is the normalized reproducing kernel of AP.

Theorem 1.1. Let w € W, ¢ : D — D be analytic, and g € H(D).
(A) For 0 < p < q < oo, the operator Gy 4 : AL, — AZ is bounded if and only if

GB?

1,p,q

(9) € L=(D, dA),

and compact if and only if lim,;|_,, - Gpr,q(g)(z) =0.
(B) For 0 <p < oo, Glyq) : AL, — A is bounded if and only if

(1+¢'(0(2) _w(z)"?
(1+¢'(2)) w(d(2)"/?

and compact if and only if lim ()1 Mg ¢.(2) = 0.
(C) The operator Gy 4 : Ay — AZ is bounded if and only if

Mly,4.0(2) = |9(2)] Ap(¢(2))V? € L¥(D,dA),  (14)

(1+¢'(0(2) w(z)"?
(1+¢'(2)) w(g(2))'/?

and compact if and only if lim| ()1~ N1y g(2) = 0.
(D) For 0 < g < p < 00, both boundedness and compactness of Gl 4y : AL, — Ad are
equivalent to the condition

Nlgg.u(2) = 19(2)|

e L=(D, dA), (1.5)

GB?

1,p,q

(g) € L*(D,d)),
where \(z) = dA(2)/7(2)? and s = p/(p—q) if p < oo and s =1 if p = <.

Theorem 1.2. Let w € W, ¢ : D — D be analytic, and g € H(D).

(A) For 0 <p <q <00, GVig g : AL, — A% is bounded if and only if GBgip’q(g) €
L>(D,dA), and compact if and only if lim, ;- GBg7p7q(g) =0.

(B) For 0 < p < oo, the operator GVg4 4y : AL, — A is bounded if and only if

IS O
MVooeB) = 0 G @) ol

and compact if and only if lim|4(2)|—1 MV, 4. (2) = 0.
(C) The operator GVig4 gy : Ay — ALY is bounded if and only if

Ap(d(2))/P € L>(D, dA), (1.6)

g()]  w(x)'?
(1+¢'(2) w(e(2))'/?

and compact if and only if lim|4(2)|—1 NVy g.u(2) = 0.
(D) For 0 < q < p < 00, both boundedness and compactness of GV(g4 5y = AV, — A
are equivalent to the condition

NVMW (Z) =

€ L®(D, dA), (1.7)
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GBS, ,(9) € L"(D,d\),
where r = p/(p — q) when p < oo and r = 1 when p = co.

We also prove the following simpler necessary conditions for boundedness and com-
pactness.

Proposition 1.3. Let w € W, ¢ : D — D be analytic, and g € H(D).
(A) If0 < p,q < o0 and Gl 4 g4 : AL, — A% is bounded, then

T(2)¥1 (L4 ¢(6(2)) w(2)'?
T(@(2))2/7 (1+¢'(2)) w(e(2))/?

z = |g(2)| € L>*(D,dA); (1.8)

and if Glg ) is compact, then the function in (1.8) vanishes as |z| — 1.
(B) If 0 <p < q < o0 and GV{y g : AL, — Al is bounded, then

7(2)2/q lg(2)| w Z)l/2
G T+ 9(2)) w(6(2)172

2 € L®(D,dA); (1.9)

and if VG g, q) is compact, then the function in (1.9) vanishes as |¢(z)| — 1.

As a consequence of the two main theorems, when ¢(z) = z, we obtain character-
izations for boundedness and compactness of V; and its companion operator J;. The
results for J, are new while the descriptions for V; had been partially obtained before
as explained in the following remark.

Remark 1.4. Notice that (C) and (D) of Corollary 1.5 are analogous to the descriptions
given in Theorem 3 of Constantin and Peldez [3] when Vj is acting between weighted
Fock spaces, but the two cases require different methods due to fundamental differences
between the two types of spaces. Further, Corollary 1.6 implies Theorem 2 of Pau and
Peldez [15], that is, we show that the their conditions are equivalent of those in Theo-
rem 1.2 when ¢(z) = z.

Corollary 1.5. Let w € W and g € H(D).

(A) For 0 <p<q<o0, Jy: AP — AZ is bounded if and only if g = 0.

(B) Forp > q, Jg : AP — A% is compact if and only if g € L*(D,dA), where
s =pq/(p—q).

(C) For0<p<gqg<oo, Vy: AP — A% is bounded if and only if

9O gyt o e
Z (1+¢/(Z))Aap( ) € L>(D,dA), (1.10)

and Vg : AP, — A% is compact if the function in (1.10) vanishes as |z| — 1.
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(D) For 0 < g <p<oo, Vy: AP — A% is bounded if and only if

l9'(2)]

Trv@ © L¥9(D,dA). (1.11)

In the next corollary, we consider the weighted Bergman space AP(w) = AP that

w2/p)
is,

AP(w) = { f € HD) < [|f I} ) :/If(Z)I”W(Z)dA(Z)<OO ;

D

where the weight w € W satisfies the condition

Ap(2) < (1 — |2]) by (2)) 7Y, 2z €D, for some t > 1.

In particular, we obtain the conditions of Theorem 2 in [15] for boundedness and com-
pactness of the operator V, : AP(w) — A%(w).

Corollary 1.6. Let 0 < p,qg < oo, w € W, and g € H(D).

(I) For p = q, we have the following statements
(a) GBgt (g) € L°(D,dA) if and only if

bu(2)lg'(2)] € L(D, dA).

(b) limy.j_4 GBé‘fpyq(g’) =0 if and only if

‘5131 Yu(2)|g'(2)] = 0.

(II) Let w € W with

Ag(2) < (1 — |2]) "o (2)7Y, 2 €D, for some t > 1. (1.12)

For p < q, the following statements are equivalent:
(c) GBOpq( "y e L*(D,dA).
(d) The function g is constant.

(IIT) For q < p,

GBopq( ") e Lp/(p_q)(]D),d)\) — g¢ APQ/(p—q)(w).
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1.2. Outline

In Section 2 we provide the basic definitions and results that are needed to deal with
the weights w in W, and consider useful estimates for the reproducing kernel of A?.
In Section 3, we recall known geometric characterizations of Carleson measures, and in
Section 4 we establish embedding theorems of SP, into L4(D, du), for 0 < p,q < co and
w € W, where

p/2
S = {f€H( I fllss —/If Hw( 57 4A4) <oo} (1.13)
and
5% = H(D) : - w(z) 1.14
o =9 €H( )-||f|\55°—jgg|f(z)|m<oo . (1.14)

In Section 5, we prove Theorems 1.1 and 1.2 using the embedding theorems, the strong
decay of the weights e~2% and the following Littlewood-Paley type formulas (see (9.3)
of [3] and [13]):

p/2
191 = 15O)1+ / PP G AG) (1.15)

1/2
1llaz = |7(0)] + sup |£()] -2

sl & T @y (1.16)

Finally, Proposition 1.3 and Corollaries 1.5 and 1.6 are proved in Section 6.

Throughout the paper, we use the notation a < b to indicate that there is a constant
C > 0 with a < Cb. By a < b we mean that a < b and b < a. For simplicity, we write
LP and AP for LP(D,wP/? dA) and AP(D,wP/? dA), respectively.

2. Preliminaries and basic properties

A positive function 7 on D is said to be of class L if there are two constants ¢; and
¢ such that

T(2) <c1(1—|z]) forall zeD (2.1)
and
[7(2) = 7(¢)| < ca ]z —¢| forall z,{ € D. (2.2)

For such ¢y and ¢y, we set
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m, = tmin(l,¢e7t, 5 t).

Given a € D and § > 0, we denote by Ds(a) the Euclidean disc centered at a with radius
d7(a). It follows from (2.1) and (2.2) (see [15, Lemma 2.1]) that if 7 € £ and z € Ds(a),
then

%T(a) <7(2) <27(a), (2.3)

whenever 0 € (0, m.). These inequalities will be used frequently in what follows.

