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Abstract
Advection schemes with time step restrictions are widely used in weather and
climate models. This can lead to instability in the presence of high flow speeds
(relative to mesh spacing) such as occurs in convective updraughts, regions
of mesh convergence, or where the winds are unusually high. An adaptively
implicit advection scheme is proposed that treats advection implicitly only
where the Courant number is high. Flux correction to ensure monotonicity
is adapted to work with implicit time stepping. A version of the multidimen-
sional positive-definite advection transport algorithm MPDATA is derived with
an anti-diffusive flux compensating truncation errors of off-centred implicit
time stepping. The anti-diffusive flux is gradually reduced as Courant numbers
increase above 2 in order to maintain stability at the expense of second-order
accuracy at high Courant numbers. Results of two-dimensional advection by
deformational flow are presented on various meshes of the sphere. Stability and
second-order accuracy are maintained when the Courant number is over 100 in a
small region, when strong wind crosses the poles of a rotated latitude–longitude
mesh. Good solutions are also obtained on a skipped latitude–longitude mesh,
a cubed sphere, and hexagonal meshes. Accuracy reverts to first order when
Courant numbers are large over a large fraction of the domain.

K E Y W O R D S
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1 INTRODUCTION

1.1 Motivation

Time step restrictions based on advection have always
posed a problem for models of the atmosphere. The
Courant–Friedrichs–Lewy condition states that explicit

Eulerian advection schemes will have time step restric-
tions based on the size of the spatial discretisation incre-
ments and the flow speed. Typically, this means that
explicit schemes cannot run with an effective Courant
number>1. This is related to saying that an advected quan-
tity cannot be moved by more than one mesh cell (or grid
box or element) in one time step.
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370 WELLER et al.

Courant–Friedrichs–Lewy constraints can be cruel
where spatial resolution is higher than it needs to be for
accuracy, such as near the poles of a latitude–longitude
mesh. An early workaround was to use polar filtering; that
is, artificially removing oscillations near the poles where
mesh lines converge (Cullen and Davies, 1991). However,
polar filtering led to parallel scaling bottlenecks and mis-
trust of solutions near the poles in models of the atmo-
sphere. The UK Met Office gained accuracy and efficiency
by replacing their model employing polar filtering with
a semi-implicit, semi-Lagrangian (SISL) model to avoid
time step restrictions on a latitude–longitude mesh (Davies
et al., 2005). SISL eases time step constraints by treating
acoustic and gravity waves implicitly, and the advection
is solved with the semi-Lagrangian method, which is sta-
ble, accurate for smooth flows, and efficient with long
time steps but is not conservative. The lack of conserva-
tion is regarded as inadequate for climate modelling and
is associated with spurious features such as eternal foun-
tains, which involve a positive feedback loop that creates
moisture in convectively unstable columns (Zerroukat and
Allen, 2020).

The requirement to run stably with large Courant
numbers is less severe now that models of the global atmo-
sphere have largely moved away from latitude–longitude
meshes in favour of quasi-uniform meshes, such as the
cubed sphere and icosahedral meshes (Ullrich et al.,
2017). However, the problem remains severe in the ver-
tical direction, where mesh spacing can be fine and large
vertical velocities can occur when atmospheric convection
is resolved. Solutions in the vertical direction can exploit
the fact that, even on a horizontally unstructured mesh,
grids in the vertical are structured and one-dimensional,
meaning that conservative (semi-)Lagrangian methods
can be made to work efficiently. An example is the use
of Lagrangian floating levels (Lin, 2004) that are con-
servatively mapped back to the fixed Eulerian mesh.
The Lagrangian floating levels technique is equiva-
lent to a conservative semi-Lagrangian (Harris et al.,
2011) and can be made efficient for large Courant num-
bers in one dimension and consequently can work
on tensor-product (logically rectangular) meshes (e.g.,
Leonard et al., 1996).

Returning to the problem of large Courant num-
bers in the horizontal, some conservative, flux-form
semi-Lagrangian schemes have been developed for arbi-
trary meshes (e.g., Miura, 2007) but only work efficiently
for large Courant numbers on tensor-product grids. The
conservative semi-Lagrangian scheme is related to the
arbitrary Lagrangian–Eulerian method (e.g., Hirt et al.,
1997), which solves equations in a Lagrangian frame
and then remaps the solution back to the original mesh.
However, arbitrary Lagrangian–Eulerian methods suffer

from time step restrictions associated with avoiding mesh
tangling.

Local time stepping (LTS) involves taking multiple
time steps in some regions of the domain to avoid large
Courant numbers. Thus, efficiency can be improved, since
some regions can use large time steps. This can be useful
in variable resolution models (e.g., Dumbser et al., 2007).
The variability of Courant numbers is particularly large
when small elements are used to improve accuracy in
regions where flow rates are high; for example, represent-
ing narrow passages in coastal ocean models (e.g., Dawson
et al., 2013). LTS has been used for atmospheric modelling
(Baldauf, 2019), leading to some improved efficiency.
However, owing to spatially and temporally variable time
step (hence computational effort), LTS is associated with
challenging load balancing issues, and efficiency gains can
be modest if only a few large cells use the large time steps.

Returning to the difficulties in allowing long time steps
while maintaining exact local conservation on arbitrary
meshes, it is worth considering implicit time stepping for
advection. The aim of this paper is to present an advection
scheme with the following properties:

1. Stable for large Courant numbers.
2. Applicable on arbitrary meshes.
3. Locally conservative to machine precision.
4. Similar cost and accuracy to explicit schemes when the

Courant number is <1.
5. At least first-order accurate where the Courant number

is large.
6. Options to be monotonic, bounded, or sign preserving.
7. Multi-tracer efficient.
8. Good parallel scaling.

We define a bounded advection scheme as one that does
not produce solution values outside specified bounds; for
example, [0, 1]. The multidimensional positive definite
advection transport algorithm (MPDATA) is sign preserv-
ing (positive definite), which means solutions that start
in [0,∞) stay in [0,∞). A monotonic advection scheme
does not generate new spurious extrema or amplify exist-
ing extrema. This is desirable, as it implies boundedness
and also guarantees stability. The question of how to
define monotonicity of an implicit scheme is addressed in
Appendix A.

We propose the use herein of adaptively implicit time
stepping combined with MPDATA to create a scheme with
options to be either monotonic, bounded, sign preserv-
ing, or just stable for all Courant numbers. The aim is not
to produce a scheme that is accurate for large Courant
numbers in a situation where, for example, resolution of
extreme weather is crucial. The aim is to produce a scheme
that is robust when locally high Courant numbers threaten
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WELLER et al. 371

stability and when high resolution in time is not needed
for the features producing locally high Courant numbers.
The methods for combining implicit and explicit time step-
ping and the method for achieving monotonicity should
translate to other explicit advection schemes. They are also
suitable for horizontal and vertical discretisation.

1.2 Background on MPDATA

The MPDATA scheme for the solution of the advection
equation was introduced by Smolarkiewicz (1983; 1984).
The basic principle of MPDATA is as follows: apply the
forward-in-time, first-order upwind scheme based on the
physical flow velocity, followed by a corrective upwind step
with a pseudo-velocity that is designed to compensate the
spatial and temporal truncation errors of the preceding
step to at least second order. Owing to the repeated applica-
tion of the upwind scheme, MPDATA provides strict sign
preservation of the transported field and a small phase
error. The standard MPDATA is an explicit flux-form Eule-
rian scheme and stable for an advective Courant num-
ber <1. Various MPDATA extensions, including some for
entire flow solvers, have been developed over the years.
Smolarkiewicz and Margolin (1998) review the schemes
with a focus on structured grids.

