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Abstract

Climate models are important tools for investigating how the climate
might change in the future, however recent observations have suggested
that these models are unable to capture the overturning in subpo-
lar North Atlantic correctly, casting doubt on their projections of the
Atlantic Meridional Overturning Circulation (AMOC). Here we compare
the overturning and surface water mass transformation in a set of CMIP6
models with observational estimates. There is generally a good agree-
ment, particularly in the recent conclusion from observations that the
mean overturning in the east (particularly in the Iceland and Irminger
seas) is stronger than that in the Labrador Sea. The overturning in
the Labrador Sea is mostly found to be small, but has a strong rela-
tionship with salinity: fresh models have weak overturning and saline
models have stronger mean overturning and stronger relationships of
the Labrador Sea overturning variability with the AMOC further south.
We also find that the overturning reconstructed from surface
flux driven water mass transformation is a good indica-
tor of the actual overturning, though mixing can modify
variability —and = shift signals to different density classes.

Keywords: CMIP6, AMOC
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2 North Atlantic overturning and water mass transformation in CMIP6 models

» 1 Introduction

s The Atlantic Meridional Overturning Circulation (AMOC) is an impor-
a1 tant component of the climate system, transporting heat northwards in the
» Atlantic. Since changes in the AMOC have significant impacts on climate
1 (Zhang et al, 2019; Bellomo et al, 2021), it is of considerable interest to under-
s stand how the AMOC might evolve in the future. Climate and ocean models
35 can provide valuable information about AMOC behaviour and future evolu-
s tion, however they can also suffer from biases and inadequate representation of
s some processes. Biases in the mean climate have been shown to affect AMOC
s variability (Menary et al, 2015) and anthropogenic weakening (Jackson et al,
»  2020; Sgubin et al, 2017; Weijer et al, 2020), and many processes that are
w believed to be related to the AMOC are not well represented in models, par-
s ticularly in climate models in which resolution is limited (Fox-Kemper et al,
#2 2019). In particular, the representation of the AMOC might be affected by
s inadequate representation of: overflows (Yeager and Danabasoglu, 2012; Zhang
a et al, 2011); eddies and their mixing (Bruggemann and Katsman, 2019; Tagklis
s et al; 2020); narrow boundary currents and their transports of heat and fresh-
s water (Talandier et al, 2014); convection (Danabasoglu et al, 2014; Heuz, 2017;
w Koenigk et al, 2021), sinking (Katsman et al, 2018), the pathway of the Gulf
s Stream and North Atlantic current (Jackson et al, 2020). Given the poten-
w0 tlal issues with representing these processes, detailed assessments of AMOC
s representation in climate and ocean models are necessary.

51 Recent observational results have shown that our understanding of pro-
2 cesses in the subpolar North Atlantic is incomplete (Lozier et al, 2019). The
53 previous paradigm of ocean variability found buoyancy fluxes associated with
s« the North Atlantic Oscillation (NAO) over the Labrador Sea (LS) driving

ss. AMOC variability (Robson et al, 2012; Yeager and Danabasoglu, 2014; Kim
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et al, 2020), with strong statistical relationships found between the AMOC
and LS properties such as mixed layer depth (a proxy for deep convection),
deep densities, and the formation of Labrador Sea water (Ortega et al, 2021;
Danabasoglu et al, 2016; Roberts et al, 2013). However, observations from the
OSNAP campaign (Lozier et al, 2019), which measures the overturning from
Newfoundland to Greenland, and Greenland to Scotland (blue and cyan lines,
Fig 1), have shown a much stronger overturning across the east section of
OSNAP (OSE) than the west section (OSW) in both depth and density space.
This implies that northwest of OSW (which is most of the LS) there is little
densification or sinking, casting doubts on climate and ocean models which
are largely responsible for the previous paradigm that buoyancy fluxes over
the LS are driving AMOC variability.

The observations from OSNAP have been supported by other estimates
with a variety of observational methods. These studies support the findings by
Lozier et al (2019) that the overturning across OSW is small with values of 1.5-
3.4Sv (Pickart and Spall, 2007; Chafik and Rossby, 2019). Further studies have
shown that the stronger overturning across OSE has at least half originating
in the Iceland and Irminger Seas (IIS) (between OSE and the sills along the
Greenland-Iceland-Scotland ridge, green line in Fig 1), rather than further
north in the GIN seas (Petit et al, 2020; Desbruyres et al, 2019; Chafik and
Rossby, 2019).

These various observational results have driven more analysis of the sub-
polar overturning in models. As well as comparisons of the overturning in
density space across OSNAP sections (Li et al, 2019; Menary et al, 2020; Jack-
son et al, 2020), analysis in density space has made analysis of water mass
transformation valuable (Langehaug et al, 2012; Sidorenko et al, 2020, 2021;

Oldenburg et al, 2021; Menary et al, 2020; Megann et al, 2021). Water mass

3
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transformation (WMT) is the transformation of water from one density class
to another. For the AMOC in density coordinates, the circulation of lighter
waters transported northwards and denser water southwards must be closed by
the transformation from lighter to denser density classes. Hence, the AMOC in
density coordinates can be reconstructed from density transformations, assum-
ing that circulation and transformations are in balance (Groeskamp et al, 2019;
Marsh, 2000). At short timescales, in particular seasonally, they are not in bal-
ance because of the transit time between the transformation at the surface and
the propagation of the newly dense water southward (Kostov et al, 2019; Petit
et al, 2020; Le Bras et al, 2020), however studies have shown good agreements
on decadal timescales and longer (Grist et al, 2009, 2012). Most of the WMT
occurs at the surface from surface buoyancy fluxes. Hence, a reconstruction of
the AMOC from the WMT from surface fluxes alone has been found to well
represent the mean and decadal changes of the AMOC (Jackson et al, 2020;
Megann et al, 2021; Langehaug et al, 2012). There may be a lag between sur-
face flux changes and overturning changes (Josey et al, 2009). This paradigm
allows a simple way of relating the AMOC to surface fluxes, and aids analysis.
Several studies have shown coupled models agreeing with observations that
most overturning and WMT from surface fluxes (SFWMT) occurs to the east
of Greenland (Sidorenko et al, 2020; Oldenburg et al, 2021; Menary et al, 2020;
Yeager et al, 2021), though one coupled model and several forced ocean models
have been found to have large overturning in the LS (Oldenburg et al, 2021;
Xu et al, 2018; Li et al, 2019). However, even though the east subpolar Atlantic
might dominate the mean overturning, the west could still be important for
decadal variability. Modelling studies have found a variety of results for the
relationships between the overturning and LS properties. These include: the

