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Abstract

Two new hybrid iodobismuthates, [CgH,;N,][C,oH,,N,][Bilg] (1) and [C4H,N, ], s[C1oHp,N, 15 5[Bisl o1[Bislg] (2), have
been prepared by solvothermal synthesis in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) and ethanol. Both
compounds have been characterized by single-crystal and powder X-ray diffraction, infrared and UV—Vis spectroscopies and
thermogravimetric analysis. Structure determination reveals that the crystal structure of 1 contains mononuclear [BiI6]3_ ani-
ons, whilst 2 contains an unusual combination of dinuclear anions, [Bi,Io]*~ and [Bi,],,]*", consisting of two edge- and two
face-sharing [Bil¢]*~ octahedra, respectively. Mono- and diethylated derivatives of DABCO, which are formed in situ under
solvothermal conditions, act as countercations and are located between the discrete anions. The optical band gaps of 1 and
2, which are 2.29(1) and 2.03(2) eV respectively, are consistent with the red color of these compounds, and are comparable
to the band gaps measured for other iodobismuthates containing discrete anions.

Graphical Abstract
Two new iodobismuthates, [CgH 7N, ][C,H,,N,1[Bilg] (1) and [C¢H 5N, ] 5[CoHsoN5 15 5IBisl 0l[Bislg] (2), have been syn-
thesized under solvothermal conditions, and their crystal structures determined by single-crystal X-ray diffraction.
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Scheme 1 Chemical structure diagram of (a) [CgH,;N,]1[C,,H,,N,1[Bilg] (1) and (b) [C¢H,N, 1 5[CoH2oN, 15 5[Biy I 1[BisIo] (2)

Introduction

As an important class of low-dimensional hybrid materi-
als, organic—inorganic halides of the type R, M, X, (where
R is a protonated amine, M is a main-group metal and X
is a halide) have attracted considerable interest, due to
their structural diversity and optical and electronic prop-
erties [1, 2]. This class of materials is exemplified by the
lead perovskite MAPbI; (where MA = CH;NH,"). MAPbI,
has been found to be a remarkable photovoltaic material
[3-5], which when used in single-junction solar cells has
a conversion efficiency of 25% [6], comparable to those
of commercial silicon-based solar cells. Given the lower
toxicity of bismuth when compared to that of its neigh-
bors in the periodic table [7], bismuth-based organic—inor-
ganic halides, which show better stability under ambient
atmosphere than lead perovskites, are attracting interest
as environmentally friendly materials for optoelectronic
applications [8—10].

In hybrid iodobismuthates, the Bi** cation usually
adopts a distorted octahedral coordination, with Bilg octa-
hedra linked by vertex-, edge- or face-sharing into poly-
nuclear anions [11-16]. A variety of polymeric, discrete
polynuclear and mononuclear anionic units have been
described previously [17]. The structures of the iodobis-
muthate anions formed are dependent on the size and shape
of the organic countercations, as well as the synthetic con-
ditions used [18, 19]. Protonated 1,4-diazabicyclo[2.2.2]
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octane (DABCO) and its N-substituted derivatives have
been found to act as countercations in a number of iodobis-
muthates, as exemplified by [C4H 4N, ],[BisI;¢]-2H,0 [20]
and [Et,DABCO],[Bi,l,(] (where [EtzDABCO]2+ =N,N'-
diethyl-1,4-diazabicyclo[2.2.2]octane) [21]. Most
DABCO-containing iodobismuthates have been pre-
pared solvothermally, in the presence of hydroiodic acid,
and consist of discrete anions, including mononuclear
[Bil]*~ [22], dimeric [Bi,lo]*~ and [Bi,l,,]*" [21, 23],
and tetrameric [Bi4116]4_ units [20]. When [Me,DABCO]
I, is used as a reagent (where [MezDABCO]zJr =N,N'-
dimethyl-1,4-diazabicyclo[2.2.2] octane), one-dimensional
chains with stoichiometry [B12110]4_ are produced [21]. We
have recently shown that, in the absence of hydroiodic acid
in solvothermal reactions, DABCO can also act as a linker,
as exemplified by (C¢H,N,)Bil;, in which pairs of edge-
sharing bismuth octahedra are linked by DABCO ligands
into hybrid ribbons [24].

