

Agroecological, climatic, land elevation and socio-economic determinants of pesticide use at the farm level in Bangladesh

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Rahman, S. ORCID: <https://orcid.org/0000-0002-0391-6191>
(2015) Agroecological, climatic, land elevation and socio-economic determinants of pesticide use at the farm level in Bangladesh. *Agriculture, Ecosystems & Environment*, 212. pp. 187-197. ISSN 0167-8809 doi: 10.1016/j.agee.2015.07.002
Available at <https://centaur.reading.ac.uk/105880/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1016/j.agee.2015.07.002>

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Manuscript ID: AGEE13175**

2 **Revised version incorporating comments of the referees and the editor**

3 ***Agriculture, Ecosystems and Environment 212 (2015) 187–197***

5 **Agroecological, climatic, land elevation and socio-economic determinants of
6 pesticide use at the farm level in Bangladesh**

7 **Sanzidur Rahman***

8 **School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake
9 Circus, Plymouth PL4 8AA, UK**

10 **Address for correspondence**

11 Dr. Sanzidur Rahman
12 Associate Professor in Rural Development
13 School of Geography, Earth and Environmental Sciences
14 University of Plymouth
15 Drake Circus
16 Plymouth, PL4 8AA
17 Phone: +44-1752-585911
18 Fax: +44-1752-584710
19 E-mail: srahman@plymouth.ac.uk

20

21 **May 2015**

22

Agroecological, Climatic, Land Elevation and Socio-economic Determinants of Pesticide Use at the Farm Level in Bangladesh

ABSTRACT

This study examines the influence of agroecology, climate, land elevation and socio-economic factors on pesticide use at the farm level using a large survey data of 2083 farms from 17 districts covering 10 agroecological zones in Bangladesh by applying a Tobit model. Overall, 75.4% of farmers used pesticides in any one crop. Within the pesticide users, pesticide use rate is highest in oilseed production estimated at BDT 2508.6 ha^{-1} (3.74% of gross output value) followed by jute at BDT 1976.1 ha^{-1} (1.88% of gross output value). Pesticide use is significantly lower in floodplain agroecologies, high rainfall areas, high land and low land elevation zones but significantly higher in medium high land elevation zone. Among the socio-economic factors, pulse area significantly reduces pesticide use whereas an increase in rice and pulse prices and organic manure application significantly increases it. Educated farmers and medium/large as well as small farms use significantly more pesticides. Policy implications include investments in developing crop varieties suitable for floodplain agroecologies, high rainfall, high land and low land elevation zones, expansion of pulse area and a reduction in fertilizer prices.

39 **KEY WORDS:** Pesticide use, multivariate Tobit analysis, agroecology, climate, land elevation,
40 Bangladesh.

41 1. Introduction

42 Although pesticide application is supposed to be a damage control measure in preventing
43 production loss from pest and/or disease attacks and is not a yield enhancing input, there is a
44 widespread acceptance that the expansion of modern agricultural technologies has led to a sharp
45 increase in pesticide use (Rahman, 2013, 2003a; [Pingali and Rola, 1995](#)). Pesticide is also

46 believed to improve nutritional value of food and its use is viewed as an economic, labour-saving
47 and efficient tool for pest management ([Damalas and Eleftherohorinos, 2011](#)). Furthermore,
48 pesticide is believed to bring about competitive advantage for agricultural crops (Delcour et al.,
49 2015). Pesticide use is growing continuously worldwide both in numbers and quantities since the
50 1940s. The total pesticide production has increased from one million metric ton (mmt) in 1965 to
51 nearly 6 mmt in 2005 ([Carvalho, 2006](#)) despite widespread claim of its adverse effects, e.g.,
52 emergence of pest resistance and harm to human health and the environment ([Hou and Wu,](#)
53 [2010; Pimentel, 2005; Pingali, 1995; Antle and Pingali, 1994](#)). This is because pesticide use is
54 seen as a necessity to retain the current production and yield levels and maintain high quality and
55 standard of life (Delcour et al., 2015). It is predicted that pesticide use by farmers in developing
56 countries will continue mainly due to: (a) an ignorance of the sustainability of pesticide use; (b) a
57 lack of alternatives to pesticides; (c) an underestimation of the cost of pesticide use both in the
58 short- and the long-run; and (d) the weak enforcement of laws and regulations governing
59 pesticide use ([Wilson and Tisdell, 2001](#)). Furthermore, pesticide efficiency and use can also be
60 influenced by environmental conditions. It is expected that with climate change, pesticide use
61 will also be affected leading to more pesticide application by farmers due to increased
62 vulnerability to pests and diseases as well as reduction in pest residues in crops (Delcour et al.,
63 2015).

64 Bangladesh is a country most vulnerable to climate change and, therefore, is susceptible
65 to the range of effects outlined above including vulnerability to pests and diseases. This is
66 because most food crops are sensitive to direct effects of high temperature and extreme
67 precipitation as well as indirect effects of climate on soil properties, nutrients and pest organisms
68 ([Rosenzweig et al., 2001](#)). Pesticide use in Bangladesh, negligible until the 1970s, has recorded a

69 dramatic rise over the past few decades. For example, pesticide use was only 0.26 kg of active
70 ingredients per ha in 1977 but increased to 1.23 kg in 2002 (Rahman, 2010). In fact, pesticide
71 use grew at an alarming rate of 10.0% per year during the period 1977–2009 although the
72 corresponding response in yield growth of major crops has been minimal (<1.0% per year). As a
73 result, pesticide productivity (i.e., ‘gross value added from crops at constant prices’ per ‘kg of
74 active ingredients of all pesticides used’) is declining steadily at a rate of –8.6% per year during
75 1977–2009 (Rahman, 2013).

76 A limited number of studies are available which examined socio-economic determinants
77 of pesticide use at the farm level in Bangladesh (e.g., [Dasgupta et al., 2005](#); [Mahmoud and](#)
78 [Shively, 2004](#); [Rahman, 2003a](#); [Rahman and Hossain, 2003](#); [Hossain et al., 1999](#)). Although
79 these studies provide valuable information on socio-economic factors influencing pesticide use,
80 none of them considered the influence of the production environment and climate within which
81 farming operations occur when identifying the determinants of pesticide use. This is because
82 farmers’ production performance does not only depend on the physical resources and technology
83 available to them, but also on the existing environmental production conditions (Rahman and
84 Hasan, 2008). In fact, pesticide efficiency, crop characteristics, pest occurrence and severity are
85 directly influenced by climate (Delcour et al., 2015), and therefore, likely to influence pesticide
86 use. Sherlund et al. (2002) and Rahman and Hasan (2008) noted that ignoring variables
87 representing environmental production conditions in the models leads to biased parameter
88 estimates. Both studies demonstrated that taking account of environmental production conditions
89 significantly improved farmers’ technical efficiency of input pesticide use for rice in Côte
90 d’Ivoire (Sherlund et al., 2002) and wheat in Bangladesh (Rahman and Hasan, 2008).
91 Specifically, pest infestation was found to be significantly positively correlated to area

92 cultivated, mechanical power services, irrigation, herbicide use and organic manure (Rahman
93 and Hasan, 2008) and child labour and fertilizers (Sherlund et al., 2002).

94 Given this backdrop, the present study examines the influence of agroecology, climate,
95 land elevation, and a range of price and socio-economic factors on pesticide use at the farm level
96 in Bangladesh using a recently conducted large survey data of 2,083 farm households from 17
97 districts (or 20 sub-districts) of Bangladesh spread over 10 agroecological zones (AEZs). Our
98 specific contribution to the existing literature is that we have incorporated a wide range of
99 variables representing the production environment and climate within which farming operations
100 occur as explanatory factors of pesticide use at the farm level which is previously non-existent.
101 Incorporation of these variables will not only establish their direction and magnitude of influence
102 on pesticide use but also provide a more accurate and unbiased estimates of all the parameters of
103 the model as noted by Rahman and Hasan (2008) and Sherlund et al. (2002).

