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Cost effective job scheduling for garage management relies upon assigning repair times into appropriate
categories rather than using exact repair time lengths. In this paper, we employ an ordinal logit model
with least absolute shrinkage and selection operator (LASSO) to forecast such repair time categories for
automotive engines. Our study is based on a unique dataset of maintenance records from the network
of 64 UK garages of BT Fleet Solutions, and we consider a large number of predictor variables, with con-
dition, manufacturing, geographical, and calendar-related information. The application of LASSO enables
the identification of relevant predictor variables for forecasting purposes. Based on the Brier score and
the ranked probability score (and their skill scores), we document substantial predictive ability of our
method which outperforms five benchmarks, including the method used by the company. More impor-
tantly, we demonstrate explicitly how to associate the predicted probabilities with a loss function in order
to make operational decisions in garages. We find that the best choice of job scheduling does not always
correspond to the predicted categories, especially when the loss function is asymmetric. We show that
scheduling jobs on the basis of our method can help the company reduce loss value. Finally, we identify
opportunities for further improvements in the operations of the company and for garage maintenance
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operations in general.
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1. Introduction

Operational research (OR) work in the automotive industry
mostly focuses on demand and sales forecasting (Murry & Zhou,
2020), production systems (Volling, Matzke, Grunewald & Spengler,
2013), remanufacturing (Schultmann, Zumkeller & Rentz, 2006),
order-to-delivery processes (Brabazon & MacCarthy, 2017), and
supply chain management (Zhang, Shang & Li, 2011). Less atten-
tion has been paid to automotive garage (repair shop) management
which is still mainly performed by humans relying on judgmental
decision making. Academic work in this area does not reflect the
size and importance of the automotive maintenance industry. For
instance, the annual repair bill related to the US federal fleet of
600,000 vehicles is estimated to be $1B (US General Services Ad-
ministration, 2015). There appears to be some gap in the literature
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when it comes to innovative applications of OR to garage manage-
ment.

In automotive garage management, one of the most important
operations is to make predictions of repair times' (also known as
Time to Repair, TTR), which is crucially related to scheduling and
planning (Pilar, e Silva & Borges, 2021). Meanwhile, garage cus-
tomers also need the information of repair times for their own
planning purposes (Ryan, 2015). Repair times that are longer than
accounted for can cause disruption to the garage's job schedul-
ing and the availability offered to customers. On the contrary,
shorter repair times induce costs related to idle time and rear-
rangement of jobs. In practice, all too often garage managers make
judgmental forecasts of the repair times based on a quick in-
spection. Such judgmental forecasts may not be consistent over
time, and their accuracy highly depends on experience and skills

1 The repair time excludes the inspection time, waiting time, and logistics time;
only the time of repair actions is considered.
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(Goodwin, Gonul & Onkal, 2019; Lawrence, Goodwin, O’Connor &
Onkal, 2006). If repair times of automotive parts can be accurately
predicted based on some formal approach, garage managers may
considerably improve the efficiency of job scheduling and better
inform customers about their waiting times.

To this end, we propose an ordinal logit model with the least
absolute shrinkage and selection operator (LASSO) to forecast the
ordinal categories of repair times for automotive parts in order
to improve automotive garage operations. The uniqueness of our
work lies on the categorical prediction of repair times, rather
than precise time lengths because of two reasons. First, small dif-
ferences on the exact predicted time length have negligible im-
pact on operational decisions. In terms of job scheduling, repair
jobs are typically ‘bucketed’ into categories for practical purposes
(Lewandowski & Olszewska, 2020). Second, the records of repair
times are subject to measurement errors which further substan-
tiates the rationale for relying upon categories rather than exact
time lengths. Based on consultation with experts, we classify au-
tomotive engine repair times in this study as: minor (less than
0.5 hour), medium (between 0.5 hour and 2 hours), and major
(more than 2 hours). Such classification is also consistent with the
classical planning and control principle of “runners, repeaters, and
strangers” (Aitken, Childerhouse & Towill, 2003). The minor cate-
gory corresponds to the “runners” which are the frequent routine
tasks with standardized procedures; the medium category matches
the “repeaters” which contain less frequent tasks but with rela-
tively well understood resource requirements; and the major cat-
egory resembles the “strangers” which are uncertain tasks associ-
ated with limited insight.

We consider a large number of predictor variables, with con-
dition, manufacturing, geographical, and calendar-related informa-
tion. To tackle the high dimensionality problem, we employ LASSO
to regularize the estimation results and automatically select the
most informative predictor variables. Forecasting performance is
examined by means of utilizing an empirical dataset of repair
times for automotive engines, provided by our industrial partner,
BT Fleet Solutions (which has since been restructured and is now
operated by a different company), which is a sizeable fleet com-
pany in the United Kingdom. We compare our method with five
benchmarks: k-nearest neighbors, deep learning, random guess,
sample majority, and historical averages.> Our method consistently
outperforms the benchmarks in the test sample based on the Brier
score and the ranked probability score (and their skill scores). The
superior predictive power is also confirmed by robustness checks.
More importantly, we explicitly demonstrate how to use our pro-
posed method to: i) support garage managers towards more effi-
cient job scheduling; and ii) facilitate some better management of
the garages.

The contribution of this study is two-fold. First, our study pro-
vides an innovative OR application to forecast categories of repair
times for automotive engines by LASSO using a large number of
predictor variables. Based on a sizeable dataset over eight years,
our ordinal logit model with LASSO method shows superior predic-
tive power and consistently outperforms five benchmarks. Second,
we further contribute to the OR field by means of utility assess-
ment, i.e. by linking the predicted probabilities to operational de-
cision making in garages in order to reduce loss value and enhance
efficiency. We find that best decisions do not always correspond to
point forecasts, especially if we deal with asymmetric loss func-
tions. Our framework applied to automotive engines, can be natu-
rally generalized to other contexts (such as vessels and aircrafts).

2 While confidentiality agreements preclude disclosing the exact method used by
the case company, we can reveal that their method is one of the five benchmark
methods considered in this study.
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The remainder of the paper is organized as follows. In Section 2,
we briefly discuss the related literature. In Section 3, we describe
our empirical data and explain the choice of predictor variables.
Section 4 presents a description of our methodology, including the
forecasting method, benchmarks, and measures of forecasting eval-
uation. The empirical forecasting performance, and some associ-
ated robustness checks are provided in Section 5. Section 6 demon-
strates how to use probabilistic forecasting to improve garage man-
agement in practice. Section 7 provides a summary of this study
and discusses potential extensions for future research. There is also
a Supplement that provides additional results of robustness checks.

2. Research background

This study sits in the intersection of three strands of litera-
ture: i) maintainability analysis; ii) application of LASSO in OR; iii)
probabilistic forecasting for decision making. We discuss below the
most relevant studies in each of these strands.

Maintainability analysis is concerned with the amount of time
required to repair a system when it fails. Empirical studies ded-
icated to forecasting repair times are limited, and most of the
relevant work is designed around very specific systems. Keizers,
Bertrand and Wessels (2003) used a logistic regression to inves-
tigate the repair performance for the Royal Netherlands Navy. They
selected eight predictor variables related to planning behavior, and
found five of them to be significant at 10% level. Based on the con-
cept of the proportional hazard model, Gao, Barabady and Marke-
set (2010) developed a proportional repair model (PRM) to analyze
repair rate (i.e. the reciprocal of repair time) by using explana-
tory variables. In the PRM, the repair rate function is a product
of the baseline repair function and a term incorporating the ef-
fect of predictor variables. Empirically, they used the PRM to pre-
dict repair rates of oil and gas production facilities in Arctic condi-
tions. They considered three predictor variables: maintenance de-
sign, maintenance crew skill, and climatic conditions. Based on 15
records of TTR data of turbo-compressors, their PRM showed two
variables, maintenance design and climatic condition, significantly
(at 10%) affecting the repair rate. However, their model is based
on the proportionality assumption, which needs to be carefully
checked in order to ensure the applicability of such model. A lim-
itation of their study is that the proportionality assumption was
not checked. Additionally, the effect of predictor variables must be
time independent. To enhance the applicability of PRM, Barabadi,
Barabady and Markeset (2011) further extended it by incorporat-
ing time-independent and time-dependent variables with an ap-
plication in predicting the repair rate of screen mesh (equipment
used by mineral crushing plants). They considered six operational
variables, namely temperature, shift (day or night), location, wind,
icing, and rain. Based on 16 records of TTR data of screen mesh,
their baseline model, with the proportionality assumption, showed
that three variables (temperature, shifts, and rain) have a signifi-
cant effect (at the 5% level). To check the proportionality assump-
tion, they used a graphical method of plotting repair function ver-
sus time for the different strata. The proportionality assumption
was violated for temperature, and they proceeded to use a stratifi-
cation approach to resolve the problem. The limitation of the strat-
ification approach is that the break point to divide the strata is
arbitrary and typically based on experience. Ozturk and Fthenakis
(2020) employed a Bayesian updating technique to predict TTR of
wind turbines. They selected six predictor variables related to op-
erational and environmental conditions. Based on 753 records, they
found that TTR is higher in high inland locations, higher number of
previous failures, and geared-drive turbine types with medium ca-
pacity. Overall, the existing literature on repair times typically uses
a small number of predictor variables, while our study utilizes a
much larger number of (potential) predictors.
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Fig. 1. Histogram of Repair Times and their Categories.