Definition 2.1. We say that a weight w is of class L* if it is of the form w = e~2?, where
¢ € C%(D) with Ay > 0, and (Ag@(z))_l/Q = 7(z), with 7 being a function in the class
L. Here A denotes the classical Laplace operator.

It is straightforward to see that W C L£*. The following result (see [15, Lemma 2.2])
implies that the point evaluation functional at each z € D is bounded on A2.

Lemma A. Letw € L*, 0 <p < oo, and z € D. If B € R, there exists M > 1 such that
PP < o [ IREPe©? da)
~ 027(2)2
Ds(z)

for all f € H(D) and all sufficiently small 6 > 0.

Using the preceding lemma and the fact that there exists rg € [0,1) such that for all
a € D with 1 > |a| > rg, and any § > 0 small enough we have

¢'(a) = ¢'(2), 2 € Ds(a)

for 5,7 € R.

The next lemma provides upper estimates for the derivatives of functions in AP. Its
proof is similar to the case of doubling measures Ay in Lemma 19 of [10], and it can be
found in the following form in [5,14].

Lemma B. Let w € L* and 0 < p < co. For any 69 > 0 sufficiently small there exists a
constant C(dg) > 0 such that
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1/p
FEraer? s L ([ ereertag)

D(807(2)/2)
forall z€ D and f € HD).
The following lemma on coverings is due to Oleinik [14].

Lemma C. Let 7 be a positive function on D of class L, and let 6 € (0,m,). Then there
exists a sequence of points {z,} C D such that the following conditions are satisfied:

(i) 2n ¢ Ds(z1), n # k.
(i4) U, Ds(z) = D. )
(ii) Ds(zn) C D3s(zn), where Ds(2,) = U.ep,(.,) Ds(2), n € N.
)

(v {Dgé(Zn)} is a covering of D of finite multiplicity N .
The multiplicity N in the previous lemma is independent of §, and it is easy to see
that one can take, for example, N = 256. Any sequence satisfying the conditions in

Lemma C will be called a (9, 7)-lattice. Note that |z,| — 1~ as n — co. In what follows,
the sequence {z,} will always refer to the sequence chosen in Lemma C.

2.1. Reproducing kernel estimates

The following norm estimates for the reproducing kernel K, valid for all z € D can
be found in [2,7,15] when p = 2 and in [5] when p > 0, while for the estimate for the
points close to the diagonal, see [8, Lemma 3.6].
Theorem A. Let K, be the reproducing kernel of A%. Then

(a) Forw e W and 0 < p < oo, one has

1Kz, = w(z)" 2 7(2)*P/P 2 eD. (2.5)
K[z = w(z)"?7(2)%,  z€D. (2.6)

(b) For all sufficiently small 6 € (0,m;) and w € W, one has
(O = (1K a2 - [[Kcllaz, ¢ € Ds(2). (2.7)

The next lemma generalizes the statement (a) of the above theorem. For the proof,
see [1].

Lemma D. Let K, be the reproducing kernel of A2 where w is a weight in the class W.
For each z €D, 0 <p< oo and B € R, one has
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J QP o€/ 7(6)° dA©) = () #/2 (20977, 28)

D

The following result gives estimates for the normalized reproducing kernel &, , in A?,
defined by

kp =K./ K. az,
for z € D.
Lemma 2.2. Let w € W. Then
(a) ForeachzeD, 0<p<oo, and0< g < oo,
|kp ()] = 7(2)* 7P|k 2(O)7, ¢ eD. (2.9)
(b) For q = oo,
[y (O = 7(2) 7|k 2 (O, CED.
(¢c) For all 6 € (0,m;) sufficiently small,
[p = (O w(QP? = 7(2)%, (€ Ds(2). (2.10)
Proof. The proof is immediate from Theorem A. O
2.2. Test functions and some estimates
The following result on test functions was obtained in [15] and Lemma 3.3 in [2].
Without loss of generality, we modified the original version by taking w(z)?/? instead of
w(z) when 0 < p < 0.

Lemma E. Let n € N\ {0} and w € W. There is a number pg € (0,1) such that for each
a € D with |a] > po there is a function F, , analytic in D with

|Fan(2)|w(z)2 =<1 if |z2—a|<7(a), (2.11)

and

. 3n
|Fa,n<z>w<z>1/25min<1,w> , zeD. (2.12)

Moreover,
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(a) For 0 < p < oo, the function Fy ,, belongs to AP(w) with
1Fanllaz, = 7(a)*.
(b) For p = oo, the function F, , belongs to A with
| Fanllas = 1.

As a consequence, we have the following pointwise estimates for the derivative of the
test functions Fy, ,,. Its proof is a simple application of (2.11).

Lemma 2.3. Let n € N\ {0} and w € W. For any § > 0 small enough,
IF) . (2)|w(z)? <1+ ¢'(2), z€ Ds(a). (2.13)

The next Proposition is a partial result about the atomic decomposition on A? and
its proof follows easily from Lemma E.

Proposition 2.4. Let n > 2 and w € W. Let {zi}reny C D be the sequence defined in
Lemma C.

(a) For 0 < p < oo, the function given by

F(z) = i N Foenl2)

2/

BRI COR

belongs to AP for every sequence X = {\,} € £. Moreover,
[Ellaz < 1Aller-

(b) For p = oo, the function given by

F(2) =Y M\ Fryn(2)
k=0

belongs to A° for every sequence A = {\z} € £>°. Moreover,
[Fllag < IMes-

Proof. The proof of (a) can be found in [15, Proposition 2]. To prove (b), estimate the
norm of F' as follows
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|F|lage = sup |F(2)|w(z)"/?
zeD

S Mle D 1o (2)lw(2) 2
k=0

= Alle= | D Faa@w@Y+ Y [Faal)lw(=)!?

2p€Ds(2) 2 ¢Ds(2)

Now, using (2.11) and (iv) of Lemma C, we have

Yo Fua@)w(z)? S 1 (2.14)
zK€Ds(2)

It remains to show that

> Fa@w(x)? S 1.

zr¢Ds(z)

Indeed, by Holder’s inequality, we have

> Fpn(@)w(2)? < I(2) - 11(2), (2.15)
z,¢Ds(z)
where
I(z)= > min(7(z), 7(2) | Faypn(2)lw(2)/2,
2, ¢ Ds(2)
and
I1(z) = |Fepin (2)|w(2)"/?

. 2°
Dy (z) D (T(Zk), T(Z))

First we look for the upper bound of I(z). To do this, we need to consider the covering
of {€eD:|z—¢| > 071(2)} given by

Rj(2) ={€ €D :2767(2) < |2z — & < 27T167(2)}, ji=0,1,2,...
and observe that, using (A) of properties of 7, it is easy to see that, for j =0,1,2,...,
Ds(2r) C Dy(2), if 2, € Dy(2) with r = 5527 and t = §2771,

This fact together with the finite multiplicity of the covering (see Lemma C) gives



H. Arroussi et al. / Bull. Sci. math. 182 (2023) 103226 13

Y. (=) SAD(2) S 2%7(2)%

szRJ‘ (Z)

Therefore, by (2.12), we have

1)< Y 7)) [Fapn(2)lw(x)?

1 3n
Z 7(2,)? min (17 — (|7Z'(ikz);€|7'(z))>

2r¢Ds(2)

2™ Z Z _ Zk|3n (2.16)

J=0zr€R; (z)

N

iz S
j=0 zrE€R; (2)

To obtain an upper estimate for (I7), notice that since n > 2, (2.12) implies that

g Y mnlrle) )T

— 3n
kD3 (2) [ = 2]
gty Y
1> _ .. |3n
J=0zER;( ‘Z Zk|
2)742273’” Z 7(2k)?
J=0 2k ER; (2)

2)72 Z 2(27371)]’ 5 T(Z)72
=0

Combining this and (2.16) with (2.15) completes the proof. O
3. Geometric characterizations of Carleson measures
Let p be a positive measure on D. Denote by 5 the averaging function defined as

fis(2) = w(Ds(2)) - 7(2)7%, 2 €D,

and define the general Berezin transform of p by
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Glp)(z) = / ke 2 (O] (O du(€),

D

for every t > 0 and z € D.