104 The paper is organised as follows. Section 2 presents description of the study areas, the
105 data, analytical framework and the empirical model. Section 3 presents the results. Section 4
106 provides conclusions and draws policy implications.

107 **2. Methodology**

108 **2.1 The study areas and the data**

109 Bangladesh has a total of 64 districts and 486 sub-districts (BBS, 2013). Data for this study was
110 taken from a recently completed NFPCSP-FAO Phase II project (Kazal et al., 2013). The data
111 was collected during February–May 2012 through an extensive farm-survey in 17 districts
112 covering 20 sub-districts (*upazillas*) of Bangladesh. A multistage sampling technique with
113 mixture of purposive and stratified random sampling methods was employed. At the first stage,
114 districts where the specified crops are dominant are selected purposively. The selection of the

115 districts also took into account specified characteristics, i.e., land elevation types of the region
116 and type of technology. At the second stage, sub-districts were selected according to highest
117 concentration of these specified crops in terms of area cultivated based on information from the
118 district offices of the Directorate of Agricultural Extension (DAE). At the third stage, unions
119 were selected using same criteria at the union/block level which was obtained from the sub-
120 district offices of the DAE. Finally, the farmers were selected using a stratified random sampling
121 procedure from the villages of the selected unions with three standard farm size categories
122 (commonly used in Bangladesh) as the strata. These are: marginal farms (farm size 50–100
123 decimals), small farms (101–250 decimals), and medium/large farms (>250 decimals). To ensure
124 equal representation of all farm size categories, a target of 105 farmers from each sub-district
125 was set as follows: 35 marginal farms, 35 small farms, and 35 medium/large farms. This
126 provided a total of 2,083 farm households (Table 1). The questionnaire used was pre-tested in
127 Tangail district prior to finalization. The questionnaire included detailed information on
128 demographic characteristics including age, gender, occupation and education of individual
129 members of the households, land ownership including tenurial status and detailed information on
130 the crops produced and inputs used including pesticides in the production of individual crops.
131 The survey was conducted using face to face interviews with the farmers and was carried out by
132 trained enumerators who were graduate students of the Sher-e-Bangla Agricultural University,
133 Dhaka and/or Bangladesh Agricultural University, Mymensingh (for details, see Kazal et al.,
134 2013).

135 **2.2 Theoretical framework**

136 The study utilizes a farm production model based on profit maximizing behaviour of the farmers
137 adopted by Rahman (2003a) and extends it further by incorporating variables representing

138 production environment and climate using the approach adopted by Rahman and Hasan (2008)
139 and Sherlund et al. (2002).

140 We begin by specifying a model with two variable input vectors: pesticides, H and ‘other
141 inputs’, X , and one fixed input of land, L to produce n number of crops ($i = 1 \dots n$) where L_i is
142 land area allocated to the i^{th} crop.

143 Farmer j maximizes total profits:

$$144 \quad \sum_{i=1}^n p_i Q_{ij} - w^O H_j - w^O X_j$$

$$145 \quad \text{s.t. } Q_{ij} = f(H_{ij}, X_{ij}, L_{ij}, S_j, E_j) \text{ for } i = 1 \dots n \quad (1)$$

$$146 \quad \text{and } \sum_{i=1}^n L_{ij} \leq L_j \quad (2)$$

147 where $H_j = H_{1j} + \dots + H_{nj}$

148 and $X_j = X_{1j} + \dots + X_{nj}$

149 Equation (1) is an individual production function for each crop i . The production function
150 Q depends on pesticide (H) applied to that crop, ‘other variable inputs (X ’s)’ applied to that crop,
151 land (L) allocated to that crop, and a set of exogenous socio-economic variables (S_j) and another
152 set of exogenous variables (E_j) representing environmental production conditions that shift the
153 production function. Equation (2) simply states that land allocated to various crops must be equal
154 or less than the total land cultivated by the producer.

155 The first order conditions lead to the corresponding demand functions for pesticides and
156 ‘other inputs’ for individual crops:

$$157 \quad Q_j = Q_j(w^O, w^O, p_1 \dots p_n, L_{1j} \dots, L_{nj}, S_j, E_j) \quad (3)$$

$$158 \quad O_j = O_j(w^O, w^O, p_1 \dots p_n, L_{1j} \dots, L_{nj}, S_j, E_j) \quad (4)$$

159 where p ’s and w ’s are output and input prices, respectively.

160 We can aggregate the pesticide demand functions of individual crops as follows:

161 $Q'_j = Q'_j(w^Q, w^O, p_1 \dots p_n, L_{1j} \dots, L_{nj}, S_j, E_j)$ (5)

162 The assumption of the separability of inputs (pesticide on one hand, and all ‘other inputs’
163 on the other) enables the pesticide demand equation to be estimated separately¹. Observe that the
164 arguments appearing in the aggregate pesticide demand function are the vector of input prices,
165 output prices, and a set of exogenous factors.

166 **2.3 The empirical model**

167 Since not all farmers use pesticides in their production process (see Table 2), the application of
168 Ordinary Least Squares regression will result in biased and inconsistent estimates because the
169 dependent variable is censored at zero. The Tobit model provides a suitable method for
170 estimating the pesticide demand equation in this case, as it allows for zero use of inputs (e.g.,
171 Rahman, 2003a).

172 The stochastic model underlying Tobit may be expressed as follows:

173 $Q'_j * = Q'_j * (w^Q, w^O, p_1 \dots p_n, L_{1j} \dots, L_{nj}, S_j, E_j) + u_j$ (6)

174 $Q'_j *$ is a latent variable such that:

175
$$\begin{aligned} Q'_j &= Q'_j * && \text{if } Q'_j > 0 \\ &= 0 && \text{if } Q'_j \leq 0, \quad j = 1, 2, \dots, m \end{aligned} \quad (7)$$

176 where the disturbances u_j is an error term and is independent and identically distributed as $N(0,$
177 $\sigma^2)$.

178 **2.4 Variables**

¹ Individual estimation of factor demand functions utilizing separability assumption has been widely used in empirical studies (e.g., Rahman, 2003a).

179 The amount of pesticide used per hectare (BDT ha⁻¹) was specified as the dependent variable in
180 the econometric model. This is because, although the survey included questions to report
181 pesticide quantity and the total value of pesticide used in individual crops separately, the farmers
182 could recall only the amount of money spent for pesticides for each individual crops under
183 investigation. The main reason farmers could not provide information on actual quantity of
184 pesticides applied because generally farmers tend to buy pesticides in bottles without reading
185 specification or net weight of the active ingredients in the bottle, which may be due to either a
186 lack of interest or illiteracy. Since we do not have actual quantity of pesticides used, we are
187 unable to include own price variable (i.e., pesticide price) as one of the regressors in the model,
188 although inverse relationship exists between pesticide price and the quantity of its use (e.g.,
189 Rahman, 2003a).