MPDATA options of particular interest to this paper
are the infinite-gauge variant, a linear scheme that is
not sign preserving (Smolarkiewicz and Clark, 1986;
Smolarkiewicz and Margolin, 1998), and the extension
to enforce solution monotonicity (Smolarkiewicz and
Grabowski, 1990) by means of flux-corrected transport
(FCT; Zalesak, 1979). Smolarkiewicz and Szmelter (2005)
extended MPDATA to fully unstructured meshes while
retaining second-order accuracy and the other favourable
properties of the scheme. Kühnlein and Smolarkiewicz
(2017) formulate the MPDATA pseudo-velocity based
solely on face-normal fluxes, which facilitated integra-
tion of compressible partial differential equations on
arbitrary unstructured meshes. Whereas the standard
MPDATA scheme is fully multidimensional, Kühnlein
et al. (2019) use a horizontal–vertical second-order accu-
rate Strang-split integration based on MPDATA that per-
mits larger time steps and also enables more targeted
schemes in the different coordinate directions of the global
atmospheric model.

1.3 Background on implicit advection
schemes

Implicit time stepping is ubiquitous in atmospheric mod-
elling for solving the terms of the equations of motion

responsible for fast waves, such as gravity and acoustic
waves. However, implicit time stepping has rarely been
used for advection in atmosphere and ocean modelling.
Implicit time stepping for advection in the mathematics
and engineering literature will be discussed first, and then
we will return to its uses to date in atmosphere and ocean
modelling.

Implicit time stepping for advection has a severe order
barrier; no implicit method exists with order greater than
one that is monotonic for all time steps (Gottlieb et al.,
2001). Higher order implicit multistage (Runge–Kutta)
and multistep schemes exist that are unconditionally lin-
early stable, but if we additionally require monotonicity
(no new spurious extrema generated) then higher order
implicit methods have time step restrictions, characterised
by the radius of monotonicity. The nonlinearity required
for the spatial discretisation to remain monotone becomes
even more challenging with implicit time stepping because
the required nonlinearity is approximated by linear solu-
tion strategies. This was explored by Yee and co-workers
(Yee et al., 1985; Yee, 1987), where a high-order spa-
tial discretisation was combined with the backward Euler
scheme, but monotonicity was only achieved at the price
of mass conservation. May and Berger (2017) used FCT
(Zalesak, 1979) to improve temporal accuracy in implicitly
solved small cells without generating new extrema.

In atmospheric modelling, implicit time stepping for
advection has been used for vertical advection (Baldauf
et al., 2011) and to treat small, cut-cells stably at modest
time steps (e.g., Jebens et al., 2011). Wicker and Skamarock
(2020) and Li and Zhang (2022) use adaptively implicit ver-
tical transport to treat isolated strong updraughts stably,
avoiding the order barrier by limiting order of accuracy to
first (upwind) wherever implicit time stepping is used. The
lack of accuracy was not considered problematic because
of the sparsity of the use of implicit advection, although
Li and Zhang (2022) describe the implicit advection as
being more diffusive than explicit advection. Chen et al.
(2017) compared implicit advection with dimensionally
split, flux-form semi-Lagrangian advection and found that
the dimensionally split scheme was more accurate and
more efficient than implicit advection for all Courant num-
bers. However, this was not a like-for-like comparison; the
dimensionally split scheme was a higher order accurate
scheme, limited to tensor product meshes, and suffered
from mesh imprinting errors on distorted meshes.

1.4 Outline

The description of the adaptively implicit MPDATA in
Section 2 starts with an alternative formulation of the
standard explicit MPDATA on an unstructured, centroidal
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372 WELLER et al.

mesh, without coordinate transforms. This description is
then extended to the implicit case including a descrip-
tion of how the explicit and implicit schemes are
blended to ensure efficiency and stable solutions, how the
infinite-gauge variant is used with the implicit scheme,
and how FCT can be used with an implicit scheme. The
description is general for one, two, and three dimensions,
but in this paper, for simplicity of the presentation, we
do not include the terms for divergent velocity fields. The
numerical results in Section 3 start in one dimension,
comparing an explicit scheme on a uniform grid with an
adaptively implicit scheme on a non-uniform grid. The
remainder of the results are of deformational flow on
the surface of the sphere, demonstrating convergence and
monotonicity for a wide range of Courant numbers. The
method described is tested for either horizontal or vertical
discretisation in this paper, but it should also be applicable
in three dimensions. The adaptively implicit time step-
ping with first-order spatial discretisation is proved to be
bounded in Appendix A, and a one-dimensional version of
the adaptively implicit scheme is proved to be stable for all
Courant numbers in Appendix B.

2 AN ADAPTIVELY IMPLICIT
MPDATA

The version of explicit MPDATA and the adaptively
implicit MPDATA defined here are implemented using the
OpenFOAM library (https://openfoam.org/) using stan-
dard OpenFOAM operators and linear equation solvers.
The code is available as part of the AtmosFOAM repos-
itory (https://github.com/AtmosFOAM/) compiled with
OpenFOAM7.

2.1 Explicit MPDATA on an arbitrary
mesh

The description of the explicit scheme is consistent
with basic MPDATA principles (e.g., Smolarkiewicz and
Szmelter, 2005) but introduces a novel derivation based
on a flux-form semi-Lagrangian method and assuming
an arbitrary, centroidal mesh in Cartesian coordinates
rather than using coordinate transforms. We will describe
MPDATA for solving the linear advection equation for
advected quantity 𝜓 with velocity field u:

𝜕𝜓

𝜕t
+ ∇ ⋅ (u𝜓) = 0. (1)

This is solved using Gauss’s divergence theorem on an
arbitrary mesh to go from time tn to tn+1 a time step Δt

F I G U R E 1 Two cells in an arbitrary mesh. xC and xN are the
cell centres (centroids) of cell C and its neighbour N over face f , and
xf is the face centre. Sf is the face area vector, normal to face f with
magnitude equal to the face area. u is the velocity, and xd is the
departure point for face f at tn+1∕2 (i.e., the centre of the volume
swept through the face between tn and tn+1)

apart:
𝜓

n+1
c = 𝜓n

c −
Δt
c

∑

f∈C
𝜓

n+1∕2
f Uf , (2)

where 𝜓c is the cell mean value of 𝜓 in cell C, c is the vol-
ume of cell C, f ∈ C are the faces of cell C, 𝜓n+1∕2

f is the
value of 𝜓 at face f at tn+1∕2, uf is the velocity at face f ,
and Sf is the face area vector – the outward-pointing vector
normal to face f with magnitude equal to the area of face
f (Figure 1). Uf = uf ⋅ Sf is the volume flux over face f . In
this derivation of MPDATA, 𝜓f is evaluated at the depar-
ture point of the face centre at tn. The departure point xd
is the centre of the volume that is swept through the face
between tn and tn+1. This is approximated by the point a
distance uΔt∕2 upstream of the face centre:

xd = xf −
Δt
2

uf + O(Δt)2, (3)

where xf is the face centre (see Figure 1). The veloc-
ity, uf , is evaluated at tn+1∕2 at the face centre. In this
paper, we consider passive advection of 𝜓 with a pre-
scribed non-divergent wind field. In a dynamical model,
un+1∕2

f would be evaluated from velocities at known posi-
tions and times and non-divergent winds would be treated
as in Smolarkiewicz and Margolin (1998), Smolarkiewicz
(2006), Kühnlein et al. (2012), and Kühnlein and Smo-
larkiewicz (2017).