decadal variability is still driven by surface fluxes in the LS, despite it having
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a weaker mean strength (Yeager et al, 2021; Oldenburg et al, 2021; Sidorenko
et al, 2021); the variability is driven by fluxes in the Iceland and Irminger sea
(IIS), with density anomalies propagating into the LS and affecting densities
and mixed layer depths there (Menary et al, 2020); surface fluxes are covarying
over the LS and IIS (Megann et al, 2021; Yeager et al, 2021).

In this study we use a subset of CMIP6 climate models to address the
questions of how the time mean and multidecadal variability of the SEFWMT
relate to the overturning in different regions, and whether the SFWMT can
be used as a proxy. We also investigate how well the models compare to obser-
vations and what controls differences in the overturning in the LS. Section 2
describes the models and methods used. Section 3 examines the mean state of
the overturning and SFWMT, firstly in more detail in two resolutions of the
CMIP6 model HadGEM3-GC3.1, and then in a selection of CMIP6 models.
Section 4 analyses the same models, but for multidecadal variability, and then

conclusions are presented in the final section.

2 Models and methods

2.1 HadGEM3-GC3-1LL/ MM

Much of the analysis focuses on the coupled climate models HadGEM3-GC3-
1LL and HadGEM3-GC3-1MM (LL and MM), both of which contributed to
CMIP6. These are two different resolutions of a global, coupled climate model
with atmosphere (UM), ocean (NEMO), sea ice (CICE) and land (JULES)
components, with details described in Kuhlbrodt et al (2018) and Williams
et al (2018). HadGEM3-GC3-1LL has an atmospheric resolution of approx-
imately 135km and an ocean resolution of 1°; HaddGEM3-GC3-1MM has an
atmospheric resolution of approximately 60km and an ocean resolution of

0.25°. Both models have the same vertical resolution. Differences in parameters

5
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and parameterizations are described in Kuhlbrodt et al (2018), and include a
parameterization for eddy-induced transports in LL, but not in MM.

The experiments analysed are 500 year long preindustial controls.

2.2 CMIP6 models

We use preindustrial controls for a set of CMIP6 models in addition to
HadGEM3-GC3-1LL and MM, selected from those models which had the
required data available (temperature, salinity, surface heat and freshwater
fluxes and AMOC), and also for diversities in institution and ocean model.
Consideration was also given to AMOC mean strength to include several
models with strengths at 26.5°N which agreed with observational estimates,
but to also ensure that models characterised by overly strong and weak
AMOC strengths are also included (Weijer et al, 2020). The models used are:
ACCESS-CM2 (Dix et al, 2019), CanESM5 (Swart et al, 2019), CNRM-CM6-
1 (Voldoire, 2018), EC-Earth3-Veg (EC-Earth Consortium (EC-Earth), 2019),
IPSL-CMG6A-LR (Boucher et al, 2018), MPI-ESM1-2-LR (Wieners et al, 2019),
MRI-ESM2-0 (Yukimoto et al, 2019) and NorESM2-MM (Bentsen et al, 2019).

2.3 SFWMT from an atmospheric reanalysis

The water mass transformation is estimated from observational datasets for
comparison with the models. We estimate the heat and freshwater fluxes from
the atmospheric reanalysis National Centers for Environmental Prediction
(NCEP)/National Center for Atmospheric Research (NCAR) (Kalnay et al,
1996). To estimate density at the surface, we use a combination of sea surface
temperature from NCEP/NCAR and subsurface salinity at 5m depth from
EN4.2.1 (Good et al, 2013). These fields are sub-sampled onto a common grid

of 30 km. The reanalysis provides monthly estimates of the variables from
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1980 to 2018, which allow us to average the water mass transformation over

39 years.

2.4 Observations

Our estimations of SFWMT and overturning are compared with numerous
observational estimates. Previous studies estimated SFWMT over areas close
to our definition in Figure 1 with various atmospheric reanalysis. Desbruyres
et al (2019) estimated transformation of 5.4 + 0.4 Sv over GIN and 15.4 + 1.8
Sv over the entire subpolar gyre from three atmospheric reanalyses (NCEP2,
ERA-I, and CERES). Marsh (2000) also estimated a transformation of 15.5
Sv north of 45N by using COADS]1a fluxes. More recently, Petit et al (2020)
estimated SFWMT of 7 + 2.5 over the IIS, 1.5 + 0.7 over LS and 4.7 + 1.5
Sv over GIN from the atmospheric reanalyses NCEP and ERAS5.

The overturning across OSW and OSE have also been estimated using
different approaches. These include direct observations at the AR7W hydro-
graphic line near OSW (2 Sv by Pickart and Spall (2007)), direct observations
from the mooring array OSNAP (2.6 & 0.3 at OSW and 16.8 & 0.6 at OSE by
Li et al (2021)), and estimations derived from a composite of direct measure-
ment of currents and moored current meters at the Greenland-Scotland Ridge
(5.7 £ 0.7 Sv by Osterhus et al (2019)). Other observations from a regional
thermohaline inverse method (Mackay et al, 2020) that suggest large values for
the LS overturning (6-9 Sv) are not comparable because they identify Labrador
Sea waters by temperature and salinity characteristics, rather than geograph-
ical location. We also consider estimates of the overturning convergence in
different regions from volume budgets that combine direct measurement of cur-
rents, hydrography from profiling Argo floats and satellite altimetry data (9.6
+ 3.4 Sv over IIS and 8.8 + 0.8 over GIN by Chafik and Rossby (2019); 10.2

7



Springer Nature 2021 BTEX template

8 North Atlantic overturning and water mass transformation in CMIP6 models

w £ 1.7 Sv over IIS and 6.3 + 1 Sv over GIN by Sarafanov et al (2012)). Finally,
188 an overturning of 14.3 £ 1.4 Sv was derived at 45N by combining geostrophic
189 thermal-wind currents with altimetry-derived sea-surface geostrophic velocities
wo  (Desbruyres et al, 2019).