Here, we describe the solvothermal synthesis and char-
acterization of two new hybrid iodobismuthates containing
N-substituted DABCO (Scheme 1). [CgH ;N,][C, H,,N,]
[Bil¢] (1) contains mononuclear [Bil6]3_ anions, while
[CsH N, 1o 5[CgHpuN, 15 5[Biy] o1[Biylg] (2) contains an
unusual combination of dinuclear anions, [Bi,ly]*~ and
[Bi,I,]*".
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Experimental Section

All compounds were synthesized in 23 mL Teflon-lined
stainless-steel autoclaves. Ethanol (>99.8%), Bil; (99%),
Agl (99.9%), KI (=99%), and DABCO (>99%) were
obtained from Sigma-Aldrich. For each reaction, the rea-
gents were loaded into the Teflon liner and stirred for
approximately 10 min, prior to the reaction vessel being
sealed into the autoclave and heated. The heating and cool-
ing rates were 0.83 °C min~!. After cooling to room tem-
perature, the products were collected by vacuum filtration
and washed with ethanol and deionized water.

Synthesis of [CgH,,N,1[C,oH,,N,1[Bil] (1)

Bil; (0.5860 g, 1 mmol), KI (0.1677 g, 1 mmol), DABCO
(0.1401 g, 1.25 mmol) and ethanol (10 mL) were heated in
the sealed autoclave at 170 °C for 5 days. The solid prod-
uct consisted of a small amount of a dark powder, identi-
fied by powder X-ray diffraction as bismuth metal, and red
crystals of 1. Elemental analysis of hand-picked crystals of
1: C=16.95%, H=2.95%, N=4.39%; calc for [CgH;N,]
[CoHN,][Bilg]: C=16.84%, H=3.04%, N=4.36%.

Synthesis of [C,H,,N, ], 5IC;oHy,N,1; 5[Biyl;ol[Biylo] (2)

Initially, this compound was prepared by heating Bil;
(0.5913 g, 1 mmol), Agl (0.2390 g, 1 mmol), KI (0.3365 g,
2 mmol), DABCO (0.1225 g, 1 mmol) and ethanol (10 mL)
at 170 °C for 5 days. The solid product consisted of red nee-
dles of 2, bismuth powder, and a small amount of an uniden-
tified impurity in the form of red blocks. Subsequently, com-
pound 2 was prepared in the absence of Agl, using a reaction
mixture with a molar ratio of 1:1.75:0.75 of Bi:KI:DABCO,
heated at 170 °C for 5 days. Elemental analysis of hand-
picked crystals of 2: C=12.52%, H=2.16%, N=3.06%; calc
for [C¢H 5N, 1) 5[CoHpoNs 15 5[Biyl ol[Bislgl: C=11.71%,
H=2.15%, N=2.87%.

Single-Crystal X-ray Diffraction

Single-crystal X-ray diffraction data (Table 1) were collected
using Mo Ka radiation (A=0.71073 A) using an Agilent
Gemini S Ultra diffractometer for 1 and a Rigaku XtaLAB
Synergy diffractometer for 2. Preliminary data for the impu-
rity present in the bulk sample of compound 2 were collected
at the UK National Crystallography Service (Southampton,
UK) [25] using a Rigaku XtalLAB Diffractometer with an
AFC12 goniometer and a rotating anode Mo source. Data
reduction was carried out in each case using CrysAlisPro
[26]. The structures were solved using Superflip [27] and

Table 1 Crystallographic data for compounds 1 and 2

Compound 1 2

Crystallographic formula C,gH3oN,Bilg Cy3HppN;Biglyg

Mr 1281.94 3814.09
Crystal habit Red block Red needle
Crystal system Cubic Monoclinic
T/K 150 100