The dependent variable 𝜓 is evaluated at the departure
point, xd, using the upwind cell centre value of 𝜓 , the gra-
dient of 𝜓 at the face centre, and the velocity divergence at
the face centre (assumed zero):

𝜓
n+1∕2
f = 𝜓n

d = 𝜓
n
up + (xd − xup) ⋅ ∇𝜓n

−���
����0Δt

2
𝜓

n
up∇ ⋅ u + O(Δs2

,Δt2), (4)
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WELLER et al. 373

where 𝜓up is the value of 𝜓 in the cell upwind of face f ,
Δs is the cell centre to cell centre distance, xup is the loca-
tion of the upwind cell centre, and xdown is the location
of the downwind cell centre (which will be used later).
Equations (3) and (4) are substituted in to Equation (2) to
give a scheme that is second-order accurate in space and
time but not sign preserving, equivalent to a Lax–Wendroff
scheme:

𝜓
n+1
c = 𝜓n

c −
Δt
c

∑

f∈C
𝜓

n
upUf

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

explicit upwind

− Δt
c

∑

f∈C
(xf − xup) ⋅ ∇𝜓nUf

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

spatial correction

+ Δt2

2c

∑

f∈C
uf ⋅ (∇𝜓n)f Uf

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

temporal correction

(5)

+ Δt O(Δs2
,Δt2).

The explicit upwind scheme is monotone. In order for the
spatial and temporal correction terms to be sign preserv-
ing they are written as explicit upwind advection using
an anti-diffusive flux Vf = vf ⋅ Sf . The anti-diffusive flux
is divergent, so new extrema are not prevented. The use
of the anti-diffusive flux transforms the scheme from
Lax–Wendroff to MPDATA and is written in two stages:

explicit upwind step: 𝜓1
c = 𝜓n

c −
Δt
c

∑

f∈C
𝜓

n
upUf , (6)

explicit correction: 𝜓n+1
c = 𝜓1

c −
Δt
c

∑

f∈C
𝜓

1
vupVf , (7)

where

Vf = vf ⋅ Sf

=
Uf

𝜓

[
(xf − xup) ⋅ ∇𝜓 −

Δt
2

uf ⋅ (∇𝜓)f
]

(8)

and where 𝜓vup is 𝜓 in the upwind cell where the upwind
direction is defined by the sign of Vf . As 𝜓 is always
positive, there is no ambiguity in the sign of Vf . The
anti-diffusive flux Vf can be calculated iteratively, using
first 𝜓1 and then subsequent iterations use the most
up-to-date version of 𝜓n+1 and Vf . All simulations in this
paper use one iteration per time step. Equation (8) is a
continuous version of the expression for the anti-diffusive
velocity in Smolarkiewicz and Szmelter (2005, eq. 13). The
discretisations of gradients and divergences described here
are similar to those of Smolarkiewicz and Szmelter (2005).

The first term of Equation (8) is discretised by assum-
ing that xf − xup = 1

2
(xdown − xup) and preventing division

by zero:

(xf − xup) ⋅ ∇𝜓
𝜓

≈
𝜓down − 𝜓up

𝜓down + 𝜓up + 𝜀
, (9)

which is second-order accurate only on non-skew, uniform
grids. The results presented in Section 3 use 𝜀 = 10−16.
The second term of Equation (8) is discretised using a
second-order, least-squares approximation for∇𝜓 in cells:

∇𝜓 =
∑

f∈C
gf (𝜓N − 𝜓c), (10)

where 𝜓N is 𝜓 in the neighbour of cell C across face f and
where gf is a vector calculated for each face of cell C based
entirely on the local mesh geometry:

gf = (1 − wf )
|Sf |

|xN − xC|2
D−1

C (xN − xC), (11)

where

wf =
|Sf ⋅ (xN − xf )|

|Sf ⋅ (xN − xf )| + |Sf ⋅ (xf − xC)|
,

(interpolation weights)

and

DC =
∑

f∈C
(1 − wf )

|Sf |
|xN − xC|2

(xN − xC)(xN − xC)T.

This is the least-squares gradient implemented in the
OpenFOAM library. Cell centre gradients are then lin-
early interpolated onto face centres, denoted (∇𝜓)f . The
component in the xN − xC direction is corrected using the
compact gradient:

(∇𝜓)f ⋅ (xN − xC) = 𝜓N − 𝜓c. (12)

2.1.1 Sign preservation

Given the definition of the Courant number, c, on an
arbitrary mesh,

c = 1
2
Δt
c

∑

f
|Uf |, (13)

Smolarkiewicz and Szmelter (2005) showed that explicit
upwind is monotonic for non-divergent velocity fields
when c ≤ 1 and sign preserving for a divergent velocity
field when c ≤ 1∕2. The anti-diffusive velocity is diver-
gent, so the Courant number based on the anti-diffusive
velocity must be less than 1∕2 for the explicit MPDATA
to be sign preserving. Smolarkiewicz and Szmelter (2005)

 1477870x, 2023, 751, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4411 by T
est, W

iley O
nline L

ibrary on [09/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



374 WELLER et al.

F I G U R E 2 The volume
that is swept through face f in
one time step and the
departure and arrival points,
xd and xa, for small (left) and
large (right) Courant numbers

showed that the median dual MPDATA discretisation of
the anti-diffusive flux satisfies this criterion for c ∈ [0, 1].
In order to guarantee sign preservation in this paper, we
limit the anti-diffusive flux so that

|Vf∕Uf | ≤
1
2
. (14)

For the tests presented in Section 3, the anti-diffusive
fluxes satisfied Equation (14) without limiting, but we have
not (yet) proven if this will always hold.

2.2 Adaptively implicit MPDATA

The adaptively implicit scheme is a generalisation of
Crank–Nicolson with off-centring 𝜃 that can vary in space.
𝜃f is defined on faces (for conservation), so the time step-
ping is defined as

𝜓
n+1
c = 𝜓n

c −
Δt
c

∑

f∈C
{(1 − 𝜃f )𝜓n

f + 𝜃f𝜓
n+1
f }Uf . (15)

This is second order in time only for 𝜃f = 1
2

globally. We
will next derive the MPDATA anti-diffusive flux that cor-
rects a scheme that is first-order accurate in space and
off-centred by 𝜃 in time. So the first step, before the
MPDATA correction, is

𝜓
1
c = 𝜓n

c −
Δt
c

∑

f∈C

{
(1 − 𝜃f )𝜓n

up + 𝜃f𝜓
1
up
}

Uf . (16)

The proof that this first step gives positive, bounded, and
hence stable, solutions for non-divergent velocity fields on
arbitrary meshes is provided in Appendix A.

To find the second-order approximation of 𝜓n+1∕2
f for

non-divergent flow, we consider a linear combination of 𝜓

at the departure point at tn and𝜓 at the arrival point at tn+1:

𝜓
n+1∕2
f = (1 − 𝜃f )𝜓n

d + 𝜃f𝜓
n+1
a , (17)

where the locations of the departure and arrival points are
shown in Figure 2 and are given by

xd = xf −
Δt
2

uf , (18)

xa = xf +
Δt
2

uf . (19)

The values of 𝜓 at the departure and arrival points can be
approximated by

𝜓
n
d = 𝜓

n
up +

(
xd − xup

)
⋅ ∇𝜓n

, (20)

𝜓
n+1
a = 𝜓n+1

up +
(
xa − xup

)
⋅ ∇𝜓n

. (21)

Substituting these into Equation (17) gives

𝜓
n+1∕2
f = (1 − 𝜃f )𝜓n

up + 𝜃f𝜓
n+1
up

+ (xf − xup) ⋅ ∇𝜓n − (1 − 2𝜃f )Δt
2

u ⋅ ∇𝜓n
,

(22)

where xup is the centre of the cell upwind of face f . This
correction is not stable for Courant number c > 2 or 𝜃 >
1∕2 (Appendix B). For stability for all c and second-order
accuracy where 𝜃 ≤ 1∕2 the correction step is

𝜓
n+1
c = 𝜓1

c +
Δt
c

∑

f∈C
𝜓

1
vupVf , (23)

where

Vf = vf ⋅ Sf =
Uf

𝜓

[
(xf − xup) ⋅ ∇𝜓n − 𝜒Δt

2
u ⋅ ∇𝜓n

]
(24)
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WELLER et al. 375

and where
𝜒 = max(1 − 2𝜃f , 0), (25)

where spatial discretisation is as in Section 2.1.
Equation (25) gives a first-order error in time for 𝜃 > 1∕2
which is only used for large Courant numbers (c > 2). It
is stable on a uniform one-dimensional grid (Appendix
B) but on an arbitrary mesh, some smoothing is needed
when 𝜃 > 0 (Section 2.2.1).