101 For comparison with CMIP6 models we also calculate observational values
12 of certain metrics. For LS surface salinity we use salinity from EN4.2.1 (Good
s et al, 2013) and use an estimate from recent years (2000-2014) where there
e are more observations, and from an earlier period (1900-1950) which is more
s comparable to the preindustrial period used in the models. We also calculate
ws LS surface salinity for 2000-2014 from the CORA dataset (Cabanes et al, 2013).
w7 For March ice extent we use sea ice concentrations from HadISST (Rayner
ws et al, 2003), and again use both an earlier estimate (1900-1950) and a present-
o day estimate (2000-2022). For March MLD we use the March climatology of
a0 (de Boyer Montgut et al, 2004) with a density criteria of 0.03 kg/m®. Given
20 that this uses a relatively coarse ocean grid (2 °) compared to the models, we
22 might expect that the maximum over the area to be a bit lower than in the

203 models.

w0 2.5 Methods

25 2.5.1 Overturning

206 We calculate the overturning for LL and MM in density space across vari-
207 ous sections. The overturning profiles show the cumulative (in density space)
28 volume transport across the sections in the same way as an overturning stream-
200 function, but defined across sections. The difference in the overturning profiles
a0 between two density classes then gives the total volume transport between
au  those profiles. The sections are shown in Fig 1a: these are OSNAP west (OSW),

22 OSNAP east (OSE), the Greenland to Scotland sills (Sills), the Fram strait
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(Fram) and across the Atlantic at 45°N (45N). For each of these sections a
line is defined along vorticity points of the Arakawa C grid (Madec, 2008) that
are as close as possible to the observed sections (Lozier et al, 2019). We use
this line to extract volume fluxes on their natural grid points and preserve
the model transports. These transports are regridded into density space and
the overturning is calculated by summing the transports along the line, and
then cumulatively summing in density space (see Menary et al (2020); Jackson
et al (2020)). Since there can be net transport through the section, we set the
overturning to be zero at the ocean floor so the overturning profile is equal to
the net transport at the surface. This means that we can focus on comparing
overturning in the denser levels between models and with observations, with
little impact from the net transport (Zou et al, 2020). The overturning across
each section is denoted as Mosw, Mose, Msiiis, Mpram and Mysy. We use
density referenced to the surface (sigma0) so that the overturning is directly
comparable to the implied overturning from SFWMT (see next section), and
for comparison with OSNAP observations which also use sigma0. However, it
should be noted that sigma0 can be non-monotonic in the deeper ocean, and
comparisons with density referenced to 2000m (not shown) show a slightly
stronger overturning across OSE and OSW. Calculations of overturning with
HadGEM3-GC3-1LL do not include parameterised eddy transports, however
these are found to be small across these sections.

We also define the convergence of the overturning in regions bordered
by these sections (Fig 1b). Hence, the convergence in the Labrador Sea is
Mps = Mopsw (excluding the small transport through the Davis Strait);
the convergence in the Greenland-Iceland-Norway (GIN) Seas is Mgy =
Mgiiis — Mpram (excluding the small transport through the North Sea between

Britain and mainland Europe); the convergence in the Iceland-Irminger Seas

9
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is Myirs = Mosg — Mg;iis; the convergence in the subpolar gyre is Mgpg =

Mysny — Mosg — Mosw. Then we can note that

Musn — Mpram = Mspa + Mirs + Marn + Mps. (1)

Since Mpyqm is small, we can regard the transport across 45°N as being

the sum of the convergences in the SPG, IIS, GIN and LS regions.

2.5.2 Water mass transformation

It has previously been shown (Marsh, 2000; Josey et al, 2009) that if you
have lighter waters flowing into a region and denser waters being exported,
then you can relate the overturning to the rate of transformation of water
from lighter to denser density classes. This assumes that the region is in a
steady state so that water masses created are exported, rather than stored.
The main component of the transformation is from surface fluxes (both heat
and freshwater fluxes) although mixing (Sidorenko et al, 2021; Xu et al, 2018),
cabbeling and thermobaricity (McDougall, 1987) can also play roles. Hence,
we can estimate the water mass transformation (WMT) from surface fluxes
alone (Josey et al, 2009; Desbruyres et al, 2019; Langehaug et al, 2012; Jackson
et al, 2020; Megann et al, 2021).

To calculate the surface flux water mass transformation (SFWMT), we first
calculate the surface buoyancy flux (see also Marsh (2000); Groeskamp et al
(2019)) using

Q psW

B=-a-—
aC’p 1-s

where @ is the surface heat flux, Cp the specific heat capacity of water, p
the surface density, s the non-dimensional surface salinity and W the surface

fresh water flux (from precipitation, evaporation, runoff and ice processes).
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We also use the thermal («) and haline (/) expansion coefficients which are
calculated at each grid point from the gradient of surface density with respect
to temperature and salinity.

We then calculate the area integrated surface buoyancy flux Ba(p) over
the area north of where the isopycnal p outcrops and within each region A.
The SFWMT is then

dBa(p)

Fap) = =50

which gives the overturning implied from transformation by surface fluxes
alone.

While water mass transformation can be related to the overturning, water
mass formation (WMF) instead shows where transports of water of given
density classes are created and destroyed. Water mass formation is given by
AF4(p), where we use a bin size of 0.1kg/m3 for the differences.

Although there is an assumption that the overturning is in balance with
surface fluxes, this may not hold on shorter time scales (Petit et al, 2021;
Kostov et al, 2019). Previous studies (Grist et al, 2009, 2012) showed that
there was reasonable agreement between the variability of the overturning and
SFWMT on decadal timescales and longer, though there may be lags of a few
years between two (Josey et al, 2009; Desbruyres et al, 2019). Hence, we limit
our analysis to using decadal means. However, all calculations of WMT and
overturning are done using monthly mean fields to account for the impact of
the seasonal cycle of density and surface fluxes on the SFWMT, with results

shown as decadal means.