Space group P23 P2/

alA 14.9269(3) 8.95779(1)
bIA 14.9269(3) 40.19181(2)
/A 14.9269(3) 22.98174(2)
al® 90 90

pl° 90 93.166(2)
y/° 90 90

Cell volume/A® 3325.92) 8261.483(19)
z 4 4

Pealg €M™ 2.560 3.066

Ry 0.0431 0.0546

R* (I>3.06(1)) 0.0412 0.0322

Rw” 0.0420 0.0263

GoF 1.339 0.8620

AR(F) = N (IF | —IF )/ YIF,|
SR (F) = [Xw(F,| —IF ) Y wiF |4

refined against F using the program CRYSTALS [28]. The
crystal of 1, solved in space group P2,3, was found to be an
inversion twin with a Flack parameter of 0.48(2). Although
Platon/ADDSYM suggests Pa3 as a possible space group
for 1, refinements in this space group were not successful.
The crystal structure in this space group contains only a
single DABCO moiety and attached ethyl groups could not
be modelled satisfactorily. As described below, two distinct
DABCO moieties, with one and two ethyl groups attached,
are identified in the final structure in P2,3 and are necessary
in order to achieve charge balance.

Data for compound 2 were treated with SQUEEZE [29]
to correct for the effects of disordered organic cations.
SQUEEZE found a total void volume of 423 A per unit cell,
which contained 45 electrons. This is consistent with the
presence of half a [EtzDABCO]zJr moiety per unit cell (48
electrons).

Characterization

Powder X-ray diffraction patterns were collected at room
temperature for the as-synthesized materials and for finely-
ground hand-picked crystals of 1 and 2 using a Bruker D8
Advance powder X-ray diffractometer (Cu K, radiation,
A=1.5406 10%). Pawley refinements were performed within
Topas [30] in order to confirm the identity of the crystals
formed in the two reactions.

@ Springer
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Additional characterization measurements were carried
out on ground hand-picked crystals of 1 and 2. Thermogravi-
metric Analysis (TGA) was performed on a TA-TGA Q50
instrument, operating under a flowing nitrogen atmosphere.
Data were collected from room temperature to 650 °C, at a
rate of 10 °C/min. UV-Vis diffuse reflectance data were col-
lected using a Perkin Elmer Lambda 35 UV-Vis spectrom-
eter equipped with an integrating sphere and using BaSO,
as a standard. The absorption data were calculated using the
Kubelka—Munk function [31]. Fourier Transform infrared
spectra were collected using a Perkin Elmer Spectrum 100
FT-IR spectrometer. Elemental analysis was carried out by
MEDAC LTD.

Results and Discussion

Analysis of the powder X-ray diffraction data for the as-
synthesized products of the reactions described above indi-
cates that, in addition to compounds 1 and 2, bismuth metal
is always present (Supplementary Information), indicating
that these reactions involve redox processes. In the case of
the reaction producing 2, the solid product also contained a
small amount of an unidentified impurity. Preliminary sin-
gle-crystal diffraction data collected on this impurity indi-
cates that it crystallises in the space group P 2,/c, with lat-
tice parameters a=9.0406(1), b=16.0735(2), c=34.1517(6)
A and $=92.1522(13)°. Attempts to produce larger amounts
of this impurity, to enable its full characterization, have so
far been unsuccessful.

As illustrated in Fig. 1, there is good agreement between
the experimental and calculated powder X-ray patterns,
based on the structures determined for these compounds

(@

Intensity/a.u

Intensity/a.u.

5 10 15 20 25 30 35 40 45 50
20/°

using single-crystal X-ray diffraction. The lattice parame-
ters determined from the powder diffraction data agree well
with those determined by single-crystal diffraction (Supple-
mentary Information). FTIR data collected on handpicked
crystals of 1 and 2 (Supplementary Information) are in good
agreement with previous literature reports for DABCO [32,
33], confirming its presence in the products. At high wave-
numbers, the absorption centered at around 2900 cm™! is
assignable to CH, stretches, while bands at 1300-1500 cm™!
can be associated with the CH, deformation (8) and CH,
deformation (t-w) modes.