Appendix B shows that the first (diffusive) step of the
adaptively implicit MPDATA scheme, Equation (16), is
stable and bounded when

𝜃 ≥ max
(

1 − 1
c
, 0
)
, (26)

with the Courant number c for an arbitrary mesh defined
as in Equation (13). Equation (26) can be used to set 𝜃f
based on the values of the Courant number in the cells
either side, cup and cdown, with a degree of safety added to
avoid reaching the stability limits:

𝜃f = max
{

1 − 1
cup + 0.25

, 1 − 1
cdown + 0.25

, 0
}
. (27)

2.2.1 Additional smoothing for large
Courant numbers

Appendix B shows that a linearised version of the adap-
tively implicit MPDATA is unconditionally stable on a uni-
form, one-dimensional grid. However, this does not carry
over onto an arbitrary mesh. Therefore, Vf is smoothed
where 𝜃 > 0. First, a cell centre anti-diffusive flux is recon-
structed from surrounding fluxes:

vc =

(
∑

f∈C
Sf ST

f

)−1∑

f∈C
Sf Vf , (28)

which is the standard reconstruction of vectors from fluxes
implemented in OpenFOAM;

∑
f∈C Sf ST

f is a tensor that
can be inverted and pre-calculated for each cell. This is
a second-order accurate, least-squares reconstruction that
reconstructs a uniform vector field exactly. The recon-
structed velocity is then interpolated back onto faces and
the dot product taken with Sf to get a smoothed flux. The
smoothed flux is used for faces with 𝜃f > 0 and for all faces
of a cell if that cell has one face with 𝜃f > 0:

Vf =
⎧
⎪
⎨
⎪⎩

Vf from Equation (24) if 𝜃f = 0 and
𝜃f ′ = 0 ∀ f ′ ∈ (C,N) of f

vcf ⋅ Sf otherwise,
(29)

where vcf is the reconstructed velocity vc linearly inter-
polated from cell centres to faces. The notation ∀ f ′ ∈
(C,N) of f means for all faces f ′ that are faces of cells C
and N, which are the cells surrounding face f .

2.3 Linear equation solver

The first-order upwind adaptively implicit advection
creates a sparse, asymmetric M-matrix M with positive
elements on the diagonal and negative off- diagonal ele-
ments. To create the matrix equation, Equation (16) is
rearranged so that the vector of new 𝜓

1 values (𝜓1) is a
linear combination of old 𝜓n values (𝜓n):

M𝜓
1 = N𝜓n

, (30)

where

Mi𝑗 =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1 + Δt
Vi

∑
f∈i
𝜃f max{Uf , 0} for i = 𝑗

− Δt
Vi
𝜃f max{−Uf , 0} where f is between

cells i and 𝑗
(31)

and

Ni𝑗 =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1 − Δt
Vi

∑
f∈i
(1 − 𝜃f )max{Uf , 0} for i = 𝑗

+ Δt
Vi
(1 − 𝜃f )max{−Uf , 0} where f is between

cells i and 𝑗.
(32)

Matrix N is, of course, not created because the right-hand
side vector entries can be evaluated directly. If the flow
is non-divergent, then

∑
f∈i Uf = 0, which implies that

M is strictly diagonally dominant. Note that M has no
off-diagonal elements where the time stepping is explicit.
M will not be diagonally dominant at row i if the volume
flux into cell i in one time step is greater than the vol-
ume flux out in that time step plus the cell volume. This
situation is not likely for atmospheric modelling as the
atmosphere is low Mach number, but it would require
either a smaller time step or a matrix solver suitable for
non-diagonally dominant matrices.

The resulting linear equation system is solved with
the standard OpenFOAM bi-conjugate gradient solver
with a diagonal incomplete lower–upper preconditioner.
Solver tolerance and iteration counts are discussed in
Section 3.4.
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376 WELLER et al.

2.4 Infinite-gauge MPDATA

Smolarkiewicz and co-workers (Smolarkiewicz and Clark,
1986; Smolarkiewicz and Grabowski, 1990) introduce the
idea of adding a constant (or gauge) to the quantity
transported by MPDATA and removing the gauge after it
has been transported. This has the effect of moving the
transported quantity away from zero, thus moving the
zero bound on the transported variable; the transported
quantity is no longer guaranteed to remain positive. The
scheme can be reformulated assuming the gauge is infi-
nite (Smolarkiewicz and Margolin, 1998; Smolarkiewicz,
2006), which can improve accuracy and enables transport
of signed quantities, such as velocity. This infinite-gauge
variant of MPDATA is a realisation of the Lax–Wendroff
scheme, and can be used with the adaptively implicit
time stepping exactly as it is used with standard,
explicit MPDATA. As with the explicit MPDATA, mono-
tone solutions can be achieved using FCT, as described
next.

2.5 FluxCorrected Transport (FCT)
with Implicit Time Stepping

Zalesak (1979) state that FCT can be used with implicit
time stepping, although we have not found examples of
this in the literature. In fact, the algorithm as described
by Zalesak (1979) does not guarantee monotonicity when
used with implicit time stepping. This is because Zalesak
(1979) bound the tracer at tn+1 by the diffusively trans-
ported tracer at tn+1 and the tracer at tn at the current and
upwind grid points. The tracer at tn at the current and
upwind grid points will not have suitable bounds if the
tracer can move a long distance in one time step. When
using implicit time stepping and large Courant numbers,
local extrema can be advected by more than one mesh
cell in one time step, so local bounds from the previous
time step no longer apply. We therefore define two variants
of FCT to work with implicit time stepping. One guar-
antees monotonicity (as defined in Appendix A) and the
other guarantees global boundedness given user-defined
bounds.

The first step of FCT is to advect using a monotonic,
diffusive scheme to calculate 𝜓1. Appendix A shows that
the first-order upwind in space, adaptively implicit in time
scheme, Equation (16), provides this solution for arbitrary
Courant numbers. The next step is to calculate the allow-
able minima and maxima for each cell, which we will call
𝜓min and 𝜓max. If we seek boundedness within pre-defined
bounds then 𝜓min and 𝜓max are these bounds. Otherwise
𝜓min and 𝜓max are the local extrema of 𝜓1 in the current
and neighbouring cells. Explicit FCT also uses 𝜓n, which

widens the bounds. Consequently, FCT for implicit, mono-
tonic advection will be more diffusive because of the use
solely of 𝜓1 to define the local bounds:

for cell C 𝜓min = min
N∈C

{𝜓1
N}, (33)

for cell C 𝜓max = max
N∈C

{𝜓1
N}, (34)

where in both cases N are the face neighbours of C. We next
define the maximum allowable amount that each cell can
rise or fall by and use the same notation as Zalesak (1979):

Qp = 𝜓max − 𝜓1
, (35)

Qm = 𝜓1 − 𝜓min. (36)

We next need to modify the non-monotonic MPDATA
high-order flux corrections (HOCs). The HOC is the
MPDATA flux correction Vf from Equation (29) multiplied
by 𝜓1 at the upwind cell (upwind defined relative to Vf ):

Ff HOC = 𝜓1
upVf . (37)

From this we calculate the total high-order flux that enters
(Pp) and leaves (Pm) each cell:

Pp = −
Δt
c

∑

f∈C
min{Ff HOC, 0}, (38)

Pm =
Δt
c

∑

f∈C
max{Ff HOC, 0}. (39)

Next, we find the ratios of the allowable total fluxes to the
actual high-order fluxes:

Rp =
⎧
⎪
⎨
⎪⎩

min
{

1, Qp

Pp

}
if Pp > 0

0 otherwise,
(40)

Rm =
⎧
⎪
⎨
⎪⎩

min
{

1, Qm
Pm

}
if Pm > 0

0 otherwise.
(41)

Finally, we find the coefficient to multiply Ff HOC in order
to achieve either a monotonic solution or a solution with
the required bounds:

Ff =

{
Ff HOC min{RpN ,RmC} if Ff HOC ≥ 0
Ff HOC min{RpC,RmN} otherwise,

(42)
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WELLER et al. 377

where
(xN − xC) ⋅ Sf > 0 (43)

and cells C and N are either side of face f . Then, the final
update is

𝜓
n+1
c = 𝜓1

c −
Δt
c

∑

f∈C
Ff , (44)

which is monotonic if Equations 33 and 34 are used
as bounds on 𝜓 . Alternatively, global bounds such as
[𝜓min, 𝜓max] = [0, 1] can be specified.

3 ADVECTION TEST CASES

3.1 One-dimensional advection

The first test of the adaptively implicit MPDATA is
one-dimensional with uniform velocity. Variable resolu-
tion is used so that the Courant number varies in space,
and implicit time stepping is used only where resolution is
fine. The variable-resolution grids have resolution a factor
of R finer in the middle of the unit length domain than the
end points. There are n cells (n unique grid points) in the
unit length and a constant ratio r = R2∕(n−2) between suc-
cessive cells in the first half of the domain and 1∕r in the
second half. Therefore, the resolution of cell i is

Δxi =

{
1
2

Rr−i 1−r
1−rR

i ≤ n
2
− 1

1
2

Rr(n∕2)−i 1−r
1−rR

i ≥ n
2
.

(45)

We use smooth initial conditions for evaluating conver-
gence with resolution and mixed initial conditions for
inspecting boundedness and overall quality of solution:

𝜓
0
smooth =

{
1
2
[1 + cos π(4x − 1)] x ∈ [0, 0.5]

0 otherwise,
(46)

𝜓
0
mixed =

⎧
⎪
⎨
⎪⎩

1
2
[1 + cos π(4x − 1)] x ∈ [0, 0.5]

1 x ∈ [0.6, 0.8]
0 otherwise.

(47)

All simulations use a velocity of u = 1 and run for one
time unit so that the tracer travels one complete revolution
around the periodic domain.

Figure 3 shows solutions starting from the mixed ini-
tial conditions using 100 time steps each of length Δt =
0.01. The uniform resolution has 40 cells giving a uni-
form Courant number of 0.4 (meaning that the time step-
ping is purely explicit). The non-uniform resolution has

F I G U R E 3 Advection once around a periodic domain
starting from mixed initial conditions, 𝜓0, using 40 grid points for
the uniform resolution and 100 grid points for the resolution with a
factor R = 10 between finest and coarsest. The regions where the
non-uniform resolution has a Courant number greater than 0.75
(where implicit time stepping is used) are shaded grey

100 cells with R = 10, giving a Courant number in the
range c ∈ [0.4, 4] so that implicit time stepping is used
where c > 0.75. As expected, the MPDATA results (top
row of Figure 3) are always positive for both the uniform
resolution (explicit time stepping) and the non-uniform
resolution (adaptively implicit). The non-uniform resolu-
tion produces a stable overshoot above the square wave,
which can happen with MPDATA without limited fluxes.
The infinite-gauge version (middle row of Figure 3) pro-
duces undershoots and overshoots, and the solution is
more accurate in the region of the smooth wave. Neither
the uniform (explicit) or non-uniform (adaptively implicit)
results appear more accurate than the other, although
more grid points are used for the variable resolution. The
infinite-gauge results using FCT (bottom row of Figure 3)
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378 WELLER et al.

0.01

0.02

0.05

0.1

0.2

0.5

0.005 0.01 0.02

Max �s

Standard MPDATA, uniform
Standard MPDATA, ratio 10
FCT with infinite gauge, uniform
FCT with infinite gauge, ratio 10
1st/2nd

Infinite gauge, uniform, c = 0.4
Infinite gauge, ratio 10, c ∈ [0.4, 4]

F I G U R E 4 Convergence of the
𝓁2 error norm with resolution of the
one-dimensional advection of the
smooth initial conditions 𝜓0. The
uniform resolutions use 20, 40, and 80
grid points, and the non-uniform
resolutions use 50, 100, and 200 grid
points with ratio R = 10. Both use time
steps of Δt = 0.02, 0.01, and 0.005.
Dotted lines show the slope of first- and
second-order convergence. FCT:
flux-corrected transport

F I G U R E 5 Some common meshes of the sphere viewed from above a point at a latitude of 45◦

are bounded, demonstrating the correct application of the
flux corrections applied to adaptively implicit time step-
ping. The uniform (explicit) or non-uniform (adaptively
implicit) results appear similar.

Convergence with resolution for all schemes on uni-
form and non-uniform meshes starting from the smooth
initial conditions is shown in Figure 4. The time step is
scaled with the resolution so that the uniform meshes
retain c = 0.4 at all resolutions and the non-uniform
meshes retain c ∈ [0.4, 4]. The standard and infinite-gauge
MPDATA with and without FCT give second-order conver-
gence. Even though the non-uniform grid means that the
Courant number reaches 4 at the centre of the domain, the
convergence remains strong.

As with explicit MPDATA (Smolarkiewicz and
Grabowski, 1990; Smolarkiewicz, 2006), the adaptively
implicit infinite-gauge version is less dissipative than the
version without a gauge. Again, as with explicit MPDATA,
the gauge version remains more accurate with the appli-
cation of FCT. However, FCT removes the symmetry of
the diffusion of the step wave and tends to distort rather
than diffuse the smooth initial conditions.

3.2 Spherical meshes

Advection test cases using adaptively implicit MPDATA
calculated using various meshes are presented. There is
no clearly optimal mesh of the sphere for atmospheric
modelling (example meshes in Figure 5). Numerical meth-
ods need to be designed to allow for one or more of the
following features of meshes of the sphere:

1. Latitude–longitude meshes are orthogonal and have
uniform resolution following coordinate lines, but
they have severe convergence of mesh lines towards
two poles; so, numerical methods are needed that
can cope with very large Courant numbers. We
use a latitude–longitude mesh with a cell at each
pole.

2. Hexagonal and triangular meshes of the sphere are
quasi-uniform, but they cannot be all three of:

(a) orthogonal (mesh lines and cell centre to cell centre
lines cross at right angles);

(b) centroidal (cell centres are at cell centroids);
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WELLER et al. 379

(c) non-skew (cell centre to cell centre lines bisect
mesh lines).

This means that special numerical treatment is needed
in order to achieve second-order accuracy.

3. Quasi-uniform versions of the cubed sphere are
non-orthogonal with large distortions (skewness) at
cube edges and corners, so numerical methods are
needed that maintain accuracy at these distortions. The
cubed sphere in Figure 5 uses the gnomonic projection
(Rančić et al., 1996).

4. Skipped latitude–longitude meshes have factor-of-two
reductions in resolution in the longitudinal direction at
a few latitudes to prevent the mesh lines converging.
At latitudes where the resolution reduces, the meshes
can be treated as non-conforming so that two quadri-
lateral cells are connected to one edge of the adjacent
quadrilateral cell, or conforming with two quadrilater-
als connected to adjacent, aligned edges of a distorted
pentagon. The implementation described here treats
them as conforming.