190 **2.4.1 Explanatory variables: Input and output prices and other socio-economic factors**

191 The list of variables included in the pesticide demand function was: (a) input prices – prices of
192 urea, Triple Super Phosphate (TSP), Muriate of Potash (MP), Diammonium Phosphate (DAP),
193 and gypsum fertilizers, labour wage and land rent (imputed for owned land); (b) output prices –
194 weighted average of prices of all varieties of rice, weighted average of prices of wheat and
195 maize, jute price, pulse price and oilseed price; (c) amount of land allocated to various crops in
196 hectares – crops include all varieties of rice combined, wheat and maize combined, jute, pulse,
197 and oilseed; (d) a set of socio-economic characteristics which include average age of the farmer,
198 average education of the farmer, use of organic manure per ha, average family size of the
199 household, dummy variables to represent farm size category (i.e., marginal or small or
200 medium/large farms) and a dummy variable to account for membership in NGOs). Information
201 on the amount of credit and/or non-agricultural income could not be included in the model

202 because the survey did not collect information on these variables, although these variables
203 potentially influence pesticide use. For example, Rahman (2003a) noted significantly positive
204 influence of credit on pesticide use. Table 4 presents the definition, measurement and summary
205 statistics of all the variables used in the econometric model.

206 **2.4.2 Explanatory variables: Variable representing agroecology, land elevation and climate**

207 An attempt has been made to construct explanatory variables to represent agroecological
208 characteristics, land elevation and climate within which actual agricultural production takes
209 place. The variables are defined and constructed as follows:

<i>Agroecological characteristics</i>	<i>Bangladesh consists of 30 agroecological zones (AEZ) constructed by FAO in 1988 which overlaps amongst administrative boundaries, thereby, making regional classification very difficult. However, Quddus (2009) conducted an exercise by combining two or three AEZs together so that the new classification commensurate with district administrative boundaries. The result was 12 composite AEZs derived from original 30 AEZs that can be distributed into 64 new districts and are mutually exclusive (for details, see Table 1 in Quddus, 2009). We have created a set of seven dummy variables to represent these composite AEZs (which actually covers 10 of the original 30 AEZs) covering our sampled 17 districts and allocated them as appropriate.</i>
<i>Land elevation</i>	<i>The Bangladesh Agricultural Research Council (BARC) created a database of area and proportion of major land elevation types in each of the 30 AEZs (BARC, undated). The land elevation data in</i>

	<p><i>Bangladesh is classified according to flooding depth of the landscape. These are: High Land (i.e., no flooding); Medium High Land (flooding depth of 0.10–0.90 m); Medium Low Land (flooding depth of 0.91–1.83 m); Low Land (flooding depth of > 1,83 m). We have used this information and constructed a complete set of the proportion of High Land, Medium High Land, Medium Low Land and Low Land for each of the seven composite AEZ that are relevant for our 17 sampled districts (BARC, undated).</i></p>
<i>Total rainfall</i>	<p><i>Total rainfall measured in mm for each greater district per month from a list of rainfall recording stations is available from the Bangladesh Meteorological Department. The allocation of this rainfall information is made depending on the location of the rainfall station. We compute the sum of 12 monthly rainfall data for the year 2012 for each district as a measure of total annual rainfall (BBS, 2013)</i></p>
<i>Temperature variability</i>	<p><i>Monthly maximum temperature is also available for each greater district from Bangladesh Meteorological Department). We computed standard deviation of the monthly maximum temperature for the year 2012 for each district as a measure of temperature variability (BBS, 2013).</i></p>

210

211 Fertilizers (various types), labour and animal power are the major inputs in crop
 212 production and contribute significantly to the production costs. Farmers seeking to maximize

213 profits are expected to respond to input price changes and adjust their input use accordingly
214 (Rahman, 2003b). Therefore, prices of various fertilizers, labour wage and animal power price
215 are included in the pesticide demand function. Similarly, prices of crops produced have a direct
216 bearing on the profit generated from farming and farmers are expected to respond to changes in
217 the crop prices to choose their cropping portfolio. Therefore, prices of crops produced are
218 included in the pesticide demand function.

219 We have also included organic manure application in order to identify its independent
220 influence on pesticide use. This is because farmers are increasingly using organic manure in
221 order to enhance/conserve soil fertility as well as economise on the use of inorganic fertilizers in
222 farming (Rahman and Hasan, 2008). However, use of organic manure may itself attract pests
223 which will have a bearing on farmers' pesticide demand.

224 Farmers allocate different amount of land to individual crop on the farm. Since different
225 crops have different types and frequencies of pest infestation (Rahman, 2003a), the areas
226 allocated to individual crops are incorporated to determine their independent influences on
227 pesticide use.

228 Farm size was found to have significant influence on pesticide use (Rahman, 2003a).
229 However, it is not clear which farm size categories use more pesticides. In Bangladesh, average
230 farm size is declining consistently and the proportion of marginal and small farms are rising
231 (Rahman 2010). Therefore, we have included dummy variables to capture the individual
232 influence of small and medium/large farms on pesticide demand. The influence of the marginal
233 farms is subsumed in the intercept/constant term.

234 Use of age and education level of farmer as explanatory variables is common in the
235 literature (Rahman, 2009). These variables, acting as a group or separately, are expected to have

236 an influence on pesticide demand in the following ways. For instance, education is used as a
237 surrogate for a number of factors. At the technical level, access to information as well as capacity
238 to understand the technical aspects related to farming may influence crop choices and hence
239 pesticide use. Age of the farmer is incorporated to account for the maturity of the farmer in
240 his/her decision-making ability related to pesticide use.

241 Family size is included in the pesticide demand function for two reasons. First, according
242 to Chayanovian theory, higher subsistence pressure (measured by family size) generally leads to
243 adoption of modern technologies which may in turn lead to increased use of pesticide. On the
244 other hand, large family size may also imply supply of more family labour which may influence
245 pesticide use, either positively or adversely.

246 Climate change has been one of the hottest debates and Bangladesh is earmarked as the
247 country most vulnerable to climate change. Therefore, two climate variables: total annual rainfall
248 and variability in maximum monthly temperature were included to identify their independent
249 influences on pesticide use. This is because pest infestation is influenced by high rainfall and
250 temperature extremes (Delcour et al., 2015) which in turn will influence pesticide use.

251 Similarly, agroecological characteristics is another important feature that either limits or
252 opens up opportunities for farmers to choose their cropping portfolio and hence pesticide use
253 which remains largely ignored in the literature. A total of six dummy variables representing
254 agroecological characteristics (or AEZs) were incorporated in the model to identify their
255 independent influence on pesticide use, leaving the remaining 7th AEZ subsumed in the
256 intercept/constant term.

257 Finally, land elevation (measured with respect to flooding depth) is also an important
258 feature that is expected to influence farmers' crop choice decisions and hence pesticide use. This

259 is because not all crops are suited to all types of land elevation. For example, most of the rice
260 crops in Bangladesh are suited for medium high land zones and deep water Aman rice is a
261 unique crop suited for flooded or submerged land and is cultivated mostly in ox-bow lake (haor)
262 and/or low lying areas of the country. Therefore, we have included variables representing
263 proportions of high land, medium high land, and low/very low land zones available at the AEZ
264 level to identify their influence on pesticide use. However, because of the coexistence of all three
265 categories of land elevation in each AEZ in variable proportions, the proportion of area under
266 high land elevation is significantly negatively correlated with the remaining three categories ($r \geq$
267 -0.98 , $p < 0.01$). Therefore, in order to break multicollinearity, we have executed four separate
268 models by replacing one land elevation category at a time, while retaining all other variables.