For problems involving a large number of variables, it is neces-
sary to use a variable selection technique to reduce dimensional-
ity. Treating all variables as potential predictors is inefficient and
leads to the well-known ‘curse of dimensionality’ and poor pre-
diction performance by using irrelevant variables (Jursa & Rohrig,
2008). LASSO was firstly proposed by Tibshirani (1996) as the ¢4-
penalized method and has been successfully developed over the
last decades to deal with high dimensionality. Due to the £;-
penalty, LASSO shrinks the coefficients of irrelevant variables to
zero and, thus, automatically serves the purpose of variable se-
lection, where only informative variables with nonzero coefficients
are selected. Applications of LASSO in forecasting shows its robust
predictive power and it has been a prevailing tool in variable selec-
tion for forecasting in many areas, such as retail demand forecast-
ing (Ma, Fildes & Huang, 2016), macroeconomics (Smeekes & Wi-
jler, 2018), credit rating (Sermpinis, Tsoukas & Zhang, 2018), mar-
keting analytics (Sun, Zheng, Jin, Jiang & Wang, 2019), and electric
load (Ziel & Liu, 2016). One drawback of LASSO relates to variable
selection instability, because of the parameter uncertainty in esti-
mating a large covariance matrix. As an extension of LASSO, Zou
and Hastie (2005) proposed a revision of the penalization term
as the combination of the ¢;- penalization and /,- penalization,
which is referred to as the elastic net in the literature. The elas-
tic net has the advantage that the estimated coefficients and vari-
able selection are more stable, and it can further improve the fore-
casting performance in the presence of highly correlated variables.
There are also a number of applications in forecasting by using
the elastic net (e.g., Eickmeier & Ng, 2011; Huck, 2019; Ozturk &
Fthenakis, 2020). Despite the popularity of LASSO and the elastic
net in various fields, they are rarely used in the field of main-
tainability analysis. This is mainly because the number of available
predictor variables in the previous studies is limited, and thus vari-
able selection techniques are not needed. Our study is based on a
sizeable dataset with a large number of predictors, and we show
that LASSO is associated with a superior predictive power in fore-
casting repair times of automotive engines.

In the third strand of related literature, probabilistic forecast-
ing is a well-developed field and has many applications in OR. Un-
like point forecasting, probabilistic forecasting provides more in-
formation as it takes “the form of a predictive probability distribu-
tion over future quantities or events” (Gneiting & Katzfuss, 2014, p.
126). Using probabilistic forecasting may bring additional benefits
(over and above point forecasts) in decision making in operations
management. In the context of winter road maintenance, it is im-
portant to make a decision on whether to use the pre-emptive ap-
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plication of chemicals for anti-icing, and such decision is usually
taken on the basis of point forecasts. Berrocal, Raftery, Gneiting
and Steed (2010) developed two methods for forecasting the prob-
ability of ice formation. One important issue highlighted by the
authors is that the costs of two types of errors are highly asym-
metric: the cost of a road closure is much higher than taking anti-
icing measures. Based on the data of Interstate Highway in Wash-
ington State, they found that the use of probabilistic forecasts can
help reduce 50% of the total cost, compared to point forecasts. In
the context of the offshore wind turbine maintenance, it is compli-
cated to make decisions on whether to send over a service vessel
because access to the equipment is restricted by the wave height,
which depends on weather. Taylor and Jeon (2018) used time series
methods to produce forecasts of probabilities of wave height den-
sity, and then they incorporated probabilistic forecasting to enable
rational decision making on the part of the maintenance engineers.
Their recommendation on whether to send out the service vessel
relies on the probability of wave height falling below the safe limit.
In a follow-up study, Gilbert, Browell and McMillan (2020) em-
ployed a boosted semi-parametric model to generate probabilistic
forecasts of significant wave height and peak wave period, which
further predicted the vessel motion during crew transfer up to 5-
days ahead in order to support operations of wind offshore farms.
Our study expands the application of probabilistic forecasting to
the automotive industry. We follow the work of Berrocal et al.
(2010)), to consider asymmetric loss functions, and Taylor and Jeon
(2018), to minimize the expected loss related to decision making.

3. Data

The research described in this paper has been motivated by, and
successfully applied to, our industrial collaborator, BT Fleet Solu-
tions (now restructured and belonging to a different organization?),
which is a UK-based fleet company providing service, maintenance,
and repair for the fleet of BT Group plc., and commercial vehicles of
external companies in various industries. The maintenance records
studied in this article were collected in their network of 64 garages
across the UK. Although each garage and workshop were managed
independently by their managers, they all shared the same web-
based information system to collect and consolidate the mainte-
nance data, ensuring consistency in data collection across all of

3 The data from the period we analyzed belongs to BT Fleet Solutions. In Septem-
ber 2019, the fleet company was sold to, and is currently owned by a different
business entity.
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them. This study considers repair records for four fleets of ve-
hicles, including light commercial vehicles, heavy goods vehicles,
four-wheel drive vehicles, and personal cars. Following discussions
with the company, we focus on the repair time of automotive en-
gines, because engines are deemed to be the most critical vehicle
component. The repair times of other vehicle components can be
forecasted in the same manner.

3.1. Categories of repair times

There are two strong motivations for us to forecast the cate-
gories of repair times, rather than the exact length. First, the pur-
pose of forecasting repair times of automotive parts is to support
job scheduling in the garage. Because the repair jobs are scheduled
based on the categories of repair time, there is no fundamental dif-
ference in terms of job scheduling if the predicted repair time falls
anywhere within a category. For example, the scheduling is exactly
the same for a predicted repair time of 0.35 hour and 0.45 hour, if
they both fall within the same category. Therefore, pursuing a (pre-
cise) point forecast is neither the ultimate goal of the company nor,
in turn, of this study. The second motivation is due to measure-
ment error. As a demonstration, Fig. 1 presents the histogram of
repair times for automotive engines from the case company. It can
be clearly observed that spikes occur at the multiples of 0.5 hour.
This is because technicians in garages sometimes input the records
of repair times rounding up to the nearest 0.5 hour. Thus, the
precise length of repair times is not even available, and discus-
sions with our industrial collaborator reveal that this was gener-
ally the case. On the basis of the two aforementioned issues, we
convert the repair hours into ordinal categories (shown in Fig. 1)
and further focus on forecasting such categories (minor: less than
0.5 hour; medium: between 0.5 hour and 2 hours; major: more
than 2 hours). Such classification has been undertaken in consul-
tation with experts in the fleet company. The empirical results pre-
sented in this study utilize categories of repair times decided upon
consultation with experts, which is exogenously determined. But it
is worth noting that our work is applicable to any other arbitrary
classification of categories, based on the context of other indus-
tries.

3.2. Life cycle of automotive engines

Fig. 2 schematically presents the life cycle of an automotive en-
gine, along with the notation of the variables which will be dis-
cussed in detail in Section 3.3. A specific engine (characterized by
manufacturing information), in brand new condition, starts to be
used in a vehicle at time tg, with mileage reading My = 0. During
its lifetime, an engine may encounter multiple failures and needs
to undergo maintenance in a garage.* At the beginning of the ith
maintenance, the garage records the time (as t;), mileage (as M;),
and condition-related information, and the same procedure is con-
ducted for the (i + 1)!" maintenance. Between t; and t;, 1, the en-
gine is used in a vehicle that operates within a specific region,
which provides the geographical information. We can also compute
the time between failure (TBF) between the it" and the (i+ 1)t
maintenance as TBF; = t;,; —t;, and the mileage between failure
(MBF) as MBE, = M;,; — M;. The calendar information at (i + 1)t
maintenance can be directly retrieved from the date of t;, . At the
end of life cycle, the company will sell or scrap an engine.