In this section we recall recent characterizations of ¢-Carleson measures for A? for any
0 < p,q < oo in terms of the averaging function 5 and the general Berezin transform
G1(u). For the proofs of all theorems in this section, see Section 3 of [1].

3.1. Carleson measures

We begin with the definition of ¢-Carleson measures.

Definition 3.1. Let p be a positive measure on D and fix 0 < p,q < co. We say that pu is
a g-Carleson measure for AP if the inclusion I, : A, — L% is bounded.

The following theorem characterizes the g-Carleson measures when 0 < p < g < oo.

Theorem B. Let p be a finite positive Borel measure on . Assume 0 < p < q < o0,
s=p/q, 0 <t < oo. The following conditions are equivalent:

(a) The measure p is a q-Carleson measure for AP.
(b) The function

7(2)? VG () (2)

belongs to L (D, dA).
(¢) The function

(220 55(2)
belongs to L>(D,dA) for any sufficiently small § > 0.
Now we characterize ¢-Carleson measures when 0 < g < p < c0.

Theorem C. Let p be a finite positive Borel measure on D. Assume 0 < g < p < 0o and
s =p/q. The following conditions are all equivalent:

(a) The measure p is a q-Carleson measure for AP.
(b) For any (or some) r > 0, we have

i € P/ (P—a) (D, dA).
(¢) Foranyt >0,

Gi(p) € LP/P=9(D, dA).
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3.2. Vanishing Carleson measures

Definition 3.2. Let p be a positive measure on D and fix 0 < p,q < oo. We say that p
is a vanishing g-Carleson measure for AP if the inclusion I, : A?, — L is compact, or
equivalently, if

/ Fnl(2)7 (202 dpa(z) — 0

D

whenever f,, is bounded in AP, and converges to zero uniformly on each compact subsets
of D.

The following three theorems characterize vanishing ¢-Carleson measures for A? when
0<p<ooand0<q< .

Theorem D. Given 7 € L*, let p be a finite positive Borel measure on D. Assume 0 <
p<g<oo, s=p/q, 0<t<oo. The following statements are all equivalent:

(a) p is a vanishing q-Carleson measure for AP .
(b) 7(2)20V)Gy(p)(2) — 0 as 2| — 17

(c) 7(2)20=V9)u5(2) — 0 as |z| — 17, for any small enough § > 0.

Theorem E. Given 7 € L*, let 1 be a finite positive Borel measure on D. Assume 0 <
q < 0o. The following conditions are all equivalent:

(a) u is a g-Carleson measure for AZP.

(b) 1 is a vanishing q-Carleson measure for AZ.
(¢) For any sufficiently small 6 > 0, we have

s € L' (D, dA).
(d) For anyt > 0, we have

Gi(n) € L*(D,dA).

Theorem 3.3. Given 7 € L*, let pu be a finite positive Borel measure on D. Assume that
0 < q<p<oo. The following statements are equivalent:

(a) p is a g-Carleson measure for AP.
(b) w is a vanishing q-Carleson measure for AP.
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4. Embedding theorems

In this section we establish embedding theorems of S? into L4(D, du) for 0 < p,q < oo
and w € W, where SP are given in (1.13) and (1.14). We start with the case 0 < p <
q < o0.

Lemma 4.1. Let w € W and 0 < p < g < o0. Let u be a positive Borel measure on D.
Then

(a) I, :S8 — LD, du) is bounded if and only if for each 6 > small enough,

Boele) =208 S

/ (14 0 (€)w(&) 2 du(€) < 0. (4.1)

Ds(z)

(b) I, : S8 — LY(D,dp) is compact if and only if

[ QOO o (12

1m
|z| =1 T(2
Ds(z)

Proof. Suppose first that the condition (4.1) holds. Then, by Lemma C and (2.4), we
get

1 o0 = /|f IRTCED S ILEINE

k= OD&(Zk)
w(z)q/Q / —q/2

- (L4 /()0 w(z) " du(2)

ZD(/ § areen T g

q/p

> 1 w(s)W2 , _
<> — [ ey 2A() (1+¢'(2)"w(z) " ?dp(2)

k—om(/z ! ﬂz)@i RACETIO)

q/p

- p o) (L4 g ) 2
> D/ P A D(/ A

for small enough ¢ > 0. By applying our assumption, we have

q/p
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Using a similar argument as in the proof of Theorem 1.1 in [14], Minkowski’s inequality
and the finite multiplicity N of the covering {Dss(zx)}, we get
q/p
ad w(s)P/?
||f||(iq(m>7d“) S Kpw Z / |f(5)\pm dA(s) S Ky NP ||f\|%g-

kZODss(zk)

This proves that the embedding I, : S, — L4(D,du) is bounded with ||Iu||qu(]D> ) <
K

JIRAE
Conversely, suppose that I, : S? — L4(D,du) is bounded. Let a € D with |a| > po
that is defined in Lemma E. By Lemma 2.3,

|Fan(2)|w(2)!/2 =< (1+¢(2)), 2 € Ds(a),
(where Fy, 5, is the test function in Lemma E), and so
[ areeyee tae s [ IR e / [FL (2] du).
Ds(a) Ds(a)
Using our assumption, (a) of Lemma E, and (1.15), we obtain

/ (14 ¢ (2) (=) du(z) S 117 1FL %

D5 (a)

< Ll ol g = 1214 7 (a) 077,

Then dividing both sides by 7(a)?/P gives

e | QP () < I < o,

7(a)
Ds(a)
and so

1 / —q/2
sup sz [ (L) () 2 ) < L < o
Ds(a)

which means that K, ., < ||1,]]9.

To prove (b), suppose that I,, : SE — LI(ID, dyu) is compact. Consider the function

 Fun(2)
fa,n(z) = T(a)T/p, fOI' |(L| 2 po.

As in the proof of Theorem 1 of [15] and using Lemma E, we can show that the function
fa,n is bounded and converges to zero uniformly on compact subsets of D when |a| — 1.
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Therefore, by Lemma B, f; ,, converges to zero uniformly on compact subsets of D as
la] — 17.

12q/p /(1+¢’(Z))QW(Z)_%dM(z)S / | fan (2] du(2)

7(a)
Ds(a) Ds(a)

s/Wmm@n%mu>:nmﬁgmmwy
D

Since I, is compact,

1. ! q - 07
|a|1—I}}* ||fa,nHL (m)

and so

i ! ")) 9w (2) "% du(z) =
Jm [ st due) = o
Ds(a)

This shows that (4.2) holds.

Conversely, suppose that (4.2) holds. Let { f,,} C SE be a bounded sequence converging
to zero uniformly on compact subsets of D and {zx} be a (J, 7)-lattice. To prove that I,
is compact, it suffices to show that || f,||ze(u) — 0. By the assumption, given any ¢ > 0,
there exists 0 < r1 < 1 with

7-(01)%/1) / (14 ¢'(2)%w(z) 2 du(z) <e, 5 <la| <1. (4.3)
Ds(a)

Observe that there is 7 < 7o < 1 such that if a point z; of the sequence {z;} belongs to
{z €D :|z| <ri}, then Ds(z;) C {z €D : |z| < ry}. Therefore, since {f,} converges to
zero uniformly on compact subsets of I, there exists an integer ng such that

|fn(2)| <e, for |z] <ryand n > ng.