269 **3. RESULTS**

270 **3.1 Pesticide use rates in crops**

271 Use of pesticides in crops is dependent upon pest infestations and prevalence of diseases and the
272 type of crops grown (Rahman, 2003a). Table 2 presents information on the extent and magnitude
273 of pesticide use in different crops. It is surprising to see that highest proportion of the maize
274 farmers (86.6%) have used pesticides followed by HYV Boro rice (68.0%) and wheat producers
275 (61.1%). In contrast, only 12.0% of the jute farmers used pesticides although it is a major cash
276 crop of the economy. Overall 75.4% of the farmers have used pesticides in any one crop at least.
277 Chakrabarty et al. (2014) and Bhattacharjee et al. (2013) reported that 50.0% and 63.2% of the
278 rice farmers applied pesticides whereas Rahman (2003a) noted a figure of 77.3% of the farmers
279 using pesticides in any one crop at least in 1996. Although these figures are not strictly
280 comparable, it seems that almost similar proportion of farmers are using pesticides at present
281 compared to 16 years ago when multiple crop production is considered.

282 Within the pesticide users of each individual crop, Table 2 shows that the highest rate of
283 pesticide use is in oilseed (BDT 2508.6 ha⁻¹) followed by jute (BDT 1976.1 ha⁻¹) and aromatic
284 rice (BDT 1599.6 ha⁻¹). The overall pesticide use rate is BDT 1090.5 ha⁻¹. When examined in
285 terms of factor shares of production, pesticide cost share was found to be highest for oilseed
286 (3.7% of the gross value of production) followed by aromatic rice (2.5% of gross value) and jute
287 (1.9% of gross value). The overall factor share of pesticide use is estimated at 1.4% of gross
288 value of output which is very close to 1.5% of gross value in 1996 as reported by Rahman
289 (2003a).

290 Table 3 presents information on the extent and magnitude of pesticide use by farm size
291 categories. Although the proportion of farmers using pesticides is almost identical between
292 marginal and small farm size categories estimated at 74.7% and 74.9% of total farmers,
293 respectively, a slightly higher proportion of medium/large farmers use pesticides (76.5% of total
294 farmers). However, when pesticide use rate is considered, Table 3 shows that the marginal farms
295 use lowest level of pesticides per ha estimated at BDT 1025.5 whereas the use rate is higher and
296 very similar between small and medium/large farm categories.

297 In order to investigate whether farmers are overusing pesticides, as noted by Dasgupta et
298 al. (2005), we compared our pesticide use rates presented in Table 2 with information presented
299 in Table A1 in the appendix. Table A1 presents information on the most popular pesticides used
300 by Bangladeshi farmers on the crops under consideration along with their recommended dose per
301 ha, application frequency and current market price. If we cost the recommended dose of
302 pesticides per ha with their current market price (i.e., last column of Table A1) and compare that
303 information with the information presented in Table 2, we see that the sampled farmers are using

304 pesticides roughly close to the recommended doses for the crops except oilseeds, where the
305 application rate by the farmers are substantially higher than the recommended level.

306 **3.2 Socio-economic and agroecological characteristics of the study areas**

307 The basic information on the socio-economic characteristics and agroecology, climate and land
308 elevation features of the study areas is presented in Table 4. Farming system is dominated by
309 cereals (rice and wheat) as reflected by average area allocated to these crops as compared with
310 non-cereal crops. The average age of the farmers is 44.8 years, average education level is just
311 above primary level (i.e., 5.6 completed years of schooling) and average family size is 5.0
312 persons.

313 Among the agroecological features, 25% of the sampled farms belong to composite AEZ
314 comprising of Karatoa Floodplain and Atrai Basin (KFAB) zones followed by 22% from another
315 composite AEZ comprising of Old Himalayan Piedmont Plain and Tista Floodplain (HPTF)
316 zones. The main soil types of KFAB are grey, silt-loam and silt-clay loam and HPTF are sandy
317 loam, loamy and silt clay loam (Quddus, 2009). The fertility conditions of KFAB are moderate
318 to medium and organic material levels are low medium to medium levels. On the other hand,
319 fertility conditions of HPTF are low to medium and organic material levels are low to good
320 levels (Quddus, 2009). With respect to the distribution of land elevation types, we find that the
321 highest land elevation category is medium high land covering an average of 39% of the total land
322 area of the 10 sampled AEZs which is characterized by a flooding depth of 0.01 to 0.9 m and is
323 most suitable for farming. This is followed by high land elevation category covering an average
324 of 30% of the total land area which is characterized by no flooding but also not strictly suitable
325 for all types of farming in general (Table 4). The average total rainfall in the study areas is
326 1707.9 mm and the variability in monthly maximum temperature is 3.96 $^{\circ}\text{C}$.

327 **3.3 Determinants of pesticide use**

328 Table 6 presents the parameter estimates of the pesticide demand function. Prior to reporting the
329 results, we report a series of hypothesis tests conducted to justify inclusion of these diverse set of
330 regressors in the pesticide demand model (Table 5). The first test is to confirm whether the full
331 model including full range of environment and climate variables is superior to the model without
332 these variables. The null hypothesis of no superiority (H_0 : All $\kappa_i = 0$) is strongly rejected at 1%
333 level. Next a series of tests were conducted to check individual influences of prices and socio-
334 economic factors on pesticide demand which are strongly rejected at 5% level at least. Finally,
335 the individual influence of agroecological, climatic and land elevation features are also strongly
336 rejected at 1% level of significance (Table 5).

337 Since, parameters of the Tobit model cannot directly reveal the magnitude of the effect,
338 we compute elasticities and presented in column 5 of Table 6 which show responsiveness of a
339 one percent change in the relevant variable on the probability of pesticide use except for the
340 dummy variables where it measures the responsiveness of a discrete change from zero to unity.
341 Among the output prices, pesticide demand is significantly influenced by a rise in pulse and rice
342 prices. The influence of the price of pulse is highly elastic estimated at 2.79 indicating that a one
343 percent increase in pulse price will increase the probability of pesticide use by 2.79%. Rahman
344 (2003a) also reported significant influence of a rise in pulse price on pesticide demand which
345 remains valid even today. This is because relative profitability of pulse is still very low as
346 compared with other non-cereals. Therefore, a rise in pulse price will induce farmers to use
347 pesticide in order to increase yield. This is because the use rate of pesticide in pulse is still the
348 lowest, same as observed by Rahman (2003a) 16 years ago.

349 Farmers treat pesticides as substitutes for labor and phosphate fertilizer (highly elastic
350 response estimated at 2.64) but as complements of urea and gypsum fertilizers. This finding
351 partly conforms to Rahman (2003a) who aggregated all fertilizers into one category and reported
352 substitution relationship between fertilizers and pesticides. Since we have separated each
353 fertilizer type, we see that only phosphate fertilizer is treated as substitute. This is because the
354 price of fertilizer is on the rise in Bangladesh. For example, the price of phosphate fertilizer has
355 doubled from only BDT 7.00 kg⁻¹ in 1999 to BDT 15.00 kg⁻¹ in 2007 (Mujeri et al., 2012).
356 Therefore, the effect of a rise in the price of fertilizer will induce incremental use of pesticides.
357 Similarly, labor wage is also on the rise in Bangladesh. For example, the index of real
358 agricultural labor wage has increased more than three folds from 1870.00 in 1997/98 to 6133.58
359 in 2011/12 (Base year 1969/70 = 100) (BBS, 2013). Therefore, an increase in labor wage will
360 induce farmers to use more pesticides to save on intercultural operation cost of labor. However,
361 an increase in pulse area significantly reduces pesticide demand which can also be implied from
362 Table 2 as use rate of pesticide is lowest in pulse. Use of organic manure significantly increases
363 pesticide demand. This may be due to the fact that application of organic manure (which is
364 mostly raw cow dung) increases pest infestation, thereby, leading to more pesticide use.