11
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3 Mean state

3.1 HadGEM3-GC3-1 Overturning

The Atlantic overturning streamfunction in density space in both LL and MM
shows a typical AMOC overturning cell, with surface waters becoming denser
as they move northwards in the North Atlantic, and then dense water flowing
southwards (Fig 2). Much of the densification occurs south of 67°N, but there is
some water which flows into the GIN seas (north of 67°N), becoming very dense
there. However, this very dense signal is lost as the water returns south, because
as the dense water passes over the sills between Greenland and Scotland it
mixes with lighter waters in overflows (Legg et al, 2008).

The overturning across the sections (Fig 1) is shown in Fig 3a and b. Obser-
vations show overturning transports across OSE and OSW are 16.8+0.6 and
2.6+0.3 Sv respectively (Li et al, 2021), and Menary et al (2020) and Jackson
et al (2020) have previously shown that the OSNAP sections in these models
compare well with observations, both in the mean state and monthly variabil-
ity. In both models, the magnitude and density of the maximum overturning
across 45°N is similar to that across OSE, suggesting little modification of
deep transports between the OSNAP line and 45°N, though transports in the
upper limb become denser in the SPG in MM. Transports across the Sills
section account for some of the transport across OSE (44% in LL and 27% in
MM). The transports across the Sills at the densest levels do not reach OSE
(resulting in a negative contribution from IIS, Fig 3¢ and d), likely because
diapycnal mixing in the overflows shifts transports to lighter density classes.
There is some very dense water that passes through the Fram Strait from the

Arctic. These sections suggest that this might continue to the Sills section.
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Since the sum of the overturning convergences is approximately equal to
Mys (since Mpyqm, is relatively small; see Eq 1) we can investigate which region
has the largest contribution to the overturning across 45°N (Fig 3¢ and d).
Results show contributions from SPG at around 1026.5-1027.5 kg/m? (though
this is small in LL), contributions from IIS at around 1027-1027.8 kg/m?, small
contributions from LS at around 1027.5-1027.8 kg/m? and contributions from
GIN at around 1027.3-1028.2 kg/m3. In particular, we note that the region with
the largest contribution to the peak overturning at around p = 1027.6kg/m?
is IIS in both models, though in LL there is a similar contribution from the
GIN seas.

There are some differences between the two models. MM has a stronger
overturning at 45°N (12.8 and 17.4 Sv for LL and MM respectively), which
can be attributed to a stronger contribution from IIS. MM also has a slightly
greater overturning from the LS and weaker overturning from the GIN seas.
Jackson et al (2020) attribute this difference to a stronger subpolar gyre and
a more westerly position of the North Atlantic current in MM, resulting in
greater transport of warm, saline subtropical waters into the western subpolar
North Atlantic, rather than the GIN seas, and hence more heat loss and WMT
in the LS. Another difference is that the upper branch of the overturning across
45°N is lighter in MM than LL, with greater transformation to denser levels in
the SPG. This can be related to temperatures biases in the models, with LL
having a large cold bias across the subpolar North Atlantic, so has less heat

loss and SEFWMT there (Jackson et al, 2020).

13
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3.2 HadGEM3-GC3-1 Surface Flux Water Mass

Transformation

To understand how much of the overturning in density space can be attributed
to surface fluxes, we calculate the implied overturning convergence from
SFWMT. The SFWMT (Fig 3e and f) have a lot of similarities with the over-
turning convergences (Fig 3c and d). In particular, the SEFWMT is of similar
magnitude to the overturning in all regions. Differences between the over-
turning and SFWMT are likely to be caused by diapycnal mixing, with the
time-dependent storage and release unlikely to have a role in the long-term
average.

A greater physical understanding can be gained by examining water mass
formation as well as transformation from surface fluxes. Since formation is
calculated as the difference of SFWMT across a density bin, we compare this
to the actual transport in that density bin (rather than the overturning which
is the depth-integrated transport). The horizontal convergences of transports
and WMF in each region are shown in Fig 4.

In the SPG, upper panels of Fig 4 show import of waters <1027.1 kg/m?
and export of waters of 1027.2-1027.5 kg/m?, with the bottom panels show-
ing the destruction and formation of those respective water masses by surface
fluxes. The density class exported from the SPG (1027.2-1027.5 kg/m?) enters
the IIS and GIN seas, where it is transformed by surface buoyancy fluxes
to denser classes of water. In the IIS waters of density 1027.3-1027.7 kg/m3
(slightly denser in MM) are formed by surface fluxes, however the water
exported is denser suggesting that mixing with denser waters within the IIS
is important in setting the waters exported from the IIS (and across 45°N).
In the GIN seas dense waters (1027.85-1028.05 kg/m?) are formed, with some

mixing modifying the dense waters exported from the GIN seas. Most of these
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dense waters are imported into the IIS (although there is some exchange across
the Fram strait), however these dense waters are not exported across OSE (Fig
3a and b). They are likely destroyed in the IIS by mixing to lighter density
classes, contributing to the large export of waters at around 1027.8 kg/m?, and
the densification of the waters formed within the IIS. However, we note that
the total export of dense waters in IIS (Fig 3c and d) has a similar magnitude
to that implied by the WMT, so the mixing shifts the transports to different
density classes, but does not change the total transport in the lower limb of
the overturning. In the LS there is formation of dense waters at 1027.7-1027.85
kg/m? (slightly denser in MM). This peak, taken together with the peak in the
SPG at similar densities (likely because the OSW line dividing LS and SPG
does not capture all the WMF in the LS region), explains the peak in total
SFWMT in both models. The water exported is modified by mixing. In partic-
ular, in MM the resulting export and overturning have a double peak, which is
similar to that found in the observations (Lozier et al, 2019). We hypothesise
that this is a result of mixing of water formed in the LS with different water
masses.

Although the LS (and dense contribution from the SPG) dominates the
peak in water mass formation, this only occurs over a small density bin. Since
the overturning is related to the transformation (the cumulative sum of the
formation), the transformation in the IIS, which occurs over a larger density
range, is larger than that in the LS.