4 Generally, the engine needs a maintenance either when it is not functioning
(corrective maintenance) or when the technician believes that there is a substantial
failure risk associated with the engine (preventive maintenance).
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3.3. Choice of predictor variables

We are interested in forecasting the repair time RT;,; of an au-
tomotive engine in the (i + 1)!" maintenance. The ultimate pur-
pose of our forecasting method is to support decision making of
the garage manager when the vehicle arrives in the garage for the
maintenance of its engine. Thus, the information set ®;, ; contains
all the information when the vehicle arrives in the garage for its
(i+ 1) engine maintenance, which is available for us to use in
order to forecast RT;, ;. We systematically select and categorize the
predictor variables into four sets: vehicle condition variables, man-
ufacturing variables, geographical variables, and calendar variables,
which are all explained in detail below.

3.3.1. Condition variables

The first set of predictor variables measures the engine con-
dition and are collected at both time t;,; and ¢;. It is standard
in the automotive industry to use a two-dimensional warranty
which depends on the time and the mileage (e.g. Huang, Gau &
Ho, 2015; Majeske, 2007; Murthy & Blischke, 2006). Thus at time
ti;1, it is undoubtable that the most important condition variables
are the age (Agej,1) and the mileage (M; ). The average mileage
(AvgM;, 1), defined as M, 1 /Age;, 1, is also useful to measure the en-
gine condition because it gives an indication of whether the engine
is over or under-used. Next, it is crucial to distinguish between
preventive maintenance and corrective maintenance (PorCi ). In
the UK, the routine service on vehicles is closely related to safety
inspections regulated by the Ministry of Transport (MOT). This
is typically done on an annual basis.> As a result of MOT, pre-
ventive maintenance is performed to satisfy the safety require-
ments and to avoid any potential future malfunctions, while no
action is needed if there is no problem found. As for corrective
maintenance, it is performed in response to an actual malfunction
occurred, rather than a potential one. Further, we also consider
whether the (i + 1)t maintenance is due to an accident (isAcc; 1)
or not. At time t;, we collect a range of variables to measure the
historical usage of the engine, including the total number of pre-
ventive maintenances up to T; (N{’ ), the total number of correc-
tive maintenances up to T; (Nic ), the cumulative repair time due
to preventive maintenance up to T (CRTI.P ), the cumulative repair
time due to corrective maintenance up to T; (CRTiC), whether the
it" maintenance is preventive or corrective (PorG;), the repair time
at the i" maintenance (RT;), and whether any parts within the en-
gine are replaced at the it" maintenance (isPart;). Finally, we also
include information in relation to the time between ¢; and t;q,
which is TBF,; and MBF, {, defined in Section 3.2.

3.3.2. Manufacturing variables

The literature found quality difference in automotive parts by
different vehicle makers (see, e.g. Sawyer-Beaulieu & Tam, 2015).
Thus, the repair time is likely to be determined by the manufac-
turing information of the engine. Thus, the second set of predic-
tor variables is related to the manufacturing information, which
is fixed and not time varying. Specifically, we employ four man-
ufacturing variables: vehicle make (Make), vehicle model (Model),
model year (MY), and vehicle type (Type). The vehicle make refers
to the company that manufactured the vehicle, while the vehi-
cle model is the name of the range of cars. For example, in the
case of a Honda Civic, the make is Honda, and the model is Civic.
The additional attribute to further differentiate the same make and
model is the model year, which describes the year when a spe-
cific version of a model was launched in the market for the first

5 In addition to MOT, more frequent (optional) service may be done for prudential
reasons.



S. Wang, A.A. Syntetos, Y. Liu et al.

European Journal of Operational Research 306 (2023) 893-908

Garage;,q

Geographical | Urban; 4
variables: |Seaside;,q
Region;,,
B iy
MBF, MBF;,, a2 N
5. f _‘l—\ r L Y “5 ;j\
g | | | . | B9
2 CR=
&0 15" maintenance it" maintenance (i + D™ maintenance —
& to 4 L Lis1
Mo M, M; My
NF Ageii
Gt . C Mi1
Make Condition | Ni AvgM
Manufacturing |Model variables: (,'l\"l'l’ p ) _(~" i
ariables: MY o C Orlitq
variables: CRT. .
Type Sty ISAcciyq
’ PorcC;
RT;
isPart: . Year;
isPart; Calendar Al
i Month;,
variables:
Weekend,;, 4

Fig. 2. Life Cycle of an Automotive Engine and Notation of Variables.

time. Lastly, the four fleets of the vehicles are further classified by
our collaborator in 10 types, encoded as A (small vans), B (light
vans), C (medium vans), D (large vans), E (medium goods vehicles),
F (large goods vehicles), G (four wheel drive vehicles), H (vehicular
mechanical aids), J (personal cars), and N (special medium vans).

3.3.3. Geographical variables

Each vehicle in the dataset is affiliated with one of the garages
during a certain period® and operates within a certain mileage of
its affiliated garage. Thus, the specific garage the vehicle is as-
signed to between ¢; and t;,; (Garage;,,) is potentially informa-
tive in forecasting the repair time due to the characteristics as-
sociated with the garage. After consulting with the garage tech-
nicians, the nature of the road around the garage also plays an im-
portant role. Thus, we classify the 64 garages according to whether
they are situated in an urban area (Urban; ;) and/or by the sea-
side (Seaside;, ). Roads in urban areas tend to be flat with higher
capacity and good condition, whereas rural roads are typically in
a worse condition and located in craggier terrains. Comparing to
inland, the air in coastal areas has a higher level of saltness hu-
midity, which could cause corrosion of some certain engine com-
ponents. Additionally, we use the regional variable (Region;, ;) to
indicate the region the affiliated garage is in. This is because dif-
ferent regions can have different traffic rules on transportation.

3.3.4. Calendar variables

The fourth set of variables considers trend, seasonality, and
weekend effects. In more detail, we employ the variable (Year; ),
defined as the number of years after 2010 (which is the start of our
dataset - please refer to Section 3.4), to capture any potential (lin-
ear) trends in the dataset. Additionally, previous studies (e.g., Rai,
2009) have documented the monthly seasonality in repair times as

6 It is possible that a vehicle may, occasionally, be assigned to a different garage
due to changes in demand. However, such changes are rare.
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a possible predictor variable, which motivates us to include a rel-
evant variable in our study (Month; ;). Moreover, there could be a
weekend effect due to differences in traffic patterns on weekdays
and weekends (Gao & Niemeier, 2007; Liu, Ge & Gao, 2014). As
such, it is also worthwhile including the potentially relevant vari-
able (Weekend;, ).

Overall, we consider four sets of predictor variables, which
could potentially contribute to forecasting the ordinal category of
repair times. From an implementation perspective, the predictor
variables may also be further classified as: i) numerical variables,
and ii) nominal variables. While it is straightforward to use the nu-
merical variables, the nominal ones need to be encoded as a set of
dummy variables before inputting them into the models described
in Section 4. For example, Garage,, is used to indicate which spe-
cific garage, out of the 64, is used (at time ¢t + 1), and it is encoded
as 63 dummy variables. After encoding the nominal variables, there
are 439 variables in total. This motivates the use of LASSO and the
elastic net to conduct a variable selection.

3.4. Summary statistics

Our dataset contains 9511 maintenance records of automotive
engines in new vehicles registered with the fleet company af-
ter November 2009. The maintenance records were collected from
the company’s network of 64 garages between February 2010 and
September 2017. There are 5291 unique engines in our dataset, and
it should be noted that an engine can have multiple maintenances
in its lifetime. A histogram of the number of maintenances is pre-
sented in Fig. 3. As can be seen, most vehicles (97.8%) have no
more than six records of engine maintenances.

Table 1 reports the categories of repair time (RT ) in terms
of calendar year, month, and weekdays. There are only 6 records
in 2010, and most cases of engine repairs are reported after that.
This is because automotive engines are reliable in the first few
years of their lifetime and rarely have failures. We also observe a
higher percentage of major cases in later years. This is also related
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Number of Maintenances

Fig. 3. Histogram of Number of Maintenances (Feb. 2010 - Sep. 2017).