365 Educated farmers use significantly more pesticides. However Rahman (2003a) and
366 Dasgupta et al (2005) did not find any significant influence of education on pesticide use. Both
367 medium/large and small farms use significantly more pesticides relative to marginal farms which
368 conform to the findings of Rahman (2003a) who reported pesticide use increases with farm size
369 although Dasgupta et al (2005) did not find any influence of farm size on overuse of pesticides.

370 Coming to our variables of interest, we see that pesticide use is significantly lower in
371 floodplain agroecologies relative to Sylhet Basin and Surma-Kushiyara Floodplain which is

372 actually at a high level of elevation in the hilly region of the country and its own effect is
373 subsumed in the intercept term. All responses are in the elastic range except for Ganges Tidal
374 Floodplain zone.

375 Pesticide use is significantly higher in the medium high land elevation (which is the most
376 suitable landscape for farming) and the response is in the elastic range (elasticity value 1.13)
377 whereas it is significantly lower for high land and very low or low land elevation zones² with
378 highly elastic response for the latter (elasticity value -2.4). The implication is that the low lying
379 areas which are more prone to flooding have lower incidence of pest and disease infestations and
380 hence requires less use of pesticides. Similarly, high land areas which are not prone to flooding
381 at all but probably attract less pest and disease infestations and therefore require less use of
382 pesticides.

383 Among the climatic factors, pesticide use is significantly lower in high rainfall areas and
384 the responsiveness is the highest of all in the model with elasticity value estimated at -6.8. The
385 implication is that pest attack and prevalence of disease are lowest in wet areas and, therefore,
386 subsequent use of pesticide is very low.

387 Since no other studies explicitly considered environmental and climatic factors in
388 determining pesticide demand, we cannot provide any comparison of our findings within the
389 context of the literature. Although, Dasgupta et al. (2005) and Rahman (2003a) controlled for

² As mentioned at the end of section 2.4.2 that these land elevation variables are significantly negatively correlated amongst themselves, we have modelled four separate regressions by including one land elevation variable at a time. Table 6 presents the results of the model with medium high land included in the equation. The influence of other three categories of land elevation variables are from three independent regression models and are presented in parentheses. It is worth noting that general results of all other models are almost identical to the one reported model in Table 6 and hence not presented.

390 district level effects and concluded that pesticide use is significantly influenced by regional
391 characteristics, we believe that controlling for environment and climate are more accurate and
392 meaningful as these factors directly affect the production conditions within which farmers
393 operate whereas district is an arbitrary administrative unit.

394 **4. Conclusions and policy implications**

395 The principal aim of this study is to explicitly identify the influence and magnitude of the
396 environment and climate, within which farming operation occurs, on pesticide use which is non-
397 existent in the literature. Specifically, we have included a number of variables representing
398 agroecology, climate and land elevation features in addition to other usual price and socio-
399 economic factors in the econometric model to determine their individual influences on the
400 demand for pesticides based on a large sample of 2,083 farms from 17 districts (20 sub-districts)
401 spread over 10 out of a total of 30 agroecological zones of Bangladesh.

402 Although the overall proportion of farmers applying pesticides (75.4% of total sample)
403 seems to be similar to the one reported in the literature 16 years ago (i.e., 77.3% reported by
404 Rahman, 2003a), we find that highest proportion of maize producers are applying pesticides
405 (86.6%) instead of cereal (i.e., rice and wheat) producers as conventionally believed. Also, the
406 use rate and factor share of pesticide was highest for oilseed followed interchangeably by jute
407 and aromatic rice, all of which are cash crops. The implication is that a boost in the production of
408 these three crops, which are suitable for export to earn foreign exchange, will lead to an increase
409 in pesticide use. For example, the value of export of jute and its products, oilseeds (with
410 oleaginous fruits) and rice is estimated at BDT 22,373.9, BDT 348.6 and BDT 34.9 million,
411 respectively in 2011/12 (BBS, 2013).

412 The key findings of this study are the establishment of the fact that the environment and
413 climate significantly influence pesticide use in variable ways. Specifically, pesticide use is
414 significantly lower in floodplain agroecologies, high rainfall areas and high land as well as low
415 land elevation zones but significantly higher in medium high land zones. Moreover, the
416 magnitude of the influences of these variables is largely in the elastic range which means that a
417 one percent change in these variables will lead to a larger proportional change in the probability
418 of pesticide use.

419 Farmers treat pesticides as substitutes for labor and phosphate fertilizer but as
420 complements of urea and gypsum fertilizers. The implication is that a rise in labor wage (which
421 is a desired goal for supporting landless and marginal farmers through the hired labor market as
422 wage laborer) will induce a significant rise in pesticide use mainly to reduce the amount of labor
423 for various farm operations, particularly intercultural operations. Similarly, a rise in the price of
424 urea (which is the most common fertilizer applied by farmers in cereals) will induce a significant
425 increase in pesticide use. The prices of all fertilizers are on the rise in Bangladesh following the
426 liberalization of the fertilizer market and removal of subsidy since 1992 (Rahman, 2003a). But
427 the government is reverting to control prices indirectly by facilitating distribution of urea
428 fertilizer in recent years, which will have a favorable impact on reducing pesticide use. For
429 example, the total amount of fertilizer subsidy in Bangladesh has increased from BDT 1.0 billion
430 in 2001/02 to BDT 29.1 billion in 2009/10 (in constant 2001/02 prices) and 87% of the total
431 subsidy was for urea fertilizer alone (Mujeri et al., 2012).

432 On the other hand, increases in rice and pulse prices (which are again desirable for
433 boosting revenue/profit for the farmers) would lead to a significant increase on pesticide use
434 although the marginal effect is much higher for an increase in pulse price. Nevertheless, since

435 actual pesticide use rate in pulse crop is lowest and small (Table 2), the magnitude of increase in
436 pesticide use in response to a rise in pulse price will not be very large. However, it is
437 encouraging to note that an increase in the area under pulse (which is a soil fixing leguminous
438 crop contributing to soil conservation) will induce a significant reduction in pesticide use.

439 The overall policy implications of this study are clear. Bangladesh needs to develop
440 varieties of cereal and non-cereal crops suitable for floodplain agroecologies, high rainfall areas,
441 high land and low land elevation zones which will synergistically reduce pesticide use. In other
442 words, R&D investments should be geared towards developing crop varieties which thrive in
443 rainfed conditions over a prolonged period instead of relying on supplementary irrigation as with
444 the case of high yielding varieties of rice. Also to develop varieties of crops that can withstand
445 submergence and/or flooding. At present only deep water Aman rice is available which rises in
446 response to rises in water depth and is the most popular crop in ox-bow lakes and low lying areas
447 of Bangladesh. Finally, Bangladesh need to develop crop varieties suitable for high land
448 elevation (which is apparently characterized with slopes or undulated terrains) which ideally
449 should be low water requiring in nature, e.g., wheat. It is important to emphasize that the existing
450 research extension linkage in Bangladesh is very weak and needs to be strengthened substantially
451 so that the new technologies developed in the research stations (e.g., those mentioned here)
452 reaches the farmers in time (Rahman and Hasan, 2008). Also, price policies aimed at reducing
453 prices of all fertilizers in general and an expansion of pulse area are highly desirable as these will
454 synergistically reduce pesticide use significantly. In fact, we emphasize a reduction in the prices
455 of all fertilizers and not only urea so that the imbalance in fertilizer use, which led to a dramatic
456 rise in the use of urea only (Mujeri et al., 2012), is curbed and also improve yield of crops.

457 Although achievement of these policies is formidable and challenging, a significant
458 reduction in pesticide use is important to sustain the agricultural sector as well as safeguard the
459 farming population, which is a goal worth pursuing.