Crystal Structure of [CgH,,;N,][C,,H,,N,I[Bilg] (1)

The asymmetric unit of 1 (Supplementary Information) con-
tains one third of a [BiI6]3_ octahedron, and one third of two
N-substituted DABCO cations. Although the reagents used
were DABCO and ethanol, an alkylation reaction has taken
place under the solvothermal conditions, and the product
of this reaction contains ethylated DABCO cations. In-situ
alkylation reactions have been previously observed in sol-
vothermal reactions involving amines and alcohols [24, 34].
In the cubic crystal structure of 1, the [BiI(,]3_ anions and
the DABCO moieties are located on crystallographic three-
fold axes, while the ethyl chains on the DABCO moieties
are disordered around the threefold axes. Charge balancing
considerations require the presence of one [EtDABCO]* and
one [EtzDABCO]2+ cation per formula unit, and the elemen-
tal analysis is in excellent agreement with the proposed for-
mula, [Et,DABCOJ**[EtDABCO]*[Bil¢]*~.

In the distorted [Bi16]3_ octahedron found in 1, the Bi-I
bond distances are 3.040(2) and 3.121(2) A. The I-Bi-I
angles range between 88.52(5) and 92.62(7)°, a small but

(b)

5 10 15 20 25 30 35 40 45 50
20/°

Fig. 1 Experimental powder X-ray diffraction patterns (red line) collected for handpicked crystals from the reactions producing (a) 1 and (b) 2.
The patterns calculated using the structures determined by single-crystal X-ray diffraction are shown in black (Color figure online)
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significant deviation from ideal octahedral geometry. The
mononuclear [BiI6]3‘ anion is relatively rare when com-
pared with discrete polynuclear anions [17, 18]. Similar
octahedral [Bil]*>~ anions have been previously found
in [C(NH,);15[Bilg] [35], [CH;CH,NH,]5[Bil] [36],
[TTF],[Bilg] (where TTF = tetrathiafulvalene) [37] and
[Et,DABCO];[Bilg], [22], while [H;N-R-NH;],[15][Bil¢]
[38, 39] and [C4H,3N],[1;][Bilg] [40] contain two types
of anions; namely [B116]3_ units and triiodide, 15”7, ions.

In the crystal structure of 1 (Fig. 2a), each
[BiI6]3_ anion is surrounded by eight [EtzDABCO]2+
cations. Figure 2b shows a slice of the crystal structure,
parallel to the (010) planes, in which each [Bil4]*~ anion
is surrounded by two diethylated and two monoeth-
ylated DABCO cations in the same plane. Two addi-
tional ethylated DABCO cations are located above each
[BiI6]3' anion, and two below. There are no short I---1
distances (below the van der Waals’ radii for two iodine
atoms, 3.96 A) [41], between the [BiI6]3_ anions. Instead,
there are a number of short C—H---I contacts (Supplemen-
tary Information), which are likely to contribute to the
stabilization of this crystal structure.

Fig.2 (a) Polyhedral view of the crystal structure of [CgH;;N,]
[C;oH2N,1[Bilg] (1). The unit cell is shown. Only one orientation of
the disordered ethyl chains is shown. (b) Polyhedral view of one slice
of 1, parallel to the (010) planes. Hydrogen atoms have been omit-

Crystal Structure of [C;H,,N,], 5[C;,H,,N,]; 5[Bi,l;,]
[Bi,lo] (2)