Table 1

Categories of Repair Time by Year, Month, and Weekday.
Year Minor  Medium Major  Total
2010 6 0 0 6
2011 42 11 6 59
2012 105 45 12 162
2013 222 187 46 455
2014 434 387 99 920
2015 668 550 172 1390
2016 1147 1335 621 3103
2017 1348 1314 754 3416
Month Minor  Medium  Major  Total
1 353 304 172 829
2 338 332 144 814
3 388 337 146 871
4 289 328 149 766
5 326 312 143 781
6 355 342 142 839
7 357 344 133 834
8 322 377 151 850
9 382 396 156 934
10 282 257 123 662
11 311 260 139 710
12 269 240 112 621
Weekday Minor  Medium  Major  Total
Monday 797 754 368 1919
Tuesday 833 828 375 2036
Wednesday 809 822 357 1988
Thursday 789 750 347 1886
Friday 727 652 257 1636
Saturday 17 22 6 45
Sunday 0 1 0 1

Note: there are 9511 maintenance records for the auto-
motive engines in the dataset. We report the categories
of repair times in terms of calendar year, month, and
weekdays. There is one special case reported on a Sun-
day, when the garages are typically closed.

to the reliability of the engines which deteriorates with age and
mileage. Regarding the total number of cases in different months,
there are fewer cases in April, November, and December. This can
be (partly) explained by the holiday effect of Easter and Christmas
breaks when the commercial vehicles are less frequently used. We
observe substantially fewer cases in weekends as the garages are
running in low capacity on Saturday and are closed on Sunday.
There is one special case reported on a Sunday. We can observe
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a relatively even distribution of minor, medium, and major cases
across different months and different workdays.

Table 2 shows the summary statistics of the conditional vari-
ables. At the time t;,4 (in Fig. 2) when the engine has its (i+ 1)t
maintenance, the average age is 4.26 years and the average mileage
is 100.72 thousand miles; maintenances due to accidents are rare;
and 93% of maintenances are corrective with 7% being preventive.
Focusing on the time f; (in Fig. 2) when the engine has the ih
maintenance, the number and cumulative time of corrective main-
tenances is higher than that of preventive maintenances; the aver-
age repair time at the it" maintenance is 1.26 hours; there are 92%
corrective maintenances; and the variable isPart; shows that about
half of the cases are associated with engine parts being replaced.
Between t; and t;, ¢, the mean TBF is 316.88 days and the mean
MBF is 17.59 thousand miles. As for the rest of the predictor vari-
ables, there are 26 different vehicle makes and 287 vehicle mod-
els. Among 64 garages, there are 23 in the urban areas, 16 by the
seaside, and the rest are in the inland and rural areas. Finally, the
company employs its own classification of four UK regions: Scot-
land, Northern Ireland, Northern England, the rest of the UK.

4. Method

In this section, we explain the method employed in our study.
Our purpose is to forecast the ordinal categories of repair times
by a large number of predictor variables. To this end, we em-
ploy the ordinal logit model with LASSO, which aims at select-
ing the most important predictors for forecasting such categories.
We also consider the elastic net as another way of regularization.
As benchmarks, we choose two machine learning approaches and
three naive methods (including the method currently used by the
company). To evaluate the forecasting performance of the consid-
ered approaches, we employ four metrics: the Brier Score (BS), the
ranked probability score (RPS), and their skill scores, i.e. the Brier
skill score (BSS) and the ranked probability skill score (RPSS).

4.1. Ordinal logit model with LASSO

We organize the presentation of the method into two parts. The
first part explains the ordinal logit model, and the second part is
dedicated to illustrating the variable selection technique via LASSO.

The ordinal logit model is one of many models under the
framework of generalized linear models for ordinal data. The
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25% Q. Median  75% Q. Max.
3.23 433 5.48 7.81
45.97 73.42 11034  1106.08
11.84 16.97 25.92 231.76
0.00 0.00 0.00 2.00
1.00 1.00 2.00 26.00
0.00 0.00 0.00 11.90
0.50 1.00 2.40 54.60
0.40 0.60 1.20 51.50
83.00 211.00 436.50  2694.00
3.61 9.87 22.14 187.78

Table 2
Descriptive Statistics of the Conditional Variables.
Mean Std. Min.
Ageiq 4.26 1.51 0.00
Mijq 100.72  110.16  0.00
AvgM;, 2413 24.63 0.00
i 0.13 0.35 0.00
N 1.96 2.00 0.00
CRT? 0.23 0.87 0.00
CRTE 2.23 3.79 0.00
RT; 1.26 2.15 0.00
TBF 4 316.88  322.13  1.00
MBE, 4 17.59 23.08 0.00
PorCiyq 0.07 0.25
isAcciyq 0.00 0.03
PorG; 0.08 0.27
isPart; 0.55 0.50

Note: 25% Q. and 75% Q. denote the respective quantile values. The unit of Age;,; is
years, the unit of TBF; 4 is days, the unit of M;,; and MBF; 4 is 1000 miles, the unit of
AvgM;,; is 1000 miles per year, the unit of CRTiP, CRTiC, RT; is hours. The distributional
statistics are reported for the numerical variables, but not for the binary variables. The
minimum of AvgM;,;, TBF;4, and isAcc;;; is very small and shown as zero due to

rounding of two decimal places.

model has the assumption that there is a latent continuous vari-
able, and the observed ordinal category of the outcome is from the
discretization of the underlying latent variable. Then a link func-
tion is used to convert the latent continuous variable explained
by the causal variables (on the right-hand-side of model) into
the probability of the ordinal categories (on the left-hand-side of
model). We choose the logit link function in our specification. This
is because the cumulative probability of ordinal categories of repair
times has gradual changes. There are other choices of link func-
tion, such as the probit or log-log functions, which are less suitable
for our task. For instance, the probit link function is for explicit
normally distributed latent variables, and the log-log link function
is for unevenly distributed categories, such as the situation where
higher categories have higher probabilities (Harrell, 2015, Chapter
4).

In terms of the mathematical notation, suppose that each ob-
servation y;, i =1,...,n, belongs to one of the ordinal categories
k=1,...,K, and x; = (xq,...,xp)T represents a p-dimensional vec-
tor containing the predictor variables; we model the logit of the
conditional cumulative probability

P <
e )
-Pyi<k

= Bok+ Bix1 + ...+ Bpxp + &,

logit(P(y; < k)|X; = x;) = log (

(1)

where 8= (By . Bi.....Bp) is the set of unknown parameters to
be estimated and ¢; is the error term. In our case, there are three
categories (minor, medium, major), and we only need two cumu-
lative probabilities to obtain the full probability of the three cate-
gories.

The key idea of LASSO is to maximize the likelihood function
subject to the sum of the absolute value of the coefficients being
less than a constant. By imposing such constraint, the estimated
parameters are shrinking and some of them tend to be exactly
zero, which then serves the purpose of variable selection. The di-
rect advantage of LASSO is the reduction of the variance of the es-
timated value and the increase of the accuracy of the regression
prediction. Meanwhile, the resulting model is parsimonious and
hence tends to be more interpretable.

Technically, the LASSO estimator resolves the ¢;-penalized
problem of estimating parameters 8 by maximizing the likelihood
of the ordinal logit model, £(B|y;,%;), subject to the constraint

Zﬁ.’ﬂ |Bjl < s, as shown in Eq. (2).

. P
B = argmaxg| L(Blyi. x:) =2 |Bi] ). (2)
j=1

where A is a tuning parameter to control the strength of shrink-
age. Intuitively, a larger value of A leads to a stronger penaliza-
tion on the sum of absolute values of estimated parameters, which
shrinks the values closer to zero. If A is beyond a threshold value,
then some of the estimated parameters are forced to zero, which
is equivalent to leaving the corresponding predictor variables out
of the model. Keep increasing the value of A beyond the threshold
leaves out more predictor variables, but it may also suffer from
loss of predictive power. Thus, the value of A should be carefully
chosen. In this study, we use a 5-fold cross-validation technique to
choose an optimal value of A. This is based on the fact that cross-
validation is intuitively appealing and can provide a good estimate
of the expected forecasting error (Hastie, Tibshirani & Friedman,
2009, Chapter 7). It should be highlighted that the predictor vari-
ables are at different scales. To fairly select variables by LASSO, it
is necessary to rescale all predictor variables at the same level. In
such way, we give the same importance to all variables, rather than
giving high weights to ones at small scales (i.e. larger magnitude
of parameter values). Thus, all predictor variables are standardized
before applying LASSO.