460

461 **Acknowledgements**

462 The database required for this project was created with the financial support from Seale-Hayne
463 Educational Trust, UK (2011) and National Food Policy Capacity Strengthening Program
464 (NFPCSP), FAO-Bangladesh Competitive Research Grant, Phase II (2011). The author
465 gratefully acknowledges critical comments of the anonymous referees and the editor which has
466 improved the manuscript substantially. However, all caveats remain with the author.

467

REFERENCES

468 Antle, J.M., Pingali, P.L., 1994. Pesticides, productivity and farmer health: a Philippine case study.
469 *American Journal of Agricultural Economics* ,76: 418-430.

470 Bangladesh Bank, 2013. Economic Trends (monthly publications) 2013. Dhaka: Bangladesh
471 Bank.

472

473 BARC, undated. Climate and LRI database. Bangladesh Agricultural Research Council.
474 Available @ http://www.barcapps.gov.bd/dbs/index.php?t=land_du. Accessed
475 December 05, 2014.

476 BBS, 2013. Statistical Yearbook of Bangladesh, 2012. Dhaka: Bangladesh Bureau of Statistics.

477 Bhattacharjee, S., Chowdhury, M.A.Z., Fakhruddin, A.N.M., Alam, M.K. 2013. Impacts of
478 Pesticide Exposure on Paddy Farmers' Health. *Jahangirnagar University*
479 *Environmental Bulletin*, 2: 18-25.

480 Carvalho, F.P. 2006. Agriculture, pesticides, food security and food safety. *Environmental*
481 *Science and Policy*, 9:685-92.

482 Chakrabarty, Y., Akter S., Saifullah, A.S.M., Sheikh, M.S., Bhowmick, A.C. 2014. Use of
483 Fertilizer and Pesticide for Crop Production in Agrarian Area of Tangail District,
484 Bangladesh. *Environment and Ecology Research*, 2: 253-261.

485 Damalas, C.A., Eleftherohorinos, I.G. 2011. Pesticide exposure, safety issues, and risk
486 assessment indicators. *International Journal Environmental Research and Public*
487 *Health*, 8: 1402-19.

488 Dasgupta, S., Meisner, C., Huq, M. 2005. Health effects and pesticide perception as determinants
489 of pesticide use: evidence from Bangladesh. Washington, DC: The World Bank Policy
490 Research Working Paper #3776.

491 Delcour, I., Spanoghe, P., Uyttendaele, M. 2015. Literature review: Impact of climate change on
492 pesticide use. *Food Research International*, 68: 7–15.

493 Hossain, M.I., Shively, G., Mahmoud, C. 1999. Factors influencing pesticide use in rice-
494 vegetable farming system in Bangladesh. *Bangladesh Journal of Agricultural
495 Economics*, 22: 87–98.

496 Hou, B., Wu, L. 2010. Safety impact and farmer awareness of pesticide residues. *Food and
497 Agricultural Immunology*, 21:191-200.

498 Kazal, M.M.H., Rahman, S., Alam, M.J., Hossain, S.T. 2013. Financial and economic
499 profitability of selected agricultural crops in Bangladesh. NFPCSP-FAO Research Grant
500 Report #05/11. Dhaka, Bangladesh. July 2013.

501 Mahmoud, C., Shively, G. 2004. Agricultural diversification and integrated pest management in
502 Bangladesh. *Agricultural Economics*, 30: 187–94.

503 Mujeri, M.K., Shahana, S., Chowdhury, T.T., Haider, K.T. 2012. Improving the effectiveness,
504 efficiency and sustainability of fertilizer use in South Asia. Global Development
505 Network, New Delhi, India.

506 Pimentel, D. 2005. Environmental and socio economic costs of the applications of pesticides
507 primarily in the United States. *Environment, Development and Sustainability*, 7:229–52.

508 Pingali, P.L., 1995. Impact of pesticides on farmer health and the rice environment: an overview of
509 results from a multidisciplinary study in the Philippines. In Pingali PL, Roger P, (Eds)
510 *Impact of Pesticides on Farmer Health and the Rice Environment*. Boston: Kluwer
511 Academic Publishers. p. 3–22.

512 Pingali, P.L., Rola, A.C. 1995. Public regulatory roles in developing markets: the case of
513 Philippines. In Pingali P.L., Roger P, (Eds) *Impact of Pesticides on Farmer Health and*
514 *the Rice Environment*. Boston: Kluwer Academic Publishers. p. 391-411.

515 Quddus, M.A. 2009. Crop production growth in different agro-ecological zones of Bangladesh.
516 *Journal of Bangladesh Agricultural University*, 7: 351-360.

517 Rahman, S. 2003a. Farm-level pesticide use in Bangladesh: determinants and awareness.
518 *Agriculture, Ecosystem and the Environment*, 95: 241–52.

519 Rahman, S. 2003b. Profit efficiency among Bangladeshi rice farmers. *Food Policy*. 28: 487–504.

520 Rahman, S. 2009. Whether crop diversification is a desired strategy for agricultural growth in
521 Bangladesh. *Food Policy*, 34: 340-349.

522 Rahman, S. 2010. Six decades of agricultural land use change in Bangladesh: Effects on crop
523 diversity, productivity, food availability and the environment, 1948-2006. *Singapore*
524 *Journal of Tropical Geography*, 31: 254-269.

525 Rahman, S. 2013. Pesticide consumption and productivity and the potential of IPM in Bangladesh.
526 *The Science of the Total Environment*. 445-446: 48-56.

527 Rahman, S., Hasan, M.K. 2008. Impact of environmental production conditions on productivity
528 and efficiency: a case study of wheat farmers in Bangladesh. *Journal of Environmental*
529 *Management*. 88: 1495-1504.

530 Rahman, S., Hossain, M.Z. 2003. Pesticide demand in hybrid seed production technology.
531 *Journal of Food, Agriculture and the Environment*, 1:174–179.

532 Rosenzweig, C., Iglesias, A., Yang, X, Epstein, P.R., Chivian, E. 2001. Climate change and
533 extreme weather events: implications for food production, plant diseases, and pests.
534 *Global Change and Human Health*, 2: 90-104.

535 Sherlund, S.M., Barrett, C.B., Adesina, A.A. 2002. Smallholder technical efficiency controlling
536 for environmental production conditions. *Journal of Development Economics*, 69: 85 –
537 101.

538 Wilson, C, Tisdell, C. 2001. Why farmers continue to use pesticides despite environmental,
539 health and sustainability costs? *Ecological Economics*, 39: 449–62.

540

541 Table 1. Distribution of sample according to farm type by districts

District	Sub-district	Farm Type			Total surveyed Farms
		Marginal	Small	Medium / Large	
Tangail	Mirzapur	35	35	35	105
Mymensingh	Phulpur	34	36	35	105
Kishoreganj	Karimganj	35	35	35	105
Netrokona	Khaliajuri	21	38	46	105
Faridpur	Bhanga	35	35	35	105
	Boalmari	20	20	20	60
Rajshahi	Charghat	35	35	35	105
Natore	Lalpur	34	35	36	105
Sirajganj	Ullapara	35	35	35	105
Bogra	Sherpur	31	34	33	98
	Sariakandi	35	35	35	105
Jaipurhat	Kalai	35	35	35	105
Dinajpur	Chirirbander	36	30	39	105
	Birganj	70	35	35	140
Thakurgaon	Balia Dangi	35	35	35	105
Salmonirhat	Hatibandha	34	34	37	105
Barisal	Bakerganj	35	35	35	105
Kushtia	Sader	35	35	35	105
Sunamganj	Derai	35	35	35	105
Habiganj	Baniachang	31	38	36	105
	Total	696	685	702	2083

542

543
544

Table 2. Pesticide use rates and its factor share in gross value of output for different crops.