All of the meshes were decomposed into four domains
for parallel processing with MPI.

3.3 Deformational flow

Lauritzen et al. (2012) describe deformational flow test
cases to demonstrate a number of numerical properties of
an advection scheme including order of convergence and
monotonicity. We are using the non-divergent wind field,
which deforms and translates the initial conditions so that
the final solution (t = T = 5) should be identical to the ini-
tial conditions (t = 0). The wind is defined by a stream
functionΨ based on latitude𝜑, longitude 𝜆, time t, and the
radius of the sphere R = 1:

Ψ(𝜆, 𝜑, t) = 10R
T

sin2
(
𝜆 − 2πt

T

)
cos2

𝜑 cos πt
T
− 2πR

T
sin𝜑.

(48)

3.3.1 Gaussian hills

The Gaussian hills initial conditions are smooth and so can
be used to measure the numerical order of convergence.
The initial conditions of the tracer 𝜓0 are given in terms
of the three-dimensional position vector x in Cartesian
coordinates:

𝜓0(x) = 0.95{exp[−5(x − x1)2] + exp[−5(x − x2)2]}, (49)

where

xi = (R cos𝜑i cos 𝜆i,R cos𝜑i sin 𝜆i,R sin𝜑i), (50)

(𝜆1, 𝜑1) = (5π∕6, 0), (51)

(𝜆2, 𝜑2) = (7π∕6, 0). (52)

The tracer concentrations at t = 2.5 are shown in Figure 6
calculated on four different meshes of the sphere and for
a 30◦ rotated version of the latitude–longitude mesh, all
at a similar resolution. These use the standard adaptively
implicit MPDATA without FCT.

Simulations using all the meshes in Figure 6 use a time
step of 0.01 (500 time steps in total), giving a Courant
number of around 2, so that the simulations would be
unstable if a purely explicit scheme were used. Results on
the full latitude–longitude mesh with a time step of 0.05
are also shown, leading to a maximum Courant number
of around 10. Courant numbers at t = 0 are contoured in
Figure 6. Spatial resolutions and time steps are shown in
Table 1.

The flow goes to zero at the North and South
Poles, so the convergence of meridians of the unrotated
latitude–longitude mesh does not lead to large Courant
numbers. However, when the mesh is rotated by 30◦,
high winds cross the poles of the mesh so the maximum
Courant number goes up to 70 (the contours in Figure 6
show the Courant number at t = 0). These large Courant
numbers do not lead to instability, a lack of sign preser-
vation, or visible artefacts in the solution. The largest
Courant numbers are removed on the rotated, skipped
latitude–longitude mesh, although Courant numbers >2
are present at t = 0, just poleward of the change in longitu-
dinal resolution. On the cubed sphere, the Courant num-
ber is largest near the cube corners due to mesh distortions
and smaller cells. Some mesh imprinting is visible along
the cube edges, although this does not lead to a lack of
sign preservation. The hexagonal icosahedral meshes are
the most uniform meshes of the sphere and so there are no
sharp spikes in the Courant number. The results from the
hexagonal mesh appear accurate, but note that this mesh
has higher resolution than the other meshes. The solutions
using a larger time step on a full latitude–longitude mesh
have severely degraded accuracy, with the Courant num-
ber being large over most of the domain and so very little
of the high-order MPDATA correction can be applied.

MPDATA is, by design, sign preserving but not mono-
tonic. The adaptively implicit MPDATA retains this feature
on all of the meshes tested and displayed in Figure 6. The
minimum and maximum tracer values for all time steps
for each of the meshes in Figure 6 are shown at the top of
Figure 7. All of the minima remain positive and very close
to zero. The maxima decrease due to numerical diffusion
but do not decrease monotonically, as expected using the
standard MPDATA.
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380 WELLER et al.

F I G U R E 6 Deformational flow on the sphere. The shading show the tracer at t = 2.5 (piecewise constant in each cell). The grey
contours show the Courant number at t = 0 from 0.8 to 1.8 every 0.2, and the black contours are from 2 to 50 every 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

The maximum and mean Courant numbers for each
time step for each of the meshes in Figure 6 are shown
in the middle row of Figure 7. The maximum Courant
number for all meshes is >1 using the time step of
0.01 and is minimum at the middle of the simulation
(t = 2.5). The maximum Courant number for the rotated

latitude–longitude mesh reaches 70 and is always much
larger than 1, which does not appear to significantly reduce
the accuracy. The mean Courant numbers (dashed) are
below or close to 1 throughout, which helps to maintain
accuracy apart from for the simulation with a larger time
step.
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WELLER et al. 381

T A B L E 1 Resolutions and time steps for deformational advection

Mesh type Nominal resolution No. cells 𝚫s◦ 𝚫t Figure

Latitude–longitude 120 × 60 7,080 3.0 0.02 7c, 8b

240 × 120 28,800 1.5 0.01 6,7,8

480 × 240 114,720 0.75 0.005 7c, 8b, 9

Skipped
latitude–longitude

48 × 24 864 7.5 5

120 × 60 5,310 3.0 0.02 7c, 8b

240 × 120 21,750 1.5 0.01 6,7,8

480 × 240 88,470 0.75 0.005 7c, 8b, 9

Cubed
sphere

15 × 15 × 6 1,350 6.4 5

30 × 30 × 6 5,400 3.2 0.02 7c, 8b

60 × 60 × 6 21,600 1.6 0.01 6,7,8

120 × 120 × 6 86,400 0.8 0.005 7c, 8b, 9

Hexagonal–icosahedral HR4 642 9.5 5

HR6 10,242 2.4 0.02 7c, 8b

HR7 40,962 1.2 0.01 6,7,8

HR8 163,842 0.6 0.005 7c, 8b, 9

Note: Δs is a typical cell centre to cell centre distance in degrees latitude.

F I G U R E 7 Diagnostics of the results for
the deformational flow of the Gaussian hills with
standard adaptively implicit MPDATA without
flux-corrected transport. Top and middle are
diagnostics of the simulations shown in Figure 6.
Bottom includes other resolutions. Mesh and
time-step details in Table 1

Δt = 0.05

Δt = 0.05

Δt = 0.01

Δt = 0.01
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382 WELLER et al.

The convergence of the 𝓁2 error norm with resolution
is shown in the bottom row of Figure 7. The mesh reso-
lutions and time steps for these simulations are given in
Table 1. The resolution to time-step ratio is kept constant
along each line. Included in this graph are simulations
using half the time step and five times the time step for the
latitude–longitude mesh (giving maximum Courant num-
bers around 1 and around 10) in order show the impact of
varying the mean Courant number. Reducing the time step
to get c < 1 means that the standard explicit MPDATA is
used almost everywhere. This increases the error slightly,
which can be expected given the smooth flow. When the
Courant number is close to 2, 𝜃 is close to 1∕2 and the
temporal error correction is small. This implies that using
second-order adaptively implicit time stepping is more
accurate than using first-order time stepping with a cor-
rection. However, the adaptively implicit time stepping
requires a matrix inversion, and so is more expensive. The
simulation with c ≤ 10 is much less accurate because the
temporal correction is not applied for c ≥ 2. However, the
simulation is still stable and sign preserving.

The convergence with resolution in Figure 7 is around
first order at coarse resolution and approaches second
order at higher resolution, as expected for a second-order
scheme (the asymptotic convergence is second order). The
errors in Figure 7 are similar to the second-order schemes
presented in Lauritzen et al. (2014).