4.2. Ordinal logit model with the elastic net

In terms of the ordinal logit model with the elastic net, the dif-
ference with what was described above is in the form of the pe-
nalization when estimating the parameters. It has been shown by
Zou and Hastie (2005) that the elastic net can outperform LASSO
when the data is highly correlated. In our dataset, some of the pre-
dictor variables are correlated, for instance, Age;,; and M; ;. Thus,
it is worthwhile considering the elastic net in addition to LASSO.

Regarding the optimization setting, the elastic net aims to es-
timate parameters 8 by maximizing the likelihood of the ordinal
logit model, £(B|y;, %;), subject to the £;-penalization constraint
Z;’zl |8; <s1 and the f,-penalization constraint 2;’:1 (B)? <ss,
as presented in Eq. (3)

alg)| + 3-8} ). ©

1

B = argmaxg ( £(Bly. %) — X

]
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where 0 <« <1 is the second tuning parameter to balance the £;
and /,-penalization. Considering the extreme two values of «, the
elastic net becomes LASSO if o = 1, and reduces to ridge regression
if @ = 0. Ideally, the values of « and A can be simultaneously cho-
sen by 5-fold cross-validation. However, a two-dimensional cross-
validation is computationally expensive. As such, we set o = 0.5 in
this study.” As before, all predictor variables are standardized be-
fore applying the elastic net.

4.3. Benchmark models

The benchmarks we consider are discussed below.

o K-Nearest Neighbors (KNN): KNN is a popular supervised ma-
chine learning approach which is typically used as the baseline
against more complex methods (see, e.g. Bertsimas & Kallus,
2020; Bertsimas, Kallus & Hussain, 2016). The basic idea of KNN
is to “do as your neighbor does”, which is simple and intuitive
and can perform well for the classification problem (Barber,
2012). Given the predictor variables of a new observation, the
algorithm searches the training sample and finds K number of
observations which have similar values of predictor variables.
Then the new observation is predicted to have an ordinal cat-
egory of the most frequent class within the K neighbours. We
also use the 5-fold cross validation to choose the value of K.

o Deep Learning (DL): Recent developments in the field of deep
learning have shown its great predictive power in operations
management and maintenance (Chen et al., 2020; Choi, Wal-
lace & Wang, 2018; Kumar, Mookerjee & Shubham, 2018). As a
benchmark for this study, we choose to use an artificial neu-
ral network with 9 dense layers of 128 hidden units.® Although
very deep and wide networks have proven effective in general,
they come at a high computation cost and may have many
redundant parameters (Alvarez & Salzmann, 2016). It is com-
mon to encounter overfitting issues for large models with many
parameters, and deep learning is not an exception. Developed
by Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov
(2014), dropout is one of the most effective and widely used
regularization techniques for neural networks. Thus, we also in-
troduce two dropout layers to our deep network in order to
mitigate the overfitting issue.

+ Random Guess (RG): The first naive method, RG, predicts the

categories by randomly picking one from minor, medium, and

major categories. The frequency of guessing is set to be the
same as that observed in the training sample, i.e. P(minor) =

42%, P(medium) = 40%, and P(major) = 18%.

Sample Majority (SM): The second naive method, SM, always

predicts the categories as the one with the highest frequency

in the training sample. In our dataset, the minor category is
the most frequently encountered one in the training sample.

Thus, the frequency of SM prediction for the test sample is

P(minor) = 100%, P(medium) = 0%, and P(major) = 0%.

Historical Average (HA): The third naive method, HA, computes

the historical average of repair times in the training sample, de-

pending only on the vehicle types, and uses that historical av-
erage as a prediction. Past studies show that the HA method is
an effective prediction tool which has been widely used in op-
erations management practices, such as forecasting manufactur-
ing lead time (Marlin, 1986), assisting staff scheduling (Taylor,
2008), and anchoring project duration (Lorko, Servatka & Zhang,
2019).

7 Other values of «, including 0.1, 0.3, 0.7, 0.9, have also been considered. The
forecasting performance is similar to the case of « = 0.5 and thus the correspond-
ing results are not presented here.

8 The number of layers and hidden units in each layer of a deep network are
typically manually set.
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For the two machine learning methods, we also standardize all
predictor variables before applying them. We note that there are
other potential candidate benchmark models in the field of ma-
chine learning, such as random forest, boosting, adaptive boost-
ing, support vector machine, and a large variation of deep learn-
ing models, which could also possibly provide satisfactory predic-
tive power. The selected two machine learning methods are among
the most popular ones and could sufficiently serve the purpose of
comparison.

4.4. Performance evaluation

In terms of the probabilistic forecasting, there are many choices
of measures to evaluate forecast performance. One of the most
straightforward measures to apply is the accuracy ratio, which is
the percentage of the correct forecasts over the total number of
forecasts. To reveal more information about which category is as-
sociated with higher accuracy, it is common to use the confusion
matrix,” which is a two-way table of forecasted categories over
true categories. However, the accuracy ratio has been criticized in
the literature as not being a suitable measure for probabilistic fore-
casting (Harrell, 2015), especially for unbalanced data in which the
sample majority method can achieve high accuracy, without being
useful.

Instead, scoring rules are more suitable measures to evaluate
probabilistic forecasting. For example, the field of weather forecast-
ing has been at the forefront of that, through using (proper) scor-
ing rules to assess forecasting accuracy since 1950s (Brier, 1950).
Scoring rules are loss functions that map the predicted probabil-
ities and corresponding observed outcomes to loss values. There
are three types: improper, proper, and strictly proper scoring rules.
A scoring rule is proper when its expectation is minimized if the
predicted density is the true density.'® It is strictly proper if the
minimization is unique.

Among many strictly proper score rules, the Brier score (BS)
is one of the standard metrics to assess and compare probability
forecasts for unordered categories. It is a quadratic rule defined as:

1 K R 2
BS = E’Z;(fk—o,() s (4)

where K is the number of possible categories, fk is the forecasted
probability for category k, and o, takes the value 1 or 0, according
to whether the true category is category k or not. The range of BS
is between 0 and 1. A lower BS indicates a better forecast, and a
perfect forecast has BS of 0. As the BS measures only one observa-
tion, it is common to report the average BS over a given number
of forecasted observations, denoted as BS.

Despite the popularity of Brier score, it does not take account
the ordering of the categories, which is what we face when deal-
ing with ordinal categories of repair times. Developed by Epstein
(1969) originally in the field of meteorology, the ranked probabil-
ity score (RPS) is a strictly proper scoring rule that considers the
ordering of events by assigning higher scores for assessments if
higher predicted probabilities are given for events close to the ac-
tual event. The RPS is also a quadratic rule computed by:

K k k 2

RPS:%Z Sh-Y o . (5)
k s=1 s=1

=1

9 The confusion matrix is also known as the contingency table.

10 In some literature, a scoring rule is defined as a rewarding function, which flips
the sign of the loss function. In such case, the scoring rule is proper if its expecta-
tion is maximized, rather than minimized.
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Similar to BS, RPS is also in the range of 0 and 1, and a bet-
ter forecast is associated with a lower RPS. In the special case of
only two categories, the RPS is equivalent to the BS. Again, we
report the average RPS over a given number of forecast observa-
tions, denoted as RPS. Further, and when the task is to evaluate
probabilistic forecasts in comparison with those produced by an-
other method, skill scores may be particularly useful. A skills score
is associated with a particular scoring rule, and amongst many of
them, the Brier skill score (BSS) and the ranked probability skill
score (RPSS) are widely used to quantify improvement over a ref-
erence method (Weigel, Liniger & Appenzeller, 2007). The BSS and
the RPSS are defined as:

BSS=1-— f—s, (6)
Bsref
RPSS=1— ﬁ, (7)
RPS,f

where ﬁref and mref correspond to the average BS and the aver-
age RPS of a chosen reference method. The range of BSS and RPSS is
from minus infinity to 1. 0 indicates no skill comparing to the ref-
erence method, while 1 indicates a method with perfect skill. Pos-
itive values of BSS and RPSS indicate a more skilled method with
respect to the reference method while negative values suggesting
a less skilled method.