We split the integration of this function into two parts: the first integration is over
|z| < ro and the other integration is over |z| > r3. On the one hand,

| 1@ due) <& (4.4)

[2]<r2

On the other hand, by Lemma C and Lemma B, we obtain
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[RCZE RS S TG

|z|>r2 |Zk‘>T1D5(Zk)

q/p
1 w(s)P/? ' -4
s > / (W / [ fn(s)IP W‘M(s)) (1+¢/(2)9w(2)" 2 dp(2)

lzk1>T1 D5 (2) Ds(z)
q/p
= w(s)P/ (1+¢/(2)7w(z) "2
< 1;0 ( / [fn(s)IP mdi“(s)) / (25)2/P dn(z)
T \Dss(zk) Ds(zr)

[ a+ e @@t dut) SNl S

Ds(zx)

<e a sup —————
~ anllsg ‘zk‘fy‘l T(Zk)2q/p

These together with (4.4) show that I, : S, — L9(D, dp) is compact. O

To characterize boundedness and compactness of I, : S? — LD, du) with 0 < g <
p < 0o, consider the function Fs ,(¢) defined by

Fy(0)(2) == (12 / (1+ ¢/ (6))w(E) "2 dp(). (4.5)

T\Z
Ds(z)

We use Luecking’s approach in [9] based on Khinchine’s inequality. Recall that
Rademacher functions R,, are defined by

R~ [P st <1
T i<t <1
Rn(t) = R0(2nt), n 2 ].,

where [t] denotes the largest integer not exceeding t.

Lemma F (Khinchine’s inequality [9]). For 0 < p < oo, there exists a positive constant
Cp such that

(Z|)\k| /I'ixk}zk dthp(iP\kF)p/

k=1 k=1

for alln € N and {\¢}}7_, C C.

Lemma 4.2. Let w € W and 0 < g < p < co. Let pu be a finite positive Borel measure on
D. Then, the following statements are equivalent:

(a) The operator 1, : S’ — L9(D, dp) is bounded.
(b) The operator I, : S¥, — L4(ID,du) is compact.
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(¢) The function
Fsu(p) € LP/P=0(D, dA). (4.6)

Proof. The implication (b) = (a) is obvious. To prove that (a) implies (c), suppose
that the operator I, : S’ — L%(D,du) is bounded. Let {z;} be a (6§, 7)-lattice on D.
Corresponding to each A = {\,;, }m € €7, we consider

> Anfenn(2)

[2m|>po

Fzm n(z)

where f, n(z) = 527 and 0 < po < 1 as in Lemma E. By Proposition 2.4 and

(1.15),

1 sz S M az S IMler-

Note that as an application of Khinchine’s inequality (Lemma F), replace \,, with the
Rademacher functions R,, () A, and then integrate with respect to ¢ from 0 and 1, which
yields

2. \Am\Q f;m,n(z)\2 / | Ral®An £l a(2)] dt

[2m |>po 0 \Zm|>ﬂo

and so

[l X Pl @Pee) | du)
D

|2m |>po

Y Bu®afl, n()| w(z)?dtdu(z)

Zm: |Zm\ZP0

AN
O\H O _—
O o~ _

> RaWAnfl, .(2)] w(z)?dp(z)dt

Zm | zm|>po

S/Hf'Hqsg dt = 1" < 1% S IAIZ-
0
By Lemmas C and 2.3,

> % [ ase@rwe  due

|Zm = po Dis(2m)
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<Y Pl / L ()] du(€)

>
[2m|>po Dss(zm)

3 Pl 1 O XDus e (€) i),

D lzm|=po

where X p,;(,.)(§) denotes the characteristic function of the set D3s(zp). Now, by the
fact that 07 2k < (307 zm)k, k>1,z, >0 for ¢>2, we get

> Al a(©)1IXDas () (§) dus(€)

D ‘an|2p0

[ P 1PN ()

D [2m |>po

IO PPl ©F)" dute)

D |zml|=po

For ¢ < 2, by Holder’s inequality and Lemma C, we get

Y Pl 1L (O XDy () (€) dia(€)

D [2m|2po
q/2 1_%
</ ( 2 'Am'g'fémmw) ( > xD%(zmx&)) (=)
D [2m|>po [2m [>po

N[O Dl I ©F) " dute)

D |2m [>po

Therefore, for ¢ < 2 and ¢ > 2, we have

> o [ e e

|Zm |>po Dss(2m)
< / S Pl £ ()T o (€) dpa(€)
D |Z'"L‘ZP0

Suax(L 8 ) [ (0 P12, 8 ) dute)

D |Z7n‘2/00

By applying (4.7), we have

2 % [ s @)w©) du© < Il

[2m [>po Dss(2m)
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Thus, taking |b,| = [Am|? € €2/7 and using the duality (2)* = ¢9, we see that the
sequence

o [ e tae) <0

Zm) m
D3s(zm)

Observe that there is pg < 71 < 1 such that if a point z; of the sequence {z;} belongs
to {z €D :|z] <po}, then Ds(z;) C {z € D : |z| < ry1}. Thus, by Lemma C and (2.3),
we get

r/(pP—q)

[ |5 [ asv@moae| e
[z]|>71 D5 (2)
p/(p—q)
s Y [ | [ arv@mo e | e
IZle’OOD(;(zm) Ds(2)

p/(p—q)

S Y | [ 0@ ae < co.
|Zm|ZP0 m DSS(Zm)

Therefore, since

/ % / (1+¢/(s))%w(s) " 2 duls) dp(z) < oo,

|2/ <r Ds(2)

we obtain

p/(p—q)

[E@ereane = [| = [ (oot aue aA(2)
D

D Ds(z)

p/P—q

/ (1+¢/(s)%w(s) " 2 du(s) dA(z)

p/p—q

1 "(s))%w(s) " 2du(s 2) < oo
[ s [ areere tae | aae) <.

|z|>71 Ds(2)

This proves the desired result.
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Finally, it remains to prove that (c) implies (b). Suppose that (4.6) holds and let { f,,}
be a bounded sequence of functions belonging to S? that converges uniformly to zero
on compact subsets of D. Since the function 7 is decreasing and converges to zero as
|z] = 1, there is 7’ > 0 such that

Dsp(z)c {eeD il >r/2}, i |2l >r>7 (4.8)

On the other hand, it also follows from (2.4) that

. w(z)7? 1 e w(s)a/? .
|fn(2)| (1+(p/(z))q S T(Z)QD[) ‘fn( )| (1—|—(p/(8))q_ dA( )

Integrate with respect to du, and use (4.8) and (2.3) to obtain

/ IXGIENG

|z|>r

(4.9)

q w(§)Y/? 1 "N w(2) "2 dul(z
S [ mer 5 | mae [ G @reE R ) | aa
|€1=r/2 Ds (&)

By (c), for each € > 0, there is an r9 > 7’ such that

r/(P—q)

/ 7(2)2 / (14 ¢'(2) w(z)” "2 du(z) dA(¢) < e?/ =9,

|§1=r0/2 Ds (&)

Combining this with Holder’s inequality, we have

[fn (&)1 dpu(€)

[z]>70
p/(p—a) (e=a)/p

Sl / — 3 /(1+¢/(2))qw(2)*q/2dﬂ(z) dA()
€1>70/2 Ds5(8)

—~
A
~—

<e.

~

(4.10)
This together with the fact that

lim [fn ()] du(€) =0

n— o0
[2|<ro
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gives limy, o0 || fullLe¢u) = 0, which completes the proof. O
We finish this section with the case 0 < ¢ < 0o and p = co.