Compound 2, [CsH},N;]o5[C1gH,No 15 5[Bislyol[BisLol,
which crystallizes in the monoclinic space group P2,/c,
contains two types of dimeric anions, [Bi,ly]’>~ and
[B12110]4‘ (Fig. 3a). The coexistence of two types of dimeric
anions in the structure of iodobismuthates is quite unusual,
with only one previous example containing [Bi,lg]*>~ and
[BiyI,o]*, IMVIs[Bi,l,(l[Bi,ly], (where MV** =methyl
viologen) [42], reported to date. The [B1219]3_ and
[Bi,I,,]*~ anions are formed by two [Bil4]*~ octahedra which
share a face or an edge, respectively (Fig. 3a). In [Bi,ly]*",
the two Bi** cations are bridged by three iodides, with
each Bi** cation additionally coordinated by three terminal
iodides. The Bi-I bond lengths lie between 2.9619(4) and
3.2190(4) A, with the Bi-I distances for the bridging p,-
I” anions being significantly longer than those for the termi-
nal iodides. These distances are comparable to those found in
other iodobismuthates containing [Bi,l,]*~ dimers, including
[CoH,;N,15[Bi,lo] [43] and [Me,DABCO],[Bil4l,[Bi,lo],-21,
[23]. In the [Bi,I,,]*~ dimers, which contain two bridging

,-17, the Bi-I bond distances vary between 2.9515(4) and
3.2597(4) A while the I-Bi-I angles range from 80.401(9)°
to 99.599(9)°. These values are similar to those found in

(b)

0 0 “
PN
4.

a

9]

ted for clarity. Key: bismuth, large red spheres; iodine, large purple
spheres; carbon, small black spheres; nitrogen, small blue spheres;
bismuth centered-octahedra are shown in red (Color figure online)
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Fig. 3 (a) The [Bi,l,]*~ (upper)
and [Bi,I;,]*" (lower) anions
found in 2. (b) View of the crys-
tal structure of 2 along [100]
with unit cell outlined showing
the locations of the DABCO
and [Et,DABCO]** species.
Hydrogen atoms have been
omitted for clarity. (¢) Short I---I
contacts (green lines) are shown
between the [Bi,Io]*~ and
[Bi,],]*~ anions, viewed along
[100]. Organic cations have
been omitted for clarity. Key as
for Fig. 1 (Color figure online)

other compounds containing dimeric [Bi,I,,]*" anions, such
as [Et,DABCO],[Bi,l;,] [21].

The crystallographically-determined formula for com-
pound 2 is [DABCO], s[Et,DABCO]**;[Bi,l,]* [Bi,l]*~.
Charge balancing considerations require the incorporation
of three and a half [Et,DABCO]*" cations per formula
unit. Although only three [Et,DABCO]** cations were
located in the crystal structure by single-crystal X-ray
diffraction, there is a significant amount of void space
(423 A per unit cell), where half an [EtZDABCO]zJr moi-
ety per unit cell could be accommodated. Elemental anal-
ysis is consistent with the proposed formula for 2, which
is [DABCO], s[Et,DABCO]**; 5[Bi,I,,]*"[Bi,[y]*~. In the
crystal structure of 2, layers of [Bi219]3_ anions and layers
of [Bi2110]4_ anions, separated by the organic moieties, alter-
nate along the [010] direction (Fig. 3b). There are a number
of I.--I contacts between the anions over the range 3.91 to
4.19 A (Supplementary Information), comparable to the sum
of the van der Waals’ radii for two iodine atoms [41], which

@ Springer

link the discrete anions into a pseudo-two-dimensional struc-
ture (Fig. 3c). It has been suggested that in crystal structures
containing discrete iodobismuthate anions, the presence of
I---I contacts might lead to increased band dispersion, par-
ticularly when the I---I distances are comparatively short
[44]. In addition to the I---I contacts, in the crystal structure
of 2 there are also many short C—H---I distances at under
3.4 A, which are also likely to stabilize the crystal structure.

Thermal Stability and UV-Vis Diffuse Reflectance

Thermogravimetric data (Fig. 4a) indicate that, under a
nitrogen atmosphere, both compounds are stable up to
approximately 280 °C, with decomposition occurring in
each case in a single step. UV—Vis diffuse reflectance data
collected on ground crystals of 1 and 2 are shown in Fig. 4b.
Absorption peaks observed at approximately 2.6 and 2.3 eV
for 1 and 2, respectively, might be attributed to an exciton.
These are often observed in the UV—Vis absorption spectra
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Fig.4 (a) TGA data and (b) UV-Vis diffuse reflectance data for compounds 1 (black) and 2 (red) (Color figure online)

Table 2 Optical band gaps for selected iodobismuthates

Formula Band gap/eV Ref.