In our empirical analysis, we will report the average of BSS and
RPSS over the training sample and the test sample (see next sub-
section), with the reference method being the Historical Average.
The choice of the reference method is based on recommendations
from the Project Management Institute (2013) and International
Project Management Association (2015), which suggest the pre-
diction of project duration by using actual durations of similar
projects in the past. The rationale behind such suggestion is that
the Historical Average method naturally considers the impact of
various relevant issues, such as omissions in the project specifi-
cation, procurement lead time, and misunderstanding of require-
ments. Lastly, the Historical Average is commonly used as a refer-
ence method in the forecasting literature (see Kahneman & Lovallo,
1993; Lorko et al., 2019).

4.5. Forecasting scheme and practical considerations

We demonstrate our forecasting scheme in Fig. 4. We choose
the first 6% of the dataset as the training sample and the rest as
the test sample. The training sample is divided into five equal sub-
samples to perform the 5-fold cross validation in order to choose
an optimal value for the tuning parameters, including the A for
LASSO and the elastic net. Then, we further K for KNN. Then we
use the training sample to estimate the ordinal logit model with
LASSO and the elastic net, and also train the KNN and the deep
network. Next, the estimated ordinal logit models and the trained
machine learning models are employed to produce forecasts in the
test sample. There are a number of practical considerations listed
below.

o We choose three values of 6 (60%, 70%, and 80%) to organize
the training and test samples.

o We decide to use two settings for the ordering of the main-
tenance records. In our main setting (Section 5.1), the mainte-
nance record is the chronological order of arrival, i.e., t;,1 (as
defined in Fig. 2). In our first robustness check (Section 5.2.1),
the maintenance record is ordered by the vehicle identifier.

 Since there is no probability directly generated from the two
machine learning methods and the two naive methods of SM
and HA, we set their predicted category to 100% probability and
other categories to 0% probability.
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e Our implementation is based on the R package “ordinalNet”
(Wurm, Rathouz & Hanlon, 2017) and the application program-
ming interface (API) “Keras”.

5. Results

In this section, we present and discuss the forecast performance
of the ordinal logit models with LASSO and the elastic net and
compare them to the five benchmarks by using the four previously
discussed measures for the training and test sample. The perfor-
mance in the training sample shows how good a model can fit the
given data, and the performance in the test sample indicates the
true forecast performance of different methods. We present the
main results associated with the forecast performance in Section
5.1, followed by three robustness checks in Section 5.2.

5.1. Forecast performance

Table 3 presents the forecast performance of 8 = 60%, 70%, and
80% for the data based on the chronological order of arrival. In
the training sample, DL is associated with the lowest BS and RPS.
However, this is not necessarily reflected in the test sample, as dis-
cussed later. The LASSO and the elastic net have very similar per-
formance, which is slightly inferior to that of DL but better than
the other three methods. Next comes KNN, which is better only
than the three naive methods. SM, RG, and HA all perform poorly
in the training sample. Using the BSS and the RPSS, it can be seen
that ordinal models and machine learning methods do much better
than the benchmark, HA.

Now, we turn to the assessment of forecast performance in the
test sample, which is the ultimate evaluation of predictability. The
first observation is that DL is no longer best in terms of BS and
RPS; although it achieves high accuracy in the training sample it
may not extrapolate well in the test sample. This is an indication
of overfitting, though we have attempted to mitigate such effect
by adding two dropout layers. There are some other techniques to
further prevent overfitting for deep networks, such as weight reg-
ularization. However, we feel that what we have done is adequate
given the consideration of deep learning methods only as a bench-
mark. The second observation is that KNN has high levels of BS
and RPS in the test sample, which indicates that some certain pat-
terns are not captured through fitting the training sample by this
method. This observation suggests that KNN is underfitting. The
third observation is that the two ordinal logit models outperform
the other five benchmark models in terms of much lower BS and
RPS. Most importantly, the BS and the RPS of the two ordinal logit
models in the test sample are similar to those in the training sam-
ple. This means that the techniques of LASSO and the elastic net
achieve a high balance between underfitting and overfitting, and
they can capture the patterns in the training sample and generalize
well to the new observations in the test sample. The fourth obser-
vation is that the three naive methods are associated with high BS
and RPS (low predictive power). Additionally, the BSS and the RPSS
show the superior predictive skills of the two ordinal logit models
over the HA method.

We further examine the performance of the ordinal logit model
with LASSO for different groups of data in the test sample. As a
demonstration, we calculate the average RPS (when 6 = 70%) over
different vehicle types, shown in Fig. 5. The ordinal logit model
achieves a similar level of forecast performance across different
groups of vehicle types, indicating the lack of any systematic bias
when it comes to this method. Additionally, it is worthwhile in-
vestigating the forecast performance against reliable and unreli-
able groups of vehicles. To that end, we use information on when
the vehicle was registered, and such information is a good proxy
for whether a vehicle is (un)reliable. Fig. 6 plots the average RPS
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Iteration 1:

Iteration 2:

Iteration 3:

Iteration 4:

Iteration 5:

5-fold cross-validation —
values of tuning parameters
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Fig. 4. Forecasting Scheme.

Note: The green part denotes the data used in one of the iterations of 5-fold cross-validation procedure, while the grey part represents the leave-out part in the respective
iteration. The cross-validation, estimation, and training of the models are only based on the training sample. The estimated models with the chosen value of tuning parameter

are then used to produce forecasts for the test sample.

\

Training Sample

(0%)

Test Sample

(1-06%)

Table 3
Forecast Performance for chronological order of arrival.
6 =60% Average BS Average RPS BSS RPSS
Training Sample Test Sample  Training Sample Test Sample  Training Sample Test Sample  Training Sample Test Sample
LASSO 0.288 0.300 0.170 0.182 0.508 0.514 0.419 0411
Elastic Net  0.288 0.300 0.170 0.182 0.508 0.513 0.419 0.410
KNN 0.512 0.543 0.295 0.315 0.123 0.120 —0.010 —0.023
DL 0.265 0.656 0.154 0.399 0.546 —0.063 0.473 —-0.295
RG 0.608 0.637 0.369 0.397 —0.041 —0.032 —0.262 —0.288
SM 0.567 0.605 0.359 0.414 0.029 0.019 —0.230 —0.341
HA 0.584 0.617 0.292 0.308 0.000 0.000 0.000 0.000
6 =70% Average BS Average RPS BSS RPSS
Training Sample  Test Sample  Training Sample  Test Sample  Training Sample  Test Sample  Training Sample  Test Sample
LASSO 0.287 0.295 0.170 0.179 0.515 0.516 0.426 0.414
Elastic Net ~ 0.287 0.296 0.170 0.179 0.515 0.516 0.426 0414
KNN 0.512 0.538 0.297 0.315 0.134 0.119 —0.004 —0.032
DL 0.204 0.560 0.120 0.341 0.655 0.082 0.594 -0.117
RG 0.617 0.639 0.379 0.395 —-0.043 —0.047 —-0.282 —0.294
SM 0.574 0.601 0.370 0.406 0.029 0.016 —0.252 —0.330
HA 0.592 0.610 0.296 0.305 0.000 0.000 0.000 0.000
6 =80% Average BS Average RPS BSS RPSS
Training Sample  Test Sample  Training Sample  Test Sample  Training Sample  Test Sample  Training Sample  Test Sample
LASSO 0.286 0.296 0.170 0.179 0.520 0.507 0.430 0.404
Elastic Net  0.287 0.296 0.171 0.179 0.518 0.508 0.428 0.405
KNN 0.509 0.519 0.293 0.301 0.146 0.136 0.018 0.000
DL 0.224 0.593 0.136 0.376 0.625 0.015 0.544 —0.252
RG 0.630 0.635 0.389 0.395 —0.057 —0.055 —0.303 -0.314
SM 0.577 0.604 0.375 0.405 0.033 —0.004 —0.258 —0.346
HA 0.596 0.601 0.298 0.301 0.000 0.000 0.000 0.000

Note: DL denotes deep learning, RG represents random guess, SM means sample majority, and HA indicates historical average. The BSS and RPSS are calcu-
lated with respect to HA as the reference method. The bold numbers denote the best model. Results are presented to the third decimal place. The data is in
chronological order of arrival.