Lemma 4.3. Let w € W, 0 < q < 00, and u be a finite positive Borel measure onD. Then
the following statements are equivalent;

(a) The operator I, : S — LY(D, dp) is bounded.
(b) The operator I, : S — LU(D,dp) is compact.
(¢) The function

Fs5,.(p) € LY(D,dA). (4.11)

Proof. Suppose first that the operator I, : S3° — L4(ID,dpu) is bounded. Let {2, }., be
a (0, 7)-lattice on D. Corresponding to each A = {\,, },, € £°°, we consider again

f(z) = Z AnE,, n(2),

[2m|>po

where F, (%) is in Lemma E. By Proposition 2.4 and (1.16), we have

1 sz < [ fllage < NAese-
By our assumption, we get
q
J1 X bt )] o dute) < 161
D ‘Zmlzp()
and so

q/2

Yo PalIEL LEPw) | duz) S A

D |ZM‘2PO
This together with Lemma C, Lemma 2.3 and Hoélder’s inequality imply that
> alt [ @) dute)
\Zm|2l)0 Dsa(zm)

q 4/2
Smax(L N (X Wl E, ©F w(©) " dule) < I

D lzm|=po

Then, taking |A,,| = 1 gives
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> ey taue St (112
‘Zmlzpo DSS(Z'm)

As in the previous proof, by Lemma C,; (2.3) and (4.12), we get

| sz [ asd©reo e | aae

[z|>r1 Ds(z)

b H(E))w(£)9/2 P
s Y [ | [ ardoree e | aae)

|Zm‘>POD5 Ds(z)

m)
< (1+¢'(6) (&) "2 du(€) <

|zm‘>p°D35(Zm)
Combining this with the fact that

| sz [ are@reo2aue | e <.

z
|z|<r1 Ds(2)

we have the desired result—see (4.5).

It remains to show that (c) implies (b). Let {f,,} be a bounded sequence of functions
in S converging uniformly to zero on compact subsets of D). Since the function 7(z) is
decreasing and converges to zero as |z| — 1, there is ' > 0 such that

Dsp(z)c {eeDlgl>r/2}, il |2l >r >0 (4.13)

On the other hand, it follows from (2.4) that

w(z )q/2 w(s)d/? )
e / I 5 AC)

Integrate with respect to du, and use (4.13), (2.3), and (2.4), to obtain
[ 15 duce
|z|>r
w(g)q/2 1 / —q/2
< [ e 55 | w0 e R ) | aa

|€|=r/2 D5 (&)
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Sl [ g [ Qe e dueaa). (@19
|€]=r/2 D5 (&)

Now the rest follows as in the previous proof. O
5. Proofs of Theorems 1.1 and 1.2
5.1. Proof of Theorem 1.1 (A)
Let 0 < p < g < c0. By (1.15),
w(z)9/?
GI, = 19—~ dA
1GTo f () / £ G ) oy dAC)
= 1 o) = 1 V0.
D

Therefore, GI(y 4) : AL, — Al is bounded if and only if I,
bounded. Using (a) of Lemma 4.1, this is equivalent to

bW, g : 55 - Lq(u¢7w,g) is

sup ——r [ )6 g (€) <,

zeD T(Z
Ds(z)
which, by Theorem B, is equivalent to

sup 7(z 2(1 q/p)/‘k O |w(€) q/2du¢,W,g(§) < 0.
zeD

Now, by (a) of Lemma 2.2, we get

2(1 Q/P)/‘k |qw q/2 dv¢7w7q(£)
= / e 2 (€)|7 W(E)9/2 dvg i 4(€)
D
- / ey 2 ()19 (1 + (€))7 o g(€)
/ (€))7 g ()0 L EL (5)” w(z)7? dA(E)

(1+¢'(£)1

= GB? (5.1)

Lp,q
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Thus, G, , is bounded if and only if GBY q(9(2)) € L*(D,dA). Compactness can be
proved similarly using (b) of Lemma 4.1.

5.2. Proof of Theorem 1.1 (B)

Boundedness. Let 0 < p < ¢ = 0o and suppose first that (1.4) holds. Then by (1.16)
and our assumption, we have

g . w(z)1/2
G oS llaz = sup G o) 7 7
. 2 sup L OEDIW@EDE 1y

R S R (a0
| (6(2))| w(e(2)) /p

< sup Mool ST o) O

Therefore, by (2.4),
1/p
1GLp,0)flla S sug / % dA(§)
S VA
1/p
FEOPO® a6y <1l

=\ a+o©y
D

which implies that Gl 4) : A?, — AZ is bounded.
Conversely, suppose that the operator Gl 4) : AL, — AZ’ is bounded. Choose § € D
so that |¢(&)| > po, and consider the function fg(¢) ., given by

f _ Fs@mp
G

where Fy¢) n,p is the test function in Lemma E. Notice that f4¢),, is in AP, and
| fo(e),n.pllar, < 1. By our assumption, we get

£ 5(6)mp(2)19(2)]

G (4,9)(foe)mp)llage = Slelg 1+ () w(z)%
“ 1Fde) .m0 (2)9(2)] :
2 S0 @i g o)

w(€)?.

1 )
1B 0, (BONlg(€)]
~ eeb T(G()2P(1 £ ¢ (0))
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By Lemma 2.3,

|Foe)np(w(2)? = (14 ¢'(2)), 2 € Ds((€)),

and so
o0 > 6T Yoz = o] TSP 28 r(ote)) 20
- (1+s0( (5))) c«)(5)% vy (52)
97¢,w(§)'

On the other hand, by taking f(z) = z and using the boundedness of the operator
Glg,g) : AL, — AT, we obtain

9(2)|
HGI(¢ q)fHA°o = SUP m

Therefore, in the case of |#(€)| < po, £ € D, we have

w(2)? S| fllaz < oo

_ ) £ 1/p
L+96©) w©F . o

910 ) st 0O
l9()I oo

SO T O

where
-1

Ci= sw {1+ GO 76(E) "} < o

Combining this with (5.2) completes the proof of boundedness.

Compactness. Suppose now that Gl o) : AL, — AZ° is compact. Then, since fy¢)n,p
converges to zero uniformly on compact subsets of D as |¢(£)] — 1 (see Lemma 3.1 of
[15]), it follows that

1GI(4.9)(fo&).mp)llaze — O

as |¢(¢)| — 1. Thus, by (5.2),

o@em NGl Jo@mpllaz 2| lim  Myou(0)
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To prove the converse, let {f,} be a bounded sequence of functions in AP, converging
uniformly to zero on compact subsets of D. Since (1.4) holds, for each & > 0, there exists
an rg > 0 such that

L (0O _w(©Y
T+ (0 w(B(E)

whenever |¢(§)| > 7. In addition, by (2.4),

[fn(@E)lg(©)]
1+ ¢'(€)
R B A CIO ) RN O 5.3

Ds(2)

My.4.,(8) = |g(9)] P(p(£)P <,

(Sl

w(£)

S [ fallaz Ms.0(8) <,
whenever |¢(§)| > 7.