[CgH 7N, 1[CH,,N,1[Bilg] (1) 2.29 This work
[Et,DABCO];[Bilg], 2.24 [22]
[C5H,(N15[Bilg] 2.1 [39]

[C3H, (N1, [13][Bilc] 1.34 [39]

[CeH 5N1,[L5][Bilg] 1.58 [40]
[C&I;Il2N2]0_5[C10H22N2]3.5 [Bi,I;(1[Bi,lg] 2.03 This work
[C4H,,N1,[Bi,l,] 2.02 [40]
[MAL[Bi,l,] 2.0-2.1 [47, 48]
[CgH ,N14[Bi,l,] 2.38 [49]
[(CH5);NHI,[Bi,l] 2.0 [50]
[CoH,N,1,[Bi,l,] 2.1 [43]
[Me,DABCO],(Bily),(Bi,lg), 215 1.61 [23]

[CoH, 4N, 1,[Bi,] ] 1.9 [51]
[i-Pr,DABCOI],[Bi,], ] 1.73 [22]
[Et,DABCOI,[Bi,], ] 2.10 [21]
[Pr,DABCO,[Bi,],] 2.16 [21]

of iodobismuthates, even when measurements are performed
at room temperature [45, 46].

From the absorption edge, the optical band gap of 1,
which contains mononuclear [Bi16]3_ anions, is estimated as
2.29(1) eV, while 2, which contains dinuclear [B1219]3' and
[Bi,],]*" units, exhibits a band gap estimated as 2.03(2) eV.
Comparison with previously reported band gaps for iodobis-
muthates containing only either mononuclear [22, 39, 40] or
dinuclear [Bi219]3‘ [23, 40, 43, 47-50] and [Bi2110]4‘ [21,
22, 51] anions (Table 2) reveals that the optical band
gap is largely independent of the nature of the organic

countercations. The band gaps of hybrid iodobismuthates are
mainly determined by the inorganic moieties, because the
main contributors to the top of the valence band are iodine 5p
states, while the bottom of the conduction band is primarily
formed by bismuth 6p states [44]. Incorporation of triiodide
anions has been successfully exploited to achieve signifi-
cant reductions in band gap, as exemplified by [C;H,(N1,[15]
[Bilg] [39] and [Me,DABCO],(Bilg),(Bi,ly), 215 [23]
(Table 2). Lower optical band gaps have also been found
for polymeric bismuth iodides, which are comparatively
rare. Examples include [MV][Bils] (where MV =methyl
viologen), which contains one-dimensional chains of cor-
ner-sharing [Bil4]>~ octahedra and exhibits a band gap of
1.48 eV [34], and [C3HsN,S][Bil,], which has a band gap
of 1.78 eV and contains one-dimensional chains of edge-
sharing octahedra [52]. Incorporation of additional metals to
form ternary iodobismuthates, such as [HPy],[Py][CuBi;];,]
(where Py =pyridine) which has a band gap of 1.59 eV [53],
may provide an alternative approach to achieve significant
reductions in the band gap [54].

Conclusions

In summary, two new iodobismuthates have been synthe-
sized under solvothermal conditions in the presence of
DABCO and ethanol, and their crystal structures determined
by single-crystal X-ray diffraction. Although we have pre-
viously shown that DABCO can act as a linker between
iodobismuthate moieties [24], in-situ alkylation of DABCO
is occurring under the solvothermal conditions described
here. Compounds 1 and 2 contain discrete mononuclear and
dinuclear anions, rather than polymeric units, and exhibit

@ Springer
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optical band gaps comparable to those of other iodobismuth-
ates containing discrete anions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10870-022-00957-x.
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