Crops	% of farmers using pesticides in specific crops	Within pesticide users in each crop Pesticide use rate (BDT ha ⁻¹)	Pesticide cost share as gross value of output (%)
Boro rice	67.99	1476.83	1.46
Aman rice	58.51	1182.56	1.58
Aromatic rice	58.08	1599.61	2.53
Wheat	61.12	1045.97	1.69
Maize	86.60	1158.17	1.41
Jute	11.95	1976.11	1.88
Pulse	39.22	596.30	0.78
Oilseed	49.76	2508.59	3.74
All crops	75.37	1090.53	1.40

545 Note: Total number of observations is 3905 comprising of 1306 Boro rice, 911 Aman rice, 167 aromatic rice, 553
546 wheat, 209 maize, 293 jute, 255 pulses and 211 oilseeds.

547 The exchange rate is USD 1 = BDT 81.86 (BB, 2013)

548 Source: NFPCSP Field Survey, 2012.

549

550

551

552 **Table 3. Pesticide use rates and its factor share in gross value of output by farm size**
 553 **categories.**

Crops	% of farmers using pesticides	Within pesticide users in each farm size category	Pesticide use rate (BDT ha ⁻¹)	Pesticide cost share as gross value of output (%)
Marginal farms	74.71	1025.47		1.33
Small farms	74.89	1124.56		1.45
Medium/large farms	76.50	1120.85		1.41
All farms	75.37	1090.53		1.40

555 Note: Total number of farms is 2083 comprising of 696 marginal farms, 685 small farms and 702 medium/large
 556 farms.

557 The exchange rate is USD 1 = BDT 81.86 (BB, 2013)

558 Source: NFPCSP Field Survey, 2012.

Table 4. Definition, measurement and summary statistics of the variables used in the empirical model.

Variables	Definition and measurement	Mean	Standard Deviation
Dependent variable			
Pesticide use rate	BDT ha ⁻¹	821.95	897.77
Output prices			
Rice price	BDT kg ⁻¹ (Weighted average price of all varieties)	16.90	2.77
Wheat/maize price (weighted)	BDT kg ⁻¹ (Weighted average price of wheat and maize)	17.96	1.61
Jute price	BDT kg ⁻¹	36.96	3.93
Pulse price	BDT kg ⁻¹	48.99	2.47
Oilseed price	BDT kg ⁻¹	47.95	1.56
Input prices			
Land rent	BDT ha ⁻¹ (Actual rent value and/or imputed value)	36.98	19.81
Urea price	BDT kg ⁻¹	14.23	3.40
Triple Super Phosphate price	BDT kg ⁻¹	23.55	2.26
Muriate of Potash price	BDT kg ⁻¹	15.87	1.60
Diammonium Phosphate price	BDT kg ⁻¹	37.90	10.01
Gypsum price	BDT kg ⁻¹	8.75	7.15
Labour wage	BDT person day ⁻¹	236.62	55.98
Area cultivated			
Rice area	ha	0.77	1.11
Wheat/maize area	ha	0.14	0.40
Jute area	ha	0.06	0.24
Pulse area	ha	0.04	0.15
Oilseed area	ha	0.06	0.25
Socio-economic characteristics			
Average age of the farmer	Years	44.87	12.78
Average education level of the farmer	Years of completed schooling	5.59	3.92
Average family size	Number of person per household	5.04	1.93
Marginal farms	Dummy (1 = if farm size is 50 – 100 decimals; 0 = otherwise)	0.33	--
Small farms	Dummy (1 = if farm size is 101 – 250 decimals; 0 = otherwise)	0.34	--
Medium/large farms	Dummy (1 = if farm size is 251 decimals and above; 0 = otherwise)	0.33	--

Variables	Definition and measurement	Mean	Standard Deviation
Organic manure use rate	kg ha ⁻¹	2273.28	4462.32
Membership in NGOs	Dummy (1 = if member in an NGO; 0 = otherwise)	0.12	--
Agroecology			
Old Himalayan Piedmont Plain and Tista Floodplain	Dummy (1 = if hptf; 0 = otherwise)	0.22	--
Karatoya Floodplain and Atrai Basin	Dummy (1 = if kfab; 0 = otherwise)	0.25	--
Brahmaputra- Jamuna Floodplain	Dummy (1 = if bjf; 0 = otherwise)	0.20	--
High Ganges River Floodplain	Dummy (1 = if hgrf; 0 = otherwise)	0.10	--
Low Ganges River Floodplain	Dummy (1 = if lgrf; 0 = otherwise)	0.08	--
Ganges Tidal Floodplain	Dummy (1 = if gtf; 0 = otherwise)	0.05	--
Sylhet Basin and Surma-Kusiyara Floodplain	Dummy (1 = if sbskf; 0 = otherwise)	0.10	--
Land Elevation			
High Land	Proportion of High Land (i.e., no flooding) in total area of respective agroecological zone	0.30	0.16
Medium High Land	Proportion of Medium High Land (i.e., flooding depth of 0.01 – 0.90 m) in total area of respective agroecological zone	0.39	0.14
Medium Low Land	Proportion of Medium Low Land (i.e., flooding depth of 0.91 – 1.83 m) in total area of respective agroecological zone	0.16	0.08
Low/Very Low Land	Proportion of Low and/or Very Low Land (i.e., flooding depth of >1.84 m) in total area of respective agroecological zone	0.14	0.10
Climate			
Total annual rainfall	mm of total precipitation at the district level	1707.95	992.20
Temperature variability	Standard deviation of monthly maximum temperature (°C) at the district level	3.96	0.55
Number of observations		2083	--

561 Note: The exchange rate is USD 1 = BDT 81.86 (BB, 2013)

562 Source: NFPCSP Field Survey, 2012.

563

564

565

Table 5. Hypothesis tests

566

Test	Parameter restrictions	F-statistic	Degrees of Decision freedom (v_1, v_2)	
The full model with all the environmental variables is superior to the model with no environmental variables	$H_0: \text{All } \kappa_i = 0$	376.20*** (Likelihood(Chi- Ratio test) square)	9	Reject H_0 : The full model with environmental variable is superior
No influence of output prices on pesticide use	$H_0: \beta_1 = \beta_2 = \dots = \beta_5 = 0$	5.14***	(5, 2050)	Reject H_0 : Output prices jointly exert significant influence on pesticide use
No influence of input prices on pesticide use	$H_0: \beta_6 = \beta_7 = \dots = \beta_{12} = 0$	9.03***	(7, 2050)	Reject H_0 : Input prices jointly exert significant influence on pesticide use
No influence of area cultivated under different crops on pesticide use	$H_0: \gamma_1 = \gamma_2 = \dots = \gamma_5 = 0$	9.66***	(5, 2050)	Reject H_0 : Area cultivated under different crops jointly exert significant influence on pesticide use
No influence of socio-economic factors on pesticide use	$H_0: \delta_1 = \delta_2 = \dots = \delta_5 = 0$	7.79***	(5, 2050)	Reject H_0 : Socio-economic characteristics of the farmers jointly exert significant influence on pesticide use
No influence of farm size categories on pesticide use	$H_0: \delta_6 = \delta_7 = 0$	2.42**	(2, 2050)	Reject H_0 : Farm size categories jointly exert significant influence on pesticide use
No influence of agroecological characteristics on pesticide use	$H_0: \kappa_1 = \kappa_2 = \dots = \kappa_6 = 0$	62.82***	(6, 2050)	Reject H_0 : Agroecological characteristics jointly exert significant influence on pesticide use
No influence of land elevation on pesticide use	$H_0: \kappa_7 = 0$	21.88***	(1, 2050)	Reject H_0 : Land elevation significantly influences pesticide use
No influence of climatic factors on pesticide use	$H_0: \kappa_{11} = \kappa_{12} = 0$	17.87***	(2, 2050)	Reject H_0 : Climatic factors jointly exert significant influence on pesticide use

567

Note: *** Significant at 1% level ($p < 0.01$),

568

** Significant at 5% level ($p < 0.05$),

569

570

Table 6. Determinants of pesticide use at the farm level: a multivariate Tobit model.