(when 0 = 70%) of vehicles registered!! in different years. As can
be observed, the forecast performance is at a similar level for vehi-
cles registered between 2009 and 2016, while there is a slight im-

1 The company registers a brand-new vehicle when it starts to serve the com-

pany.
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provement (lower RPS) for those registered in 2017. This is mainly
because vehicles registered in 2017 are in an almost perfect condi-
tion and only need minor maintenance in most cases.

Lastly, it is worthwhile to inspect which variables are selected
by LASSO. Under the setting of 6 = 70%, there are a total of 111
variables selected from all 439 variables. As for the breakdown,
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Fig. 5. Average Ranked Probability Score in Different Vehicle Types.
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Fig. 6. Average Ranked Probability Score in Vehicles Registered in Different Years.

there are 10 conditional variables, 53 manufacturing variables, 10
calendar variables, and 38 geographical variables.

5.2. Robustness checks

To check whether the forecast performance is robust to dif-
ferent settings, we carried out three robustness checks, including
1) ordering of the data by the vehicle identifier; 2) inclusion of
squared and interactive terms as predictors; and 3) inclusion of the
vehicle identifier as a predictor.

5.2.1. Data ordered by the vehicle identifier

The main results discussed in Section 5.1 are based on the
chronological order of arrival, i.e. t;,1 (as defined in Fig. 2). How-
ever, there might be a flaw in such a setting due to the unbal-
anced data in different years. As shown in Table 1, a large propor-
tion (35.91%) of all maintenance records is in 2017, containing 3146
out of a total of 9511 cases. This may lead to a situation where the
testing sample contains data only in 2017. Thus, we also order the
maintenance records with respect to the vehicle identifier.'? Table

12 Because the company randomly anonymizes vehicle identifiers, the ordering of
data in this setting can be considered as random.
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S1 in the Supplement shows the forecast performance for this set-
ting. As can be seen, the methods based on LASSO and the elastic
net still have superior forecast performance among all methods. It
is worthwhile noting that the setting under concern is considered
solely for the purpose of robustness checks, and the chronological
order is certainly more realistic because the data is recorded in the
right chronological order.

5.2.2. Inclusion of squared and interaction terms

It is possible that some of the predictor variables could have
a nonlinear effect on the categories of repair times. In addition,
there could also be interaction effects between the predictor vari-
ables. To explore these two possibilities, we include the squared
terms and two-way interactions for all continuous predictor vari-
ables into all forecasting methods and reevaluate their perfor-
mance (based on the chronological order of arrival). The results re-
lated to this setting are presented in Table S2 in the Supplement.
First, the BS and the RPS of LASSO are very close to the results
obtained without squared and interaction terms in Table 3. This is
mainly because the squared and interaction terms are rarely cho-
sen by LASSO. Thus, there is no obvious improvement in forecast
performance by including those terms. Second, there is a marginal
improvement for the two machine learning methods in the train-
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Table 4
Numerical Examples.
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Based on an asymmetric Loss Function

Decision\Actual k = Minor k = Medium k = Major Expected Loss E(£4)
d =Minor 0 2 5 3

d=Medium 1 0 4 1.7

d =Major 2 1 0 0.7

Based on a symmetric Loss Function

Decision\Actual k = Minor k = Medium k = Major Expected Loss E(£4)
d =Minor 0 1 2 13

d =Medium 1 0 1 0.5

d =Major 2 1 0 0.7

Predicted Probability f, ~ 10% 50% 40%

Note: The numerical values of losses are used for illustration purposes. Upper panel refers to the
asymmetric loss function, while the lower panel to the symmetric one. Taking the same predicted
probabilities, the optimal decision based on the asymmetric loss function is d“*= Major, while it is
dt*= Medium based on the symmetric loss function.

ing sample, but this is not reflected in the forecast performance in
the test sample. Overall, our main conclusion remains the same.
The methods based on LASSO and the elastic net still provide the
best forecast performance, compared to the five benchmarks.

5.2.3. Inclusion of the vehicle identifier

One might argue that there is heterogeneity associated with
engines in different vehicles, which should be controlled for. To
investigate this possibility, we incorporate the vehicle identifier
(encoded as dummy variables) into all forecasting methods and
reevaluate their performance (based on the chronological order of
arrival). The results related to this setting are reported in Table S3
in the Supplement. While there is an improvement for LASSO and
the elastic net in the training sample, we get nearly the same re-
sults of their forecasting performance in the test sample, with or
without the inclusion of the vehicle identifier. But occasionally, it is
interesting to observe that the forecast performance of LASSO with
the inclusion of the vehicle identifier is slightly poorer than the re-
sults obtained without it, e.g. the average BS of LASSO in test sam-
ple when 6 = 70%. This could be due to the sensitivity of LASSO
to the number of predictor variables, which has been theoretically
studied by Flynn, Hurvich and Simonoff (2017). They find that the
predictive performance of LASSO could deteriorate with more pre-
dictors, given a sufficiently high signal to noise ratio and a suffi-
ciently large number of predictors. Another intuitive explanation is
that most of the engines have less than 3 maintenance records in
our dataset (see Fig. 3). Thus, even though there are significant het-
erogeneous effects in some certain engines, it is unlikely that they
are being picked up by LASSO, based on small number of occur-
rences for one specific vehicle. Lastly, compared with the bench-
marks, the methods based on LASSO and the elastic net are still
associated with the best forecast performance.

6. Utility

In this section, we illustrate how garage managers may utilize
probabilistic forecasting information to support decision making
towards better scheduling of repair jobs. The garage managers’
decisions are rather insufficiently informed by a model that only
forecasts categories of repair times without providing associated
probabilities, such as KNN and deep learning. We show that
such decisions can be improved by using information related to
forecasted probabilities, along with the loss functions.

We start by introducing a typical scenario in the garages of the
fleet company, which is based on the logs completed by the au-
thors following their visits to them. Each day, first, vehicles ar-
rive in the garage (due to malfunction or preventative caution) and

904

the drivers discuss with the garage manager about the specific re-
pair or maintenance request. Next, the managers decide the cate-
gory that each repair job falls within the three categories (minor,
medium, or major); this is done on the basis of the information
provided by one of the naive methods considered in this study. Af-
ter that, the manager allocates jobs to different technicians. The
key issue is that the actual repair time spent by the technician on
the job may be different from the manager’s original planning. The
actual repair time can be longer or shorter than expected.

Wrong decisions lead to inefficient use of staff time and addi-
tional (labor) costs. From a customer perspective, costs may relate
to additional driver waiting time and unavailability of the vehicles
to serve their tasks. It should be pointed out that costs associated
with the two types of errors could be asymmetric (e.g. Berrocal
et al., 2010). That is, the implications of an actual major category
misspecified as minor, are much more severe than the opposite.
This is because under-forecasting leads to a shortfall of technicians
and the vehicle which is supposed to serve its own company being
unavailable for longer time than planned. Over-forecasting implies
that the job is finished earlier, in which the manager may inform
the driver to collect the vehicle and allocate (if possible) other jobs
to the available technician.

Next, we set-up the framework for the analysis. Denote the
manager’s decision as d and the actual category as k. Recall that
d, k € {minor, medium, major} in our context and the total number
of categories K = 3. A loss function £(d, k) is introduced to quan-
tify the cost of incorrect classification, which is defined as follows:

0,
Lk,

ifd=k,
ifd+k,

where £4, > 0. The probabilistic forecasting model, such as the or-
dinal logit model, provides the predicted probabilities associated
with each category, denoted as fk, where Z'f fk = 1. The cost of a
decision on each category is a random variable denoted as £; and
its expectation is

a¢m={ (8)

K
E(t)) = Y fubar. (9)

k=1
In line with Taylor and Jeon (2018), the objective of rational de-
cision making is to minimize the (long run) expected cost. Thus,
the optimal decision based on the loss function associated with the
predicted probabilities is shown below:

K

d“* = arg mdiankldk.
k=1

(10)
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The traditional way to make decisions by point forecasting is
expressed as follows:
dr* = argmdaxfd. (11)

By combining the loss function and the predicted probabilities,
the optimal decision d%* is not always the same as the decision
df*. We demonstrate this by two numerical examples presented
in Table 4. The upper panel refers to the asymmetric loss func-
tion, while the lower panel to the symmetric loss function. Tak-
ing the same predicted probabilities, f, = {10%, 50%, 40%}, the op-
timal decision is d“* = Major based on the asymmetric loss func-
tion, and d** = Medium based on the symmetric loss function. If
the decision purely depends on the predicated probabilities, then
df* = Medium because its 50% probability is the highest among
three categories, and this decision is regardless of whether the loss
function is asymmetric or symmetric.