Better accuracy at the expense of sign preservation can
be achieved with the infinite-gauge variant of MPDATA (a
realisation of Lax–Wendroff), which works for the adap-
tively implicit version in the same way as the standard
MPDATA (Smolarkiewicz and Clark, 1986). The maxi-
mum and minimum values of the tracer for infinite-gauge
simulations with the same resolution as those shown
in Figure 6 are shown in Figure 8. In comparison
with the standard MPDATA simulations (Figure 7), the
infinite-gauge results have a smaller reduction in the max-
imum (because the results are more accurate and hence
less diffusive) but the minima are less than zero (spuri-
ous undershoots are generated). 𝓁2 errors with resolution
are shown at the bottom of Figure 8. The mesh spac-
ing and time steps are the same as in Figure 7 and are

Δt

Δt = 0.05

Δt = 0.01

Δt = 0.05

F I G U R E 8 Diagnostics of the results for
the deformational flow of the Gaussian hills
with adaptively implicit infinite gauge
MPDATA without flux-corrected transport.
Other settings are the same as Figure 7

 1477870x, 2023, 751, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4411 by T
est, W

iley O
nline L

ibrary on [09/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WELLER et al. 383

shown in Table 1. The order of convergence is higher
and the 𝓁2 errors lower than standard MPDATA results
(Figure 7).

3.3.2 Slotted cylinders

Deformational advection of slotted cylinders tests the
implementation of limiters. Lauritzen et al. (2012) rec-
ommend the same deformational velocity field as for the
Gaussian hills with initial tracers defined by

𝜓0 (𝜆, 𝜙) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

1 if ri ≤ r and |𝜆 − 𝜆i| ≥ r
6R

for i = 1, 2
1 if r1 ≤ r and |𝜆 − 𝜆1| < r

6R
and

𝜙 − 𝜙1 < − 5
12

r
R

1 if r2 ≤ r and |𝜆 − 𝜆2| < r
6R

and
𝜙 − 𝜙2 >

5
12

r
R
,

0.1 otherwise
(53)

where

x = (R cos𝜙 cos 𝜆,R cos𝜙 sin 𝜆,R sin𝜙) (54)

r = R∕2, ri = |x − xi| (55)

(𝜆1, 𝜑1) = (5π∕6, 0) (56)

(𝜆2, 𝜑2) = (7π∕6, 0). (57)

The tracer fields at the end of the simulations (t = T =
5) are shown in Figure 9 for all meshes at the highest
resolution used and at time steps giving Courant num-
bers of around 2 (see Table 1). This uses the adaptively
implicit infinite-gauge MPDATA with FCT (limited to
ensure monotonicity). Figure 9 shows that the bounds of
the initial conditions are maintained and no new extrema
are generated, even on the rotated latitude–longitude mesh
where the Courant number reaches 140. The skipped
latitude–longitude mesh has sharp jumps in the Courant
number (shown at t = 5) that do not cause artefacts in the
solution. This is, to our knowledge, the first monotonic and
conservative solution of the advection equation using such
a large Courant number.

A simulation using the much larger time step that
give a maximum Courant number of 10 on the unro-
tated latitude–longitude mesh is also shown in Figure 9.
Monotonicity is preserved but the solution loses accuracy
at this globally large Courant number as the MPDATA
correction cannot be applied in full for c > 2.

3.4 Solver performance

Solver performance is reported for a selection of simu-
lations using full latitude–longitude meshes, as the large
inhomogeneity of cell size and large range of Courant
numbers could lead to an ill-conditioned matrix and
poor solver performance (Tumolo and Bonaventura, 2015).
These are compared with solver performance on the high-
est resolution hexagonal mesh. Each time step consists
of one implicit solve using the standard OpenFOAM
bi-conjugate gradient solver with a diagonal-based incom-
plete lower–upper preconditioner. The solver tolerance
is ∑

c|y − Ax|
∑
c(|y| − |Ax|)

, (58)

for matrix equation Ax = y, where the sum is over all cells
of the mesh and c is the cell volume. A tolerance of 10−6

is used for all simulations. The first guess of the solver is
the state at the previous time step, so the initial residual is
small for small time steps.

The number of iterations of the solver per time step
is shown in Figure 10 for various resolutions and var-
ious time steps, both rotated and unrotated, on the
latitude–longitude mesh and on the hexagonal mesh. The
number of iterations is smallest around time 2.5, when
the wind speed is lowest and so the Courant number
is smallest. For simulations with the maximum Courant
number less than 0.75 in the middle of the simulations,
the number of solver iterations drops to zero because the
simulation is purely explicit. The simulations represented
by black and grey lines have a maximum Courant number
of 2, and so the number of iterations is small through-
out the simulation. The simulations where the maximum
Courant number reaches 10 (in blue) use more iterations,
but for the latitude–longitude mesh the number of itera-
tions increases slower than linearly with Courant number,
which is necessary for efficiency. However, the hexago-
nal mesh with a maximum Courant number of 10 uses
more than five times as many solver iterations as with a
maximum Courant number of 2. This could be because
the matrix solver is unsuitable for the reduced sparsity
of the hexagonal mesh. The hexagonal mesh has nearly
uniform global resolution, and so the Courant number
is high globally. This set-up also leads to low accuracy,
demonstrating the futility of using implicit methods to
achieve large time steps if the Courant number is high
everywhere.

The rotated latitude–longitude meshes have very high
maximum Courant numbers, but only in limited regions.
The residual is a volume average over the whole mesh,
so the higher errors near the mesh poles do not prevent
global convergence but are still being solved accurately
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384 WELLER et al.

F I G U R E 9 Deformational flow on the sphere after five time units. The shading show the piecewise uniform value of the tracer value
in each cell. The grey contours show the Courant number from 0.8 to 1.8 every 0.2, and the black contours are from 2 to 50 every 1 [Colour
figure can be viewed at wileyonlinelibrary.com]

enough to prevent instability around the pole. Therefore,
the rotated mesh simulations do not have high iteration
counts for any of the resolutions tested and the accuracy is
high. It should be noted that implicit solutions in limited
regions will lead to load-balancing problems. Therefore, if

it is known in advance that some regions are more likely
to need implicit solves; then, smaller domains could be
used there.

It should also be noted that higher spatial resolution
has little influence on the number of iterations per time
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WELLER et al. 385

F I G U R E 10 Number of
solver iterations per time step
for simulations on full
latitude–longitude meshes and
the highest resolution
hexagonal mesh [Colour figure
can be viewed at
wileyonlinelibrary.com] 0

5

10

15

0 1 2 3 4 5

Time

120×60, �t = 0.02, c<2
240×120, �t = 0.01, c<2
480×240, �t = 0.005, c<2
hexagonal, 16K cells, �t = 0.005, c<2
120×60, �t = 0.1, c<10
240×120, �t = 0.05, c<10
480×240, �t = 0.025, c<10
hexagonal, 16K cells, �t = 0.025, c<10
rotated 120×60, �t = 0.02, c<20
rotated 240×120, �t = 0.01, c<36
rotated 480×240, �t = 0.005, c<70

step for all mesh types and Courant numbers, which is
encouraging.

4 SUMMARY AND CONCLUSIONS

This paper has shown how MPDATA can be extended
for adaptively implicit time stepping, enabling Courant
numbers much larger than 1. Two-dimensional deforma-
tional flow advection test cases on the sphere show that
solutions are accurate with Courant numbers >1 over
a large fraction of the domain and accurate with local
Courant number spikes over 100, such as happens over
the pole of a latitude–longitude mesh. There are a num-
ber of novel aspects to the paper and the advection scheme
presented:

1. An adaptively implicit version of finite-volume
MPDATA that is stable for arbitrary Courant numbers
and on arbitrary meshes.

2. Transport over the poles of a latitude–longitude mesh
at high wind speed without reductions in accuracy or
increased cost.

3. Monotonicity for all Courant numbers by adapting FCT
(Zalesak, 1979) for implicit time stepping.

4. Accuracy of the adaptively implicit scheme for modest
Courant numbers (up to 2) and first-order accuracy as
Courant numbers grow beyond 2.