For |¢p(§)| > ro, we have

[fa @Ol 1 ’
bl 1+ SRS |¢(Sél>1|2m|f"(¢(£))| o

as n — oo because the sequence of functions f/ also converges uniformly to zero on
compact subsets of D (see Lemma B). This together with (5.3) yields

[fn(¢(Dlg(€)]

T+ /() w(&)2 -0, n— oo,

1G1(,g)(fn) ]| aze = sup

¢eb

which shows the compactness of the operator G4 o) : A?, — AZ’.
5.8. Proof of Theorem 1.1 (C)

Boundedness. Let p = ¢ = 0o and suppose that (1.5) holds. Using (1.16), we get

o PO
1Gheaflaz =2 = gy«
PG (@)
< 500 Ny (2) 0D S o0(2))
P ()z)
< sup Ng,¢0(2) SUD T o (2)) S llag

which shows that G4 4) is bounded.
Conversely, suppose that GI(4 4 @ Ay — AZY is bounded. Let £ € D be such that
[6()] > po. Then Fye)np € AZ and [|[Fy(e).np

|4 < 1, and hence
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Fems @@,
00 > |G (4.9) (Fpe)mp)ll aze = sup —2E0L w(z)?

ced (L4+¢'(2)
| e mp@E9(E)]
(1+¢'(€)

1
w(§)z.
By Lemma 2.3,

| Foeynp(w(2)? = (14 ¢'(2)), 2 € Ds((€)),

SO

_ (L+¢/(6(©) w@? _
To deal with the case |p(£)] < po, take f(z) = z and use the boundedness of the

operator G4 4) to obtain

160 llaz =510 25 w2 S 1 a < . (5:5)

Therefore, when |¢p(€)| < po, £ € D, we have

g(£)|(1+s0’(¢(£)))) w2 o 190

T+¢(©) we@): = 20+ @)~

where

Co= s {(1+¢(6(©)w(6(€)7 } < oo
[#(&)<po

Combining this with (5.4) completes the proof of boundedness.
Compactness. If Gl o) : AY — Ay is compact, then, using (5.4) again, we get

lim NI, 4,08 < GI .
[p(&)|—1— 9.9 (5) “ﬁ(f) H (¢9)(f¢(§)a ’P)HA

To prove the converse, let {f,} be a bounded sequence of functions in AZ® converging
uniformly to zero on compact subsets of D. By assumption, for any € > 0, there exists
ro > 0 such that

(L+¢'(6(2)) w(x)'/?

Nlg.ow(&) =19 “77503) o))

<eg,

whenever |¢(§)| > ro. Notice that
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| fn (o)l (€]
14+ ¢'(€)

(L+¢'(9() w(©)'?
(1+¢'(§) w(p(€))r/? (5.6)

= [ fullag Nop.w(§) <e,

W(€)F < |l fullass l9(€)]

whenever |¢(£)] > ro. The rest follows as in the proof of (B).
5.4. Proof of Theorem 1.1 (D)

Let 0 < ¢ < p < oo and suppose that G144 : AP, — AZ is bounded. If {f,} C A? is
a bounded sequence converging to zero uniformly on compact subsets of D, then

||Gf¢gfn||Aqm/'f'1w' I @ AD) =il e 6D

which goes to zero as n — oo because of the compactness of the embedding I, , ..

We next prove that (a) and (c) are equivalent. By (5.7) and Lemma 4.2, we get
Gl(g,q) : AP, — A, is bounded if and only if 1,,, :SE — L9(ug w0, ¢) is bounded if and
only if I,,, , .+ SP — L9(jg,w,g) is compact if and only if the function

Fspy.,(0)(2) =

1)2 /(1+w’(&))qW(O_q/zduas,w,g(f)

(2
Djs(2)

belongs to LP/P=9) (D, dA). By Theorem C, this is equivalent to

/ g (17 W(©)7? v g (€) € LY P~D(D, dA),

Wthh is as well equivalent to GBlpq(g)(z) € LP/P=9(D,d)), where d\(z) =
dA(z)/7(2)?, because of

/Gq(ug’w’g)p/pfqu(z)
D

D

(T(z)z(lfq/p) G, (ng,w,g)) p=a d\(z)

X

(rz20-0w / (7€) g ()™ dA)

S @\ @\ S —

(rz20-0w / (O (14 €))7 g 0(8)) ™" dA2)

= | GBY, (9)(2)"/P""dA(2).

Psq
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This completes the proof of (D) when 0 < ¢ < p < 0.
Suppose that 0 < ¢ < p = oco. If GI(4 4) : A — AZ is bounded and {f,,} C A is a
bounded sequence converging to zero uniformly on compact subsets of I, then

Hg )I

||GI(¢gfn||Am/'f GV )% 4G = 12l >0 (59)

where we used again the compactness of the embedding I, , ., and so G4 4) is compact.
It remains to prove that (a) and (c) are equivalent. By (5.8) and Lemma 4.3, we get
Glyg)  AY — A%w is bounded if and only if I, 18 = LY(pgw,g) is bounded if

oy - S0, = LU (fig,w.g) is compact if and only if the function

b,w,9

and only if I,

P @) 1= iz [ (1400002 dug (0

Ds(2)

belongs to L'(D,dA). By Theorem E, this is equivalent to

[ o ©110(©) 1 ) € L'(D,dA),

which is in turn equivalent to GB?_ (¢)(z) € LY(D,d\), where dA(z) = dA(z)/7(2)2,

1,p,q
because of

GBLg(@)(2) = (P17 [k, () (? vy (6).

D

5.5. Proof of Theorem 1.2 (A)

Boundedness. Let 0 < p < g < oo. By (1.15),

1GVig 0l = / LI @)t dae) = [P sy 69
D

Therefore, GV 4) : AL, — AZ is bounded if and only if the measure vy, 4 is a g-Carleson
measure for AP. According to Theorem B, this is equivalent to

sup 7(2)2(1~ q/p)/‘k O] w(£)4/? dvgw.g(§) < o0.
zeD

Now, using (a) of Lemma 2.2, we get
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(PO [y (O A ) = [ Ve (O () ()
D

D

_ VO
- D/ (! s ()72dA(E)

= GBS

Pq”

Thus, GV4 4) is bounded if and only if GB0 pq(9) € L2(D,dA).
Compactness. By above, GV(4 4) : AL, — AZ is compact if and only if the measure
Vg.w.g is a vanishing g-Carleson measure for A?. This is equivalent to

lim 7‘ 2(1-a/p) /|k |qw q/2dV¢,w,g(§):0'

|z|—1—

Now, using (a) of Lemma 2.2, we get

z)20= q/p)/|k )7 w(€) q/2dy¢wq(§)
~ / (17 (€)7o €)

q |g< )| o q/2
/ by (N 2 gy ()" A

=GB

71051

Therefore, lim,|_,- GBg’p’q(g) = 0 if and only if GV4 4) is compact.
5.6. Proof of Theorem 1.2 (B)

Boundedness. Let 0 < p < ¢ = co and suppose that (1.6) holds. Then, by (1.16), we
have

£ (2(z)llg(2)]
(1+¢'(2))

< sup MVy.0(2) sUp F(8(2))lw((2))% Ap(p(2))"V/P

< sup MV 4.0 (2) sup | £(6(2))[w(e(2)) 2 7(¢(2))>/P.
zeD zeD

1
1GVig.g) fll Az = sup w(z)?
zeD

By (2.4) for f € AP we obtain
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1/p

1GVipg fllaz < sup / FE)Pw(€)k dA(E)
z€eD

D

1/p
dA(S)) = || fllaz-

IN
~
\
=
o
)
£
o
N

Therefore, the operator GV(4 4) is bounded.

Conversely, suppose that the operator GV(y o) : AL — AZ’ is bounded. Taking £ € D
such that [¢(£)| > po, we consider the function fg(e) n,p given by fy(e) n,p = %
where Fy ¢ n,p is the test function defined in Lemma E. These functions fg¢) n,, belong
to AP with Hf(ﬁ(&),n,pHAZ = 1. By (1.16),

| foe)m.p(2)9(2)]
00 > |GVigg) (fis(e)mp)llaz = sup ZEE0L

)

zeD ( /(Z )
»(

(

w(z)?
19(2)]
= D L) (1 + (7))

|
P(

o 5@ n.0(0(€)]19()
— T(@(€)2P(1+¢'(€)

)
| Fs(e),n,0(2)

N

w(2)

w(9(€)?
w(p(€))z

eyt
)W(S)

In this case, by (2.11),

00 > ||GVig,g) (fo(e)mp) | aze >

On the other hand, if we define f(z) = z and use the boundedness of the operator
GVig,g) + AL, — AZY, we obtain

l9(2)]

1GVio llaz = sup =55 w(2) S 1flag < oo (5.11)

Therefore, in the case of [¢(€)] < po, £ € D, we have

9@ w(©)?
(1+¢'(9) w((¢))?