We find there is a clear role for mixing in modifying water masses after
formation, however we note that the SFWMT is a reasonable predictor of the
overturning from each region, even in the IIS and LS where mixing is found to

be important. This is likely to be because, in many cases the mixing modifies
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the densities of transports within the region, resulting in the overturning profile

shifting to different density classes, rather than changing the maxima.

3.3 CMIP6

We have shown that in LL and MM the overturning profiles implied by
SFWMT are a reasonable approximation for the actual overturning profiles.
Previous studies have found that SEFWMT is also a reasonable approximation
for the overturning in other models (Megann et al, 2021; Langehaug et al,
2012; Grist et al, 2012), though mixing might have a more important role in
some models (Oldenburg et al, 2021; Yeager et al, 2021). We make use of an
ensemble of CMIP6 models with a range of AMOC strengths (Fig 5). We find
that there is a good agreement between the strengths of the SFWMT north
of 45°N and the AMOC overturning in density space across 45°N, where that
diagnostic is available, and also a significant correlation between the strength
of the SFWMT north of 45°N and the overturning in depth space at 26.5°N.

The SFWMT are shown in Fig 6. These show qualitatively the same
behaviour as in the HadGEM3-GC3-1 models, with the overturning peak in
SPG being at a lighter level than that in IIS, and with the peak in GIN being
at the densest level. At the density of largest total SEWMT (where the total
strength is measured), the IIS SWMT has an important contribution to the
total for all models, however SPG and GIN also have large contributions. The
SFWMT contribution to the overturning across OSE is stronger than that
across OSW in all models. The overturning in the LS has a large range of
magnitudes: in most models this is small (1-5 Sv), however in three models
(ACCESS-CM2, EC-Earth3-Veg, CanESM5) there is no dense SFWMT in the
LS, and in one model (NorESM2-MM) there is overly strong SEWMT in the
LS.
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Fig 7 compares the SFWMT in the CMIP6 models with various obser-
vational estimates. Black lines show SFWMT estimated from observational
products from 39 years of data, while symbols show reported estimates from
observations of the overturning itself and of the SFWMT from previous
studies. In general there is a good agreement between the models and obser-
vations, particularly in the GIN and IIS regions. In the SPG there is good
agreement of most models, though there is only the one observational esti-
mate (black line). The SPG SFWMT is very weak in two models, CanESM5
and HadGEM3-GC3-1LL, with the latter having a known cold bias in the
SPG which reduces heat loss and SFWMT (Jackson et al, 2020). In the LS
observations have a range of 1.2-3.4 Sv. Most models agree with a small LS
overturning, though NorESM2-MM has a strong SFWMT and three models
have very little SFWMT. For overturning across sections rather than in regions,
overturning across OSW is the same as in the LS by definition. For OSE there
is a large range of observational values, though this is not seen in the SEFWMT
of individual regions feeding into OSE (IIS and GIN). The total transports
across 45°N are often stronger in models than the observations, however this
is not clearly the case in any individual region. We note that observations can
differ because of different methodologies and different time periods. This leads
to uncertainties about the values of long term mean strengths. Although some
differences could be caused by neglecting mixing when calculating SEFWMT in
the models and in some observations, there is no clear difference in observed
values of SFWMT compared to velocity-based estimates.

There are many processes in the LS and wider western subpolar North
Atlantic (SPNA), that can affect the water mass transformation there, and
hence the overturning. Heat loss causes WMT, so the greater the transport

into the region of warm, saline subtropical waters, the greater the potential
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for heat loss and WMT (Jackson et al, 2020). Transport of cold, fresh polar
waters via the east and west Greenland boundary currents, and the mixing of
boundary and interior waters (Tagklis et al, 2020) can also affect the surface
densities and hence the stratification and heat loss. Sea ice could also have an
important role in restricting heat exchange between the ocean and atmosphere
in winter, and through freshwater fluxes from freezing and melting that have
a local effect on the stratification and thus on SFWMT (Langehaug et al,
2012; Kostov et al, 2019; Wu et al, 2021). Also subsurface properties could
affect SFWMT through changing stratification, and hence deep convection.
This paper does not aim to fully understand the controls on the SFWMT,
however can provide some information on the relationships.

Jackson et al (2020) suggested that the amount of subtropical waters reach-
ing the western SPNA affects the SEFWMT occurring there. Salinity is a better
indicator of this water mass, since heat loss to the atmosphere modifies the sur-
face temperature. We see correlations across the models of maximum SEFWMT
in the LS and IIS with LS (50-60°N, 45-55°W) salinity (Fig 8a,b) and temper-
ature (not shown). Since the LS SFWMT is also correlated with the salinity
in the IIS (upstream of the LS, not shown), this suggests that the relationship
is not caused by local effects on salinity (such as convection) in the LS. Those
models with warm, salty waters in the IIS and LS have stronger SEFWMT
there and those with cold, fresh waters have weak SFWMT (with the freshest
models having no SEFWMT in the LS).

Fig 8c-f show relationships between the SFWMT in the LS and IIS and
both March sea ice extent and March mixed layer depth (MLD; a proxy for
deep convection). The correlations are only significant for the SFWMT in the
I1S, since NorESM2-MM is an outlier in both for the LS. This suggests that ice

extent and MLD are not directly influencing the SFWMT in the LS. They may
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influence the SFWMT in combination with other processes, or may simply be
responding to other factors, for example the differences in temperature and
salinity. These results, in combination with the strong correlation between LS
SFWMT and IIS salinity (upstream of the LS), suggest that the drivers of
differences in LS SFWMT are not processes local to the LS.

Using observational constraints on SEFWMT, salinity and sea-ice suggest
that those models with moderate-stronger LS SFWMT and IIS SEFWMT have
the best agreement with observations. However, March MLD is overestimated
in nearly all the models. This shows that models can have good agreements
of the SFWMT, salinity and ice extent with observations, but have much too

deep a mixed layer.