5. A proof that the adaptively implicit time stepping, in
combination with first-order upwind spatial discretisa-
tion, is bounded.

6. A demonstration of the advection scheme on a variety
of meshes of the sphere.

7. A first look at solver performance, which shows that
iteration count increases slower than linearly with
Courant number, implying that computational speed
can be gained from larger time steps (the exception to
this is on the hexagonal mesh).

This paper goes further than recent papers present-
ing advection schemes that are adaptively implicit in the

vertical only (Wicker and Skamarock, 2020; Li and Zhang,
2022), not only in the use of implicit time stepping in
two dimensions but also improved accuracy while using
implicit time stepping and a proof that the mix of implicit
and explicit does not destroy boundedness.

Section 1 described multi-tracer efficiency as an essen-
tial property of an advection scheme. Using implicit time
stepping, a separate solver for each tracer would be neces-
sary, which initially sounds prohibitive. However, much of
the cost of an implicit solve is in preconditioning, which
would be shared over all tracers that use the same wind
field.

Next steps entail three-dimensional solutions and
incorporation into a full dynamical core with implicit time
stepping for advection in all equations. This will include
formulating the MPDATA implicit advection for fully com-
pressible equations considering non-divergent winds and
variable density, as well as dynamics right-hand sides,
extending the work of Smolarkiewicz and co-workers
(Smolarkiewicz and Margolin, 1998; Kühnlein and Smo-
larkiewicz, 2017).
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APPENDIX A. BOUNDEDNESS OF THE
FIRST- ORDER UPWIND ADAPTIVELY
IMPLICIT SCHEME

In Section 1.1 we defined a monotonic scheme to be
one that “does not generate new spurious extrema or
amplify existing extrema”. This is usually tested for explicit
schemes by checking that solutions at time step n + 1 are
not outside the bounds of solutions at time step n at the
same or neighbouring grid boxes. However, this can hap-
pen for implicit schemes even if the solution is either
preserved exactly or moved and diffused; it should be pos-
sible for implicit schemes to move real extrema by more
than one grid box in one time step, thus violating the usual
test for explicit schemes. Therefore, in order to demon-
strate monotonicity of an implicit scheme, we demonstrate
global boundedness but without a priori knowledge of the
global bounds – whatever the initial global bounds, the
solution will remain within them without any tests of what
the global bounds are.

The first-order upwind, adaptively implicit scheme can
be written thus:

𝜓
n+1
c = 𝜓n

c +
Δt
c

∑

i∈in
(1 − 𝜃i)Ui𝜓

n
i +

Δt
c

∑

i∈in
𝜃iUi𝜓

n+1
i

− Δt
c

∑

o∈out
(1 − 𝜃o)Uo𝜓

n
c −

Δt
c

∑

o∈out
𝜃oUo𝜓

n+1
c , (A.1)

for cell C with faces i and o. Faces “i ∈ in” have flow into
cell C, whereas faces “o ∈ out” have flow out. Off-centring
values are denoted 𝜃i and 𝜃o at the different face types.
Ui ≥ 0 and Uo > 0 are the inward and outward fluxes. 𝜓i
are the values of 𝜓 in cells through the i faces. The 𝜃i,o are

defined on faces for conservation. This makes the bound-
edness of the scheme less straightforward. Equation (A.1)
can be rearranged to give

𝜓
n+1
c = 𝛾𝜓n

c +
∑

i∈in

𝛼i𝜓
n
i +

∑

i∈in

𝛽i𝜓
n+1
i , (A.2)

where

𝛼i =
Δt
c
(1 − 𝜃i)Ui

1 + Δt
c

∑
o∈out 𝜃oUo

for each i (A.3)

𝛽i =

Δt
V
𝑗

𝜃iUi

1 + Δt
c

∑
o∈out 𝜃oUo

for each i (A.4)

𝛾 =
1 − Δt

c

∑
o∈out(1 − 𝜃o)Uo

1 + Δt
c

∑
o∈out 𝜃oUo

. (A.5)

The quantities 𝛼i, 𝛽i, and 𝛾 are all positive as long as the
𝜃0 are chosen to give

Δt
c

∑

o∈out
(1 − 𝜃o)Uo ≤ 1, (A.6)

which can be accomplished by setting

𝜃f ≥ 1 − 1
Δt
c

∑
o∈out Uo

(A.7)

for the cells either side of face f . Hence, all 𝜓 are positive
at the next time step. If, in addition, the flow is discretely
non-divergent, then

∑

i∈in
Ui =

∑

o∈out
Uo, (A.8)

which implies

∑

i∈in
𝛼i +

∑

i∈in
𝛽i + 𝛾 = 1, (A.9)

So, from Equation (A.2), 𝜓n+1
c is a convex combination

of 𝜓n
c , 𝜓n

i , and 𝜓n+1
i . This in fact proves that the scheme

is globally bounded. This can be shown by contradiction;
if we assume that 𝜓n+1

c is the global maximum at tn+1

and it is greater than 𝜓
n
𝑗

for all cells 𝑗 in the mesh, then
Equations A.2 and A.9 cannot both hold for cell C. It is
necessary for this scheme to be bounded as it is used as the
bounded scheme for the FCT (Section 2.5).
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APPENDIX B. STABILITY ANALYSIS OF THE
SECOND- ORDER ADAPTIVELY IMPLICIT
SCHEME

MPDATA is a nonlinear scheme but the infinite-gauge ver-
sion is linear, and so von Neumman stability analysis can
be applied. In one dimension, for constant velocity u >
0, constant Δx, constant 𝜃, and constant Courant num-
ber c = uΔt∕Δx, the one-dimensional adaptively implicit
scheme is

𝜓
n+1
𝑗

= 𝜓n
𝑗
− c(1 − 𝜃)(𝜓n

𝑗
− 𝜓n

𝑗−1) − c𝜃(𝜓n+1
𝑗

− 𝜓n+1
𝑗−1 )

− c
2
(1 − 𝜒c)(𝜓n

𝑗+1 − 2𝜓n
𝑗
+ 𝜓n

𝑗−1), (B.1)

where 𝜓𝑗 is 𝜓 at position x = 𝑗Δx. We showed in
Section 2.2 that 𝜒 = 1 − 2𝜃 gives second-order accuracy.
From Appendix A we can see that we need 𝜃 ≥ 1 − 1∕c for
stability of the first-order upwind part – the first two terms
of Equation (B.1). In order to revert to the explicit version
for c ≤ 1 and to transition smoothly to the implicit version
we use

𝜃 =

{
0 c ≤ 1

1 − 1
c

c > 1,
(B.2)

and analyse Equation (B.1) separately for these two cases.
Considering a Fourier mode with wave number k, the
amplification factor A of Equation (B.1) is

A =
1 − c(𝜒c − 𝜃)(1 − cos kΔx) − ic(1 − 𝜃) sin kΔx

1 + c𝜃(1 − cos kΔx) + ic𝜃 sin kΔx
.

(B.3)

F I G U R E B1 Comparison of the stability limits, the
second-order requirement and the value of 𝜒 used for the MPDATA
correction

For 𝜃 = 0 and 𝜒 = 1 we recover the usual Lax–Wendroff
stability constraints of c ∈ [−1, 1]. For c ≥ 1 and 𝜃 =
1 − (1∕c) it can be shown that stability requires 𝜒 ∈
[0, (2c − 1)∕c2]. The stability range for 𝜒 is compared with
the second-order requirement for 𝜒 in Figure B1. For
behaviour as close as possible to second order for the max-
imum range of Courant numbers and for stability we use

𝜒 = max(1 − 2𝜃, 0). (B.4)

This gives an unconditionally stable scheme with
second-order accuracy for c ≤ 2.
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