/p = |g(§)| W(
AN = T &) mia(e)

NG
Sclmw(f) < o0,
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where

Cr= s {w(@(€)F r(6(€) "} < oo
|6 (&)1<po

This, (1.6) holds.
Compactness. Suppose that the operator GV(4 4y : AL, — AZ’ is compact and define

Fye)m
fd)(f),n,p = %7 for |¢(£)| > po,

which are in AP and converge uniformly to zero on compact subsets of D as |¢(€)] — 1.
Thus,

1G1(p.9)(fo(&)mp)llaze — 0

as |¢(&)| — 1. Thus, (5.10) shows that

lim MV, .,(6) < lim GV, = 0.
pam MV, ) |¢(§)H1*” (#.9) (fo(e)np) 4z

Conversely, if {f,} is a bounded sequence of functions in AP, converging uniformly to
zero on compact subsets of I, then, as for Gl ), it follows that

w(f)% —0, n— oo,

[ (2(E)19(E)]
gp/

GV, ) aee = su
16V ol = sup AT

which proves the compactness of the operator GV{4 4) : A?, — AZ.
5.7. Proof of Theorem 1.2 (C)

Boundedness. Let p = ¢ = co. Suppose first that (1.7) holds. Then, by (1.16),

(OO

1o llaz =8 0oy “)
< sup NV 4.0 (2) sup | f((2))|w(e(2))?
zeD zeD

1
< sup NV .0(2) sup [ f(2)|w(2)? S| fllag,
zeD zeD
that is, GV(4 4) bounded.
Conversely, suppose that GV, g) : A5’ — A is bounded and show that (1.7) holds.
As before, if £ € D is such that [¢(§)| > po, we use the test functions Fy(e) n,, to obtain
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|] d(&),n p(2)||g(2)|
o > |GV F, Ase = Sup b w
| (¢,g)( ¢(£)7n,p)|| b9 b (1+¢/'(2))

o [Fg(¢),np(A(E)g(E)] w w(o(€))>
=T (19 (9) w(e(8)

2 NVg,6,0(8) [Fg(e)np(9(€)) w(@(8)) 2

Nl=[ Nl

N= S~ [ —

Now

lg(&) w(€)?
(1+¢'(€) w(o(€)

__lg@®l w2
(1+¢'(€) w(g(e))2

00 > [[GVig,g) (Fp(e)np)llaz =

~—
=

(5.12)

= NVg,(b,w (f)

If f(z) = 2, the boundedness of the operator GV(4 4 : Ay’ — AZ implies that

z 1
I6Via fllaz = sup ¢ 9GN_2yh <1 fflas < oo (5.13)
zE

1+¢'(2))

Therefore, in the case of |¢(€)| < po, £ € D, we have

9O w@ _ @
(1+¢'(€) wio©)r = > T+

where

Cr= s {w(6(€)7 } <.
[9(&)<po

Combining this with (5.12) shows that (1.7) holds.
Compactness. This is similar to the proof of (C) of Theorem 1.1.

5.8. Proof of Theorem 1.2 (D)
Let 0 < ¢ < p < co and suppose that GV(y4 4 : AY, — A is bounded. According to

(5.9), the measure vy, 4 is a g-Carleson measure for A?. Thus, by Theorem 3.3, vy . ¢
is a vanishing g-Carleson measure for AP . In this case, we have

||GW¢,g)fn|‘?4g —0, n— oo,

for any sequence {f,} C AP converges to zero uniformly on compact subsets of D. By
Lemma 3.7 of [16], GV{4, 4) is compact.
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Next we show that (a) and (c) are equivalent. Suppose first that (c) holds. Then

/(p—q)
)p P qd)\(z)

/ Gu(v.0a) (2P VdA(:) = / (D6, v)()
(5.14)
/GB(b p/(p q)d)\( )<

Thus, according to Theorem C, vy, 4 is a g-Carleson measure for AP . Then, by (1.15),
GV fullhs = [ 1HI 2 dvz) S 11
D

for any function f € AP.
Conversely, suppose the operator GV(4 4) : AL, — Af is bounded. Then, for each
function f € AP, by (1.15),

1GVigg) Fll%y = / FN7 (=) v (2).
D

Thus, the measure vy, 4 is a g-Carleson measure for A?. According to Theorem C,
Vi.w.g Delongs to LP/(P=9)(D, dA). Combining this with (5.14) yields that GBgipyq(g) €
L/ P=a(D, d)).

Let 0 < ¢ < p = oo and suppose that GV(y4 4 : Ay — AZ is bounded. Then, by

(1.15),

Iqlg )I

o w(z)? dA(2) S If [

o
6V % = / re

and it follows from Theorem E that the measure vy, 4 is a ¢-Carleson measure for
A% . Thus, by Theorem 3.3, v4, 4 is a vanishing g-Carleson measure for A>°. As in the
previous case, this shows the compactness of the operator GV g)-

It remains to prove that (1) and (3) are equivalent when p = co. Assume first that
(3) holds. Then

/ Cy(Vpq)(2) dA(z) = / (7(2)?Co(vpua)()) AN(2)

D D

/ GBS, ,(9)(2) dA(2).

D

(5.15)

Thus, according to Theorem E, vy, 4 is a ¢-Carleson measure for AZ°. Then for any
function f € A%, we have
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|ww¢mmmgA/U'|q DY gy () S 1 s

Conversely, suppose the operator GV(4 4y : Ay — AZ is bounded. Then, for any
function f € AZ’, we have

[GVisa fI, = [ 1502 gy,
D

By assumption, this implies that the measure v4 . 4 is a g-Carleson measure for AZ’.
According to Theorem E, v ., ; belongs to L' (D, dA). Combining this with (5.15) implies
that GBY, ,(9) € L' (D, d\).

6. Proofs of Proposition 1.3 and Corollary 1.5

6.1. Proof of Proposition 1.3 (A)

Suppose that the operator G4 ) : AL, — AZ is bounded. Let § € D be such that
|0(€)| > po. Using the test function of Lemma E, (2.4) and (1.15), we get

1 Eo(e).mpllr, 2 G (4,9)F(e)np

Foomp@N
AMH! e 9 () dAG)

21 Fe) mp (2]
(1+¢'(€)e

while Lemma 2.3 implies that

2 7(€)? 19(&)7w(€)?,

(14 ¢'(¢(£)? w(©)?
1+ (€)1 w(e(©)?

[ Foe),mpll s 2 7(€)?19(E)]
By Lemma E, we have

T 1+¢'(8(8) w(&)?
(€))7 1+ ¢'(€) w(p())z

12 1g9(8)] (6.1)

When [¢(£)| < po, we have

su 7)1 1+¢'(4(6) w(é)?
s WO @77 T10©  wwe)?

< 00.

Thus, (1.8) holds.
Suppose next that the operator G4 ) : AY, — Af is compact. Let £ € D be such
that |¢(€)| > po and define
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Fp(e)m
fooms = o r 191> po,

which belongs to AP, and converges uniformly to zero on compact subsets of D as |$(€)| —
1. By (2.4) and Lemma 2.3, we get

| feymp(9(2))]? B
1GI4,9) fo&)mpllas, = /% 19(2)|9w(z)? dA(z)
D

Foe)mp (@) g
25%§§é%lm@Ww@2

r(©?  (L+¢(0(9)" w(©)?
TGO L+ @) wloE)t

Using the compactness of the operator GI(4 4y, we have the desired conclusion and the

Vv

(&)

2 19(&)

proof is complete.
6.2. Proof of Proposition 1.3 (B)

Suppose that GV, ) : AL, — AZ is bounded. By Theorem 1.2 (A), this is equivalent
to GBgip’q(g) € L*(D,dA). By (2.4) and (2.10), we have

GBY, (0 /Wk,a@ (Iu!fllgn (&) dA()
)ja |g( )|q a/2
Di(2) (6.2)

ZTMﬂ%mﬁquH%%éﬁw@WZ

o2 W@ |g)l
~ (022 w(p()172 (1+ ¢/ (2)0°

which proves that (1.9) holds. If GV(4 4y is compact, then it follows from Theorem 1.2

(A) that GBg)p 4(9)(¢(2)) — 0 as |z| — 1, which completes the proof.