4 Decadal AMOC variability

4.1 HadGEM3-GC3-1 Overturning

Although the overturning strength is often measured as the maximum over-
turning in density (or depth) space, it should be noted that the density class
where the overturning is strongest differs substantially between sections and
regions (Fig 3). One method for measuring contributions to the variability of
the AMOC at 45°N is to use a fixed density level for all regions (chosen to
be the density where the AMOC at 45°N is maximum). In LL the maximum
of the mean overturning is at 1027.58 kg/m? and in MM at 1027.63 kg/m?,
with the density of maximum overturning varying little between decades (up
to 0.04 kg/m?). The AMOC strength at 45°N and at this density is defined as
m45, with both models showing multidecadal variability (Fig 2¢). One advan-
tage of using a fixed density level is that we can make use of Eq 1 to quantify
the contributions of different regions to the AMOC timeseries at 45°N. Fig 9

shows regressions (bar lengths) and correlations (numbers) of m45 with the
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timeseries at the various sections and regions in MM and LL. Note that since
M pram is not included, the regressions do not quite sum to one. In both mod-
els the strongest correlations and regressions are with the transport across
OSE and the convergence in IIS. For LL there are also significant contributions
to decadal variability from LS, and in MM there are significant contributions
from the SPG.

Although using a fixed density level helps us to quantify contributions from
different components, mixing could shift the density class of a signal between
different regions. Hence, a greater understanding is achieved through looking
at correlations and regressions of overturning profiles with m45. These are
shown in the upper two rows of Fig 10. At the density of maximum overturn-
ing (dashed grey lines), the regressions are the same values as shown in Fig
9, showing strongest regressions with IIS. At denser levels we see significant
relationships of the m45 with the overturning in other regions: in LL there is
a significant relationship (though regression coefficients are relatively small)
with the convergence in the GIN seas; in MM there are strong correlations and

regression with the overturning in the LS.

4.2 HadGEM3-GC3-1 SFWMT

Understanding the roles of surface flux driven transformation in overturn-
ing variability is useful for understanding mechanisms. We may also be able
to understand better whether the SFWMT is a reliable indicator of actual
overturning variability. Table 1. shows regressions of decadal timeseries of
overturning convergences within each region against timeseries of the implied
overturning from SFWMT. Timeseries are calculated using the maximum in
density space, to allow for potential shifts of the profile in density space from

mixing, and correlations are strongest at zero lag. For most regions the implied
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overturning from SFWMT is a good indicator of actual overturning variability
on decadal timescales, with significant correlations and regression coefficients
near 1. In most of these regions the regression coeflicient is slightly smaller
than 1 implying that the magnitude of overturning variability is smaller than
that of SFWMT. The exception to this result is the GIN seas, where the over-
turning variability is half that of the SFWMT in LL, while in MM they are
not significantly correlated. This could be because the formation and export of
water masses in the GIN seas are not in balance on decadal timescales (lead-
ing to the storage of density anomalies in the GIN seas), because some water
masses formed in the GIN seas are exported northwards into the Arctic, or
because mixing has a large role in modifying variability in the GIN seas. The
weaker relationship between overturning and SEFWMT in GIN affects that in
the sum of the regions (TOT), with higher regression coefficients found when
excluding the GIN region (TOT-GIN).

As well as examining the relationships between SEFWMT and overturning
convergences in each region, we can also examine how the SFWMT in each
region is related to the total overturning across 45°N. Fig 10e and f shows
regressions of the SFWMT with m45. There are many similarities with the
regressions with the overturning convergences (Fig 10c and d), but also some
differences. There is good qualitative agreement around and above the density
of the maximum AMOC (around 1027.6 kg/m3). At denser levels (around
1027.75 kg/m?), the total SFWMT is much stronger in LL than the actual
overturning, suggesting that variability from the WMT by surface fluxes is
damped, possibly by mixing. This peak in total SFWMT has contributions
from the SPG (particularly in LL), which likely occurs near the Labrador Sea,
but south-east of OSW, since there is a similar signal in the SFWMT in the

LS. The strong relationship with the SFWMT in the SPG at this density is
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not seen in the actual overturning, suggesting that it is obscured by mixing,
or possibly by longer residency times than a decade. In the LS there are also
differences in MM, with the actual convergence showing a double peak in
the regression coefficient, whereas the SEFWMT only has one peak. Again we
hypothesise that the upper peak is driven by mixing.

In the GIN seas there is a strong relationship between SFWMT and m45
at densities higher than 1027.8 kg/m?, resulting in regression coefficients of
0.5-0.6 (Fig 10e and f). This implies that for every 1 Sv of variability in m45
there is 0.5-0.6 Sv of variability of the SFWMT in the GIN seas. However,
this only translates into 0.1-0.2 Sv of overturning across the Sills (Fig 10a and
b). In MM there also is little actual convergence (Fig 10d), so the SFWMT
variability is dissipated by mixing or the residency time in the GIN seas. The
small regression values for transports over the Sills suggest that variability of
GIN seas overturning cannot have a substantial impact on the overturning at
45N. Tt is possible that the correlations are caused by co-varying surface fluxes,
or that overturning variability south of the Sills affects the transport of lighter,
warmer waters into the GIN seas, and that this affects the transformation

there.

4.3 CMIP6

The CMIP6 models exhibit variability of various timescales and magnitudes
(Fig 5b). Since previous studies (Grist et al, 2009, 2012; Megann et al, 2021),
and the previous analysis of LL and MM, have shown good agreement between
total SEFWMT and AMOC timeseries on decadal timescales and longer, we
limit our analysis to the variability of decadal mean SEFWMT which will inform
us about multidecadal variability. For those CMIP6 models where the AMOC

in density space is available (Fig 5), we find significant correlations in all models
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between decadal means of the AMOC in density space at 45°N and the total
SFWMT north of 45°N, either including or not including the GIN seas region
(since SEWMT formed here may not be exported across the sills).

The standard deviations of decadal mean SFWMT are shown in Fig 11,
and show large variability (>1Sv) in all models in SPG, IIS and GIN. However,
there are large intermodel differences in the magnitude of variability in the
LS, with some models showing large variability and others showing very little
variability. The standard deviation is correlated to the mean LS SFWMT (not
shown), with models with weak mean SFWMT having very little variability
and models with strong mean SFWMT having larger variability. If variability
in each region was independent and uncorrelated then the sum of variability
(black dashed line; calculated as the square root of the sum of individual vari-
ances) would be the same as the total (black line). For some models and density
classes the sum is larger than the total, implying positive correlations between
the components, and in some it is smaller, implying negative correlations.