It can be argued that the example in Table 4 is too restrictive
because it is based only on one set of predicted probabilities. To
reveal the full picture, we find the optimal decision d** for all pos-
sible probabilities based on the asymmetric loss function (as in the
upper panel of Table 4). Since there are only three categories, this
can be easily accomplished by exhausting all possible combinations
of f(mmor) f(medlum) and f(ma]or) Given the constraint that
f(mmor) +f(medlum) +f(ma]or) =1, the procedure can be sim-
plified by exhausting the combination of any two of them. Without
loss of generality, we choose to exhaust f (medium) and f(major).
For comparison purposes, we repeat the same procedure to ob-
tain the decision d/* based on the predicted probabilities. Fig. 7
presents the area of db+ (upper panel) and df* (lower panel) with
respect to f(medlum) and f(ma]or) It can be observed that the
area of managerial decision d“*on minor and medium categories is
suppressed, compared to the area of d/*. This can be explained in-
tuitively as follows. The asymmetric loss function results in higher
loss if the actual category turns out to be higher than the predicted
category. When f(medium) is marginally higher than f(major),
managerial decisions are shifted to the major category due to the
higher loss. The same rationale also applies for the shift from mi-
nor to medium.

The next question is how much loss a garage may save, for one
scheduled repair job, if the probabilistic forecasting is taken into
consideration. To answer this question, Fig. 8 plots the difference
between loss based on the optimal decision d** and decision d/*,
i.e. E(Lge+) — E(£yy..). There are three important observations. First,
the decision based on d* is always associated with less or equal
loss compared to the decision resulting from d/*. Second, there
is no difference in terms of loss when d‘* is the same as df*.
Third, the optimal decision d** may prevent loss mainly in the ar-
eas where the predicted probabilities are marginally close between
two categories.

The final question is how much loss the fleet company could
have saved in total if they were to use what we propose in this
paper. To tackle this question, we couple the two loss functions
in Table 4 with the results of probabilistic forecasting in Section
5 to compute the total loss for the seven methods. In accordance
with our confidentiality agreement with our industrial contributor
BT Fleet Solutions, the numerical values of losses in Table 4 are not
expressed in monetary units, though they approximately represent
actual relative cost differences in the various categories.

Table 5 shows the percentage cost savings with respect to HA,
and positive (negative) percentage values denote cost reduction
(increase) with respect to the reference method (HA). It is clear
that the ordinal logit model with LASSO or the elastic net is as-
sociated with a substantial benefit in terms of cost savings (under
both asymmetric and symmetric loss functions). Additionally, the
benefits of using the ordinal logit model over HA is substantially
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df J*
Major
< not applicable
0 0.2 0.4 0.6 0.8 1
f(;‘\[ujm')
dr*
Major
&
not applicable
0 0.2 04 0.6 0.8 1

f(Major)

Fig. 7. Comparison of Optimal Decisions.

Note: Upper panel: optimal decision d“* based on the expected loss. Lower panel:
decision d/* based only on the predicted probabilities. Blue: decision of minor cat-
egory; Green: decision of medium category; Yellow: decision of major category;
White: not applicable because Zk 1 fk =1.

Table 5

Percentage cost savings with respect to Historical Average in the Test

Sample.

Asymmetric Loss Function =~ Symmetric Loss Function

0 = 60%
LASSO 26% 11%
Elastic Net  26% 10%
KNN —-1% —-2%
DL —4% —29%
RG -19% -29%
SM —46% —34%
HA 0% 0%
6 =70%
LASSO 24% 13%
Elastic Net ~ 25% 12%
KNN -1% -3%
DL 3% —12%
RG —20% -29%
SM —48% -33%
HA 0% 0%
6 =80%
LASSO 21% 11%
Elastic Net — 22% 11%
KNN 2% 0%
DL 4% —25%
RG —19% -31%
SM —50% -35%
HA 0% 0%

Note: Positive (negative) percentage values denote cost reduction (in-
crease) with respect to the HA method.
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f(Major)

Fig. 8. The difference between the loss from optimal decision d“‘Aand decision d/*.
Note: The white area is not applicable because Zi:] fi=1.

larger under the asymmetric loss function. Overall, using 6 = 60%
for demonstration purposes, the cost can be reduced by 26% under
the asymmetric loss function if the ordinal logit model with LASSO
is used, rather than the HA.

Having observed the potential benefits of the proposed meth-
ods, it is worthwhile to briefly discuss implementation in practice.
A decision support system (DSS) can be developed to embed the
whole framework (including the probabilistic forecast models and
the loss function) in order to support garage managers’ job allo-
cations. The values of most predictor variables can be automati-
cally retrieved from the database containing the historical main-
tenance records for registered vehicles. Some information, such as
M;, 1, PorGC;, 1, and isAcc;, 1, needs to be collected upon a new main-
tenance request made by the driver. Then the DSS can provide the
predicted probabilities for the three categories (minor, medium,
major) and the suggested job allocation with the consideration
of the loss functions. Ultimately, the garage manager can decide
whether to use the suggestion from the DSS or judgmentally inter-
vene in exceptional circumstances.

7. Conclusion

This study employs LASSO to forecast categories of repair times
for automotive engines, based on a large number of predictor vari-
ables. The forecast performance is examined on a sizable dataset
provided by our industrial partner, BT Fleet Solutions. Our method
shows superior predictive power and outperforms five bench-
marks, including KNN deep learning, and three naive methods.
We further explicitly demonstrate how to use the predicted prob-
abilities in operational decision making in garages. We find that
the best decision is not always the same as the point forecast, if
the loss function is asymmetric. Our results demonstrate that our
method outperforms the company’s existing practice and may help
them achieve substantial cost savings, especially under asymmetric
loss functions.

Our framework, demonstrated by using automotive engines, can
be naturally generalized to any repairable automotive parts or ma-
chinery parts in other industries, such as vessels and aircrafts. Sub-
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ject to the data availability, operations and maintenance managers
may choose several predictor variables based on their experience
and in accordance with the industrial context under concern, and
LASSO can help select the most relevant predictors in order to
produce probabilistic forecasts. Additionally, practitioners may cus-
tomize their own loss functions, either symmetric or asymmetric,
and link them with the predicted probabilities to support decision
making for their own operations.

One limitation of our study is the choice of predictor variables,
which is mainly subject to the data availability. Further work can
consider more variables collected from other sources. For exam-
ple, an increasing number of vehicles are equipped with Internet of
Things (IoT) sensors nowadays, and such modern technologies can
send real-time technical information via the mobile network. The
information collected from IoT can generate a vast number of pre-
dictor variables, which can be potentially selected by LASSO and
further enhance forecasting accuracy performance. Another limi-
tation is that we mainly focused on the ordinal logit regression
with standard LASSO and elastic net, which already serves well for
the purpose of categorical forecasting for repair time. Other gener-
alizations of LASSO might also be applied, such as fussed LASSO
(Tibshirani, Saunders, Rosset, Zhu & Knight, 2005), group LASSO
(Yuan & Lin, 2006), and adaptive LASSO (Zhang & Lu, 2007) and
further studies could consider such applications. Additionally, some
recently developed techniques in machine learning for ordinal data
may also be considered, such as random forest for the ordered
choice model (Lechner & Okasa, 2019). Lastly, the empirical results
presented in this study utilize categories of repair times decided
upon consultation with experts, which is exogenously determined.

It should be noted that our framework is general and can ac-
commodate any arbitrary classification, including different num-
bers of categories and their associated thresholds. This offers an
opportunity to find the optimal classifications (number of cate-
gories and their thresholds), with the aim to: 1) minimize the scor-
ing rule; and/or 2) minimize the final loss value. Thus, future work
may consider the classification as endogenous variable and employ
operational research techniques to find an optimal such classifi-
cation. Another promising research line is to incorporate the loss
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function of misclassification into the estimation of forecast mod-
els, which allows the models to be directly optimized with respect
to the loss function. A third future line of enquiry is to use textual
analysis and topic analysis to gather information from the quali-
tative comments from drivers and turn them (quantify them) into
useable predicator variables in the forecast models.
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