571

Variables	Dependent variable: Pesticide use rate per ha				
	Parameter	Coefficient	t-ratio	Elasticity	t-ratio
Constant	α_0	7935.6960***	3.57	--	--
Output prices					
Rice price	β_1	15.0401*	1.87	0.3812*	1.86
Wheat/maize price	β_2	-14.7379	-1.07	-0.3970	-1.07
Jute price	β_3	10.4101	1.55	0.5772	1.55
Pulse price	β_4	38.0099***	4.25	2.7931***	4.20
Oilseed price	β_5	2.6621	0.19	0.1915	0.19
Input prices					
Land rent	β_6	-0.6346	-0.39	-0.0352	-0.39
Urea price	β_7	-38.0603***	-3.42	-0.8122***	-3.40
Triple Super Phosphate price	β_8	74.6290***	5.15	2.6365***	5.08
Muriate of Potash rice	β_9	19.1020	1.13	0.4548	1.12
Diammonium Phosphate price	β_{10}	-0.1263	-0.06	-0.0072	-0.06
Gypsum price	β_{11}	-5.7675**	-2.01	-0.0757**	-2.01
Labour wage	β_{12}	1.4752**	1.98	0.5236**	1.98
Area cultivated					
Rice area	γ_1	0.0654	0.70	0.0186	0.70
Wheat/maize area	γ_2	-0.2130	-0.88	-0.0114	-0.88
Jute area	γ_3	0.2311	0.55	0.0051	0.55
Pulse area	γ_4	-4.8192***	-6.71	-0.0728***	-6.50
Oilseed area	γ_5	-0.2596	-0.57	-0.0053	-0.57
Socio-economic characteristics					
Age of the farmer	δ_1	1.2737	0.72	0.0857	0.72
Education level of the farmer	δ_2	30.2700***	5.50	0.2537***	5.40
Family size	δ_3	-6.1009	-0.50	-0.0461	-0.50
Organic manure use rate per ha	δ_4	0.0154***	2.95	0.0524***	2.93
Membership in NGOs	δ_5	-15.8922	-0.25	-0.0029	-0.25
Small farms	δ_6	100.2944**	1.96	0.0495**	1.96
Medium/large farms	δ_7	113.6117*	1.86	0.0574*	1.86

Variables	Dependent variable: Pesticide use rate per ha				
	Parameter	Coefficient	t-ratio	Elasticity	t-ratio
Agroecology					
Old Himalayan Piedmont Plain and Tista Floodplain	κ_1	-7560.3280***	-5.60	-2.4771***	-5.52
Karatoya Floodplain and Atrai Basin	κ_2	-9047.4870***	-5.90	-3.3748***	-5.81
Brahmaputra Jamuna Floodplain	κ_3	-8075.6250***	-5.64	-2.4424***	-5.56
High Ganges River Floodplain	κ_4	-6967.1540***	-4.83	-1.0536***	-4.78
Low Ganges River Floodplain	κ_5	-9109.6490***	-6.09	-1.0824***	-5.99
Ganges Tidal Floodplain	κ_6	-9108.1300***	-5.96	-0.6887***	-5.86
Land elevation					
Medium High Land	κ_7	1936.3550***	4.68	1.1302***	4.63
High Land ^a	κ_8	(-769.3845**)	-1.96	(-0.3431**)	-1.96
Medium Low Land ^a	κ_9	(-1344.8210)	-1.52	(-0.3190)	-1.52
Low/Very Low Land ^a	κ_{10}	(-11415.5800***)	-8.58	(-2.4069***)	-8.19
Climate					
Total annual rainfall	κ_{11}	-2.6474***	-5.85	-6.7823***	-5.76
Variability in maximum average temperature	κ_{12}	-125.7742	-1.05	-0.7469	-1.05
Model diagnostics					
Log-likelihood		-13312.87			
Chi-square statistic (33 df)		822.96***			
Left censored observations		513			
Uncensored observations		1570			
Total number of observations		2083			

572 Note: a = These coefficients are from individual models fitted using only one land type variable each time in order to avoid high multicollinearity amongst
 573 these variables.

574 *** Significant at 1% level ($p<0.01$),

575 ** Significant at 5% level ($p<0.05$),

576 * Significant at 10% level ($p<0.10$).

577

578

579

580

581 Table A1. Recommended doses of major pesticides used in different crops in Bangladesh

582

APPENDIX

Crops	Name of Insecticides	Generic name	Recommended dose per ha	Market price (BDT per 100 gm/ml)	Remarks	Estimated value of recommended dose of pesticide use per ha (BDT ha ⁻¹)
(Boro/Aman /Aromatic)	Rice Furadan 5 G	<i>Carbofuran</i>	16.8 kg	15	Generally used 2 times	2520.00
	Sevin 75WP	<i>Carbaryl</i>	1000 gm	100		1000.00
	Dursban 25EC	<i>Chlorpyriphos</i>	1000 ml	120		1200.00
	Ripcord 10EC	<i>Cypermethrin</i>	500 ml	130		650.00
	Marshall 20EC	<i>Carbosulfan</i>	1000 -1500 ml	100		1500.00
Jute	Ripcord 10EC	<i>Cypermethrin</i>	500 ml	100	Generally used 2 - 3 times	650.00
	Dursban 25EC	<i>Chlorpyriphos</i>	1000 ml	120		1200.00
	Marshall 20EC	<i>Carbosulfan</i>	1000 -1500 ml	100		1500.00
Mustard	Malathion 57EC or	<i>Malathion</i>	1000ml	100	When attacked by Aphid	1000.00
	Ripcord 10EC	<i>Cypermethrin</i>	500 ml	130		650.00
Maize	Dursban 25EC or	<i>Chlorpyriphos</i>	1000 ml	120	When attacked by stem borer	1200.00
	Ripcord 10EC or	<i>Cypermethrin</i>	500 ml	130		650.00
	Marshall 20EC	<i>Carbosulfan</i>	1000 -1500 ml	100		1500.00
Wheat	Ripcord 10EC	<i>Cypermethrin</i>	500 ml	130	Generally not applied. Applied only if there is a need.	650.00
	Marshall 20EC	<i>Carbosulfan</i>	1000 -1500 ml	100		1500.00
Pulse	Ripcord 10EC	<i>Cypermethrin</i>	500 ml	130	Generally not applied. Applied only if there is a need.	650.00
	Dursban 25EC	<i>Chlorpyriphos</i>	1000 ml	120		1200.00

583 Note: Generally 500 litres of water is required to spray for every one hectare land. It is also important to note that farmers do not apply all pesticides listed
 584 within each crop. In general, only one of the pesticides will be applied to control pests or insects. Multiple pesticides will be used only in case of serious
 585 outbreak.

586 Source: Prepared with personal consultation with an entomologist (Professor Md. Abdul Latif) of the Department of Entomology, Sher-e-Bangla Agricultural
 587 University, Dhaka, Bangladesh.