Since we only have the actual overturning in density space from a few
models, we cannot calculate regressions of SFWMT with m45, as done for
HadGEM3-GC3-1LL and MM in Fig 10. Instead we calculate regressions of
SFWMT with the AMOC at 26°N in depth space (m26z; Fig 12). We note
that comparison of regressions with m26z, with the AMOC at 45°N in depth
space (m45z) and m45 (where available), mostly show the same relationships,
apart from MRI-ESM2-0 and ACCESS-CM2, where differences in responses
are within the range of the ensemble (not shown).

All models show significant regressions with SEFWMT in the GIN seas (pur-
ple lines for GIN are overlain by black lines for TOT in many cases), however
we note that in LL and MM the resulting transport across the Sills associated

with m45 (measured by the regression coefficent) is small. Although we do not
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have the overturning across the Sills section for all the models, we do have
the overturning in density space across 67°N (which is close to the Denmark
Strait) for three other CMIP6 models. In ACCESS-CM2 there is a significant
correlation with m45, with a regression coefficient of 0.4 (40% of the regres-
sion coefficient for SFWMT); in NorESM2-MM the correlation is significant,
but with a small regression coefficient of 0.1; and in MRI-ESM2-0 the corre-
lation is not significant (not shown). Hence, the GIN seas might have a larger
role in some models, for instance in ACCESS-CM2 a 1 Sv change in m45 is
associated with 1 Sv change in GIN SFWMT and 0.4 Sv change in the over-
turning across the Denmark Strait. However, in all models the variability of
transports across the sills associated with m45 is less than half of, and in some
cases much smaller than, the variability of GIN SFWMT.

If this is true for the remaining models, then the variability of SFWMT in
the GIN seas would not contribute to the AMOC variability further south. All
models show significant correlations of m26z with SFWMT in lighter waters
of the SPG, and most models show significant correlations with SFWMT in
IIS and/or LS in denser water classes. Although most of the relationships are
the same or less significant if considering m26z lagging by 10 years, in two
models (MPI-ESM1-2-LR and MRI-ESM2-0), there is a significant correlation
of m26z with the SFWMT in the LS in the previous decade, rather than
instantaneously (Fig 13).

The regressions of LS SFWMT with m26z vary a lot between models. In the
three models with weak mean SEFWMT in the LS (ACCESS-CM2, EC-Earth3-
Veg, CanESM5), there is no correlation with denser LS SFWMT because there
is little variability. If we order the models from the model with weakest LS
SFWMT to strongest (Fig 13) we can see this is part of a pattern: models with

a stronger mean LS SFWMT have stronger regressions of LS SEFWMT against
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m26z and the largest regressions generally occur at denser levels. Those models
with the best agreements with observations of mean LS overturning (IPSL-
CM6A-LR, HadGEM3-GC3-1LL, MPI-ESM1-2-LR, CNRM-CM6-1) suggest
overturning changes of ~0.5 Sv in the LS overturning for 1 Sv of overturning
at m26z. However, these relationships are mostly at denser levels than the
maximum of the overturning and it is unclear how much they are driving
variability of the AMOC at 45 or 26°N.

Although there are relationships between the mean state and variability of
overturning in the LS, there are no clear relationships in other regions. Details
of regression patterns vary a lot between models (Fig 12), possibly because
variability in these models differs in terms of the location of the drivers and/or

the importance of mixing.

5 Conclusions

This study has examined which regions contribute to the time mean and
multi-decadal variability of the AMOC, and how much of the overturning is
related to water mass changes driven by surface fluxes. In analysis of two
models (HadGEM3-GC3-1LL and HadGEM3-GC3-1MM) it is found that the
overturning reconstructed from surface flux driven water mass transformation
(SFWMT) is a good indicator of the mean strength of the actual overturning.
Mixing modifies densities and can shift the overturning profiles, but does not
have significant impact on the maximum overturning strength.

For multidecadal variability, SFWMT is a good indicator of overturning
variability (significantly correlated with regression coefficients similar to 1) in
all regions except GIN. However, some details, such as the double peak in LS
profiles, are not captured by SFWMT, suggesting mixing may play a role. In

the GIN seas, although there is strong variability of SEFEWMT associated with
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the AMOC, the associated variability in the waters exported across the Sills
is found to be much smaller than suggested by the SFWMT. This suggests
that the water masses formed are not in balance with those exported south
on decadal timescales, so anomalies are either modified by mixing within the
GIN seas, or remain in the GIN seas.

In all the models examined here the mean overturning across OSE is
stronger than that across OSW, in agreement with observations. These results
also agree with observational findings that the IIS is a major contributor to
the mean overturning, although SPG and GIN also have large contributions in
some models. The overturning in the mean state in the LS is mostly found to
be small. Despite many similarities between the mean states of models, rela-
tionships of multidecadal variability in SFWMT in different regions and the
AMOC at 26°N are very diverse.

Although the mean overturning in the LS is mostly found to be small,
strong relationships are found across models, with those models with the fresh-
est LS having the weakest LS overturning and the smallest variability. Those
models with a more saline LS have stronger LS SFWMT and larger regression
coefficients between the LS SFWMT and the AMOC further south at 26.5°N,
possibly indicating stronger causal relationships between variability of the LS
SEWMT and the AMOC at 26.5°N.

These results suggest that many of the models examined compare well
to observations of overturning, despite previous arguments that many ocean
and climate models have too strong an emphasis on the Labrador Sea. In
fact, we find here that only one model has an overly strong LS overturning
while three have too weak an overturning. However, although this may provide
some reassurance as to the validity of these models, there are still issues with

the representation of processes such as mixing in overflows, eddy mixing and
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restratification that could have a detrimental impact on the representation of
the AMOC (Fox-Kemper et al, 2019). In particular, it should be noted that
none of these climate models have sufficient horizontal resolution to resolve
eddies at subpolar latitudes or to resolve narrow boundary currents, which
could impact their abilities to represent water mass transformation. Also it is
possible that different models (for example with different mixing parameterisa-
tions) might have stronger contributions to the overturning from mixing, and
hence might have less strong relationships between overturning and SFWMT.