6.3. Proof of Corollary 1.5

(A) Let p < g and suppose that GI;q 4y is bounded. By (2.10) and Lemma A, we have

l9(2)|4 = 7(2)%1/7 ()| Ky, ()| w(2) ®

7(z)%a/P

ST [ by ol () Baae) <

Ds (=)

7(2)2a/p )
LGBl 0)0)
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Then, using the boundedness of G(;4 4y, we obtain

sup |g(2)|*7(2)** P < sup GBYY, (9)(2) < oo.
zeD zeD

Since 7(2)2(1=9/P) — 00, as |z| — 1, the function g must be zero.
6.4. Proof of Corollary 1.5

(B) Let ¢ < p. Using

1G (9,0 / hs A/|f 1+(p|q|g)() 23 dAe) = |17 e (6.3)

(see (1.15)) and Lemma 4.2, we get Gl4 ) : AP, — A is bounded if and only if I,,, , . :
SP — L(fip,w,g) is bounded if and only if I, : S? — L9(ugw,g) is compact if and
only if the function

7(2)2
Ds(2)

Popon @) = 5 [ 4 €O 2 dpoal€) (6.4)

belongs to LP/(P=9) (D, dA). Since ¢ = id, we have

i) = Ty ()72 4A()

and invoking this in the condition (6.4), it becomes exactly

/ 9(6)[7 dA(E) € LY P=D(D, dA).

Ds(z)

7(2)?

Applying Lemma A, we get that g € L"(D,dA), with r = pg/(p — q).
Conversely, suppose that g € L"(D, dA). By Holder’s inequality and (1.15), we obtain

q q
1G ag) flly /|f1+|¢|g w(z) % dA(2)

S

AN

sza % 65
'f ' e da D/ 9()|" dA(2) (65

1A 91T ,aay S 1

X

which proves boundedness and completes the proof.
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6.5. Proof of Corollary 1.5 (C)

Let 0 < p < ¢ < 0o. We characterize boundedness using Theorem 1.2. Suppose that
GBop ,(g") € L=(D,dA). Tt follows from (6.2) (changing g by ¢’ and ¢ = id),

(§)|q /2
B, (f / O s w67 dAE)

(6.6)
T2 _lg@I (g i)
S TR (L4 () <<1+¢'<z>> aelz) ) |
Thus,
19'(2)] YRR
7(1+¢/(2))A<p() € L>(D,dA).
Conversely, suppose that
Tl9.9)) i= s Al € 1%(D,4)
By (2.9), we have
GBi (0 = [ Iy (€)1 S (@ dA e
D
< (ﬂz)”‘””) / kg2 (6)]7 Ap(2)! 77 w(€)?/? dA(é‘)) sup (T(g, ¢)(2))%.
kS zeD

Since Ap(z) < 7(2)72,

GByY,4(9)(2) < (/qu,z($)|qw(€)q/2 dA(f)) sup (T(g, #)(2))*
D zeD (67)

= llkqg,2ll%a sup (T(g,¢)(2))* = sup (T(g,¢)(2))".

This finishes the proof of boundedness.
The characterization for compactness follows from Theorem 1.2, (6.7), and (6.6).

6.6. Proof of Corollary 1.5

(D) Let 0 < g < p < oo. We first suppose that V; : A? — A% is bounded, that is,

GBit (¢ € Lv%a D, d)) (see Theorem 1.2). Then, by (2.4), we have
0,p,q
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T
G’BO,p,q /| PZ /(5))(1 (f) dA(g)

2 (a2 s () u'ﬁf@i')) wl2)??.

By Lemma 2.2, we obtain

o T2 g x( 9/
SR L+ @@ \ 0+

GBO,p,q( )(Z)

In this case, we extract that

7(2)*GVGEBY, (9)(2) 2 (%> |

By our assumption and the fact that 7(2)2¢/? is bounded, it follows that (1.11) holds.
Conversely, put r = p q . By Holder’s inequality, we obtain

GBld Y(2)P/ (P—2)

| ) p/(p—q)
q 9 q/2
(J’%z(f)l (e IG) w(§) dA(§)>

—r (19O \" x B ® a0
< K-l p (D[Kz(é)l <1+90’(E)> w(€) dA(&)) ' (ﬂ)/le(EN w(§) dA(&))

[V

ATJ/2

= W/U@(&N
z u,v D

[P .
By Theorem A, ”Ki‘l“%z =< w(z)7 7(2)", and Fubini’s theorem implies that
#la

[SIh}

< lg'(©)]

R g0,(5)) (€)' dA).

/GBéfip)q(g')(z)p/(p_q)%

O vt [ o ootk oo gl
SD/<1+<P’(E)> © (D/m( (=) =) 2 aa( ))dA@).

Since

w(e)F ( [ 1Ke@lF w2yt o2 dA<z>) <1

D

(see Lemma D), the proof is complete.
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6.7. Proof of Corollary 1.0

(I) Let 0 < p = g < o0. By (¢) of Lemma 32 in [3],

Yu(r) < (L+¢'(r))™t forre0,1). (6.8)
Therefore,
GByp(9')(2) =/|kp,z(€)lp% W(E)P/? dA(E)
D
= sup (1, (€ )|g (/ |kp - (&P w(é )p/2 dA(f)) (6.9)
£eb

= sup (Yo, (19" ()" 1,2 %5 = sup (Vu (E)]g" (€))7 -
£eb ¢eb

The other assertion follows easily from (6.9).
6.8. Proof of Corollary 1.6

(IT) Let 0 < p < ¢ < oo. Note that the weighted Bergman space AP(w), defined in
[15], is the same as the Bergman spaces A, with W = w?/?. Moreover,

“ ) wor
GBI (g / O -y “16) A

and (2.10) is transformed to
|kp 2 (O (WP = 7(2) 727, (€ Ds(2), (6.10)

where kp - (§) = K= (§)/[lkp,z [l ar (w)-
Let s = % — %. Then, by (6.8) and successively (2.4), (2.3) and (6.10), we get

1K1 ) G
7(2)2w(z)' 7 / (L+ /()1 W) dAl)
Ds(z)

1 PG
T(Z)QQ/PD(/) (1 + (pl(g))q w(§) dA(é)

. O
/ by )" L Sy () dAE)

(1K1 a2l (2)]) ' S

A

A

< GBzd

0,p, q( /)<Z> < 0.
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Thus, to prove that the function ¢’ vanishes on D, it is enough to show that
||KZ||?452(w)ww(|z|) goes to infinity as |z| — 1. Indeed, by (2.5) and (1.12), we have

7(2)2(175)

1Byl = e

and so,

lim K [5 () Y (2) = 00
|z]—1

because of Lemma 2.3 in [15].

6.9. Proof of Corollary 1.6

(IIT) Let ¢ < p, and suppose that GBOp 9 € Lr/(P=a)(D, d)). Then

GBI 2 [ Ikp,z(ﬁ)Iq%w(ﬁ)dA(f)
Ds(z)

—2q/p —w A
| e (@ dac),

Ds(z)

and so it follows from the assumption that

s [ @0 e )
[0 | gligme© | e
D Ds(2) (6.11)

/(GBOM( ()77 dA(2) < +o0.

D
Thus, using (1.15), we get

. SOOI e
||g||qu/(pq>(w)§D/ 7(2) 2}3[) ww(&) v dA(€) dA(z).

This completes the proof of Corollary 1.6.
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