The relationships found here between the overturning in the LS and the
salinity there have implications for model development, providing motivations
for the reduction of biases. These results also suggest that locations driving
variability, and potentially the mechanisms involved, could also be affected by
the model mean state. Hence, to understand mechanisms of variability, biases

in the mean state should be considered.
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Table 1 Regression coefficients (correlations in brackets) for regressions of decadal
timeseries of maximum overturning convergences with implied timeseries from SFWMT in
models LL and MM.

Region LL MM

SPG 0.85 (0.66) 0.91 (0.79)
LS 0.88 (0.63) 0.71 (0.55)
IIS 0.93 (0.90) 1.05 (0.76)
GIN 0.54 (0.46) 0.05 (0.07)
TOT 0.88 (0.49) 0.43 (0.37)
TOT-GIN  1.15 (0.88) 0.79 (0.64)
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Fig. 1 Locations of sections (top) and regions (bottom). Colours indicate the different
sections and regions (see legends).
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Fig. 2 Time mean overturning in density space in LL (top left) and MM (top right). Bottom
panel shows timeseries of decadal mean m45 (maximum in density space of the AMOC at
45°N.) Overturning is calculated using monthly mean fields.
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a) Overturning LL b) Overturning MM
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Fig. 3 Overturning across sections (top panels), overturning convergences in regions
between sections (middle panels) and SEFWMT in regions (bottom panels). Shown are results
for LL (left) and MM (right).
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Fig. 4 Volume transport convergences (top panels) and water mass formation (bottom pan-
els) in regions for LL (left) and MM (right). All are totals in density bins of size 0.04kg/m?.
Positive (negative) values show southwards (northwards) transports in the upper panels,
and formation (destruction) of water masses in the bottom panels.
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Fig. 5 AMOC in CMIP6 models. a) Time-mean profiles of AMOC at 26°N in depth space.
b) Maximum of decadal mean AMOC at 26°N in depth space. c) Scatter plot of AMOC at
26°N in depth space against the SFWMT north of 45°N (F45). d) As ¢ but for the AMOC
at 45°N in density space. The black line is y=x.
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Fig. 6 SFWMT for CMIP6 models. Regions are indicated by the colours (see legend) and
panels show different models.



North Atlantic overturning and water mass transformation in CMIP6 models

Springer Nature 2021 BTEX template

OSE LS/OSwW
25.0 25.0
HadGEM3-GC3-1MM
HadGEM3-GC3-1LL
2551 255 ACCESS-CM2
CNRM-CM6-1
i EC-Earth3-Veg
s 260 260 MPI-ESM1-2-LR
8 MRI-ESM2-0
7 2654 26.5 CanESM5
T NorESM2-MM
S IPSL-CM6A-LR
< 27.01 27.0 NCEP/EN4
2
S
S
27.54 275
28.0 —GB— 28.0
285 - - - 285 - -
-5 5 10 15 -5 5 10
s
25.0 7 25.0
Obs: overturning
Obs: SFWMT
25.5 255 25.5 Petit
Chafik+Rossby
26.0 26.0 26.0 Marsh
5 Desbruyeres
8 Sarafanov
7 26,54 26.5 26.5 Osterhus
b Pickart+Spall
£ Li
< 27.0 27.0 27.0
2
S
3
275 275 27.5
28.0 28.0 —e— 28.0
—_——
28.5 285 L - - - 28.5 - -
-5 0o 5 10 15 -5 15 20 25

Fig. 7 Comparison of CMIP6 profiles (colored lines, top legend) with SFWMT calculated
from observed surface fluxes and densities (black lines, see section 2.3). Coloured circles
show the maxima of the profiles. Symbols show magnitudes of overturning from previous
literature with estimates of overturning from velocities in grey and estimates from SFWMT
in black (bottom legend). Uncertainty (where given) is shown with horizontal lines, and the
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Fig. 8 Scatter plots comparing the mean SFWMT in (a,c,e) the LS and (b,d,f) the IIS
with (a,b) sea surface salinity in the Labrador sea region (50-60°N, 45-55°W), (c,d) March
sea ice extent (area over 50-65°N, 10-60°W), and (e,f) March mixed layer depth (maximum
over 50-65°N, 10-60°W). Symbols show values from CMIP6 models (see legends). Grey hori-
zontal bars show observational estimates of SFWMT, based on observations shown in Fig 7,
not including uncertainties in individual estimates. Vertical dotted lines show observational
estimate of LS surface salinity, March sea ice extent and March MLD (see section 2.4)
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Fig. 9 Correlations (numbers) and regressions (bar lengths) of the m45 timeseries (AMOC
at 45°N and 1027.6 kg/m? density) with the overturning across sections, or convergence of
overturning in regions, measured at 1027.6 kg/m> density. Left bars are from LL and right

for MM.
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Fig. 10 Regressions of the m45 timeseries (AMOC at 45°N and 1027.6 kg/m3 density)
with the overturning across sections at different densities (upper panels), the convergence
of overturning in regions (middle panels), and the SFWMT in regions (lower panels). LL
is shown in the left panels and MM in the right panels. Dotted lines indicate where the
regressions are deemed not significant (P<0.05), and the horizontal grey dashed lines show
the density of the AMOC maximum at 45°N.
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Fig. 12 Regressions of m26z timeseries with the SFWMT in different regions for different
models. Dotted lines indicate where the regressions are deemed not significant (P<0.05). In
all panels the TOT line (black) overlays the GIN line (purple) at the densest levels.
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Fig. 13 Regressions of m26z timeseries with the SFWMT in LS. Black lines show instan-
taneous regressions and blue lines show regressions where m26z lags SFWMT by 10 years.
Dotted lines indicate where the regressions are deemed not significant (P<0.05). Panels are
ordered going from models with the weakest mean LS SFWMT (top left) to models with
the strongest (bottom right).
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