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Abstract. Energy systems are becoming increasingly exposed to the impacts of weather and climate due to the
uptake of renewable generation and the electrification of the heat and transport sectors. The need for high-quality
meteorological data to manage present and near-future risks is urgent. This paper provides a comprehensive set of
multi-decadal, time series of hourly meteorological variables and weather-dependent power system components
for use in the energy systems modelling community. Despite the growing interest in the impacts of climate vari-
ability and climate change on energy systems over the last decade, it remains rare for multi-decadal simulations
of meteorological data to be used within detailed simulations. This is partly due to computational constraints, but
also due to technical barriers limiting the use of meteorological data by non-specialists. This paper presents a new
European-level dataset which can be used to investigate the impacts of climate variability and climate change on
multiple aspects of near-future energy systems. The datasets correspond to a suite of well-documented, easy-to-
use, self-consistent, hourly- and nationally aggregated, and sub-national time series for 2 m temperature, 10 m
wind speed, 100 m wind speed, surface solar irradiance, wind power capacity factor, solar power factor, and
degree days spanning over 30 European countries. This dataset is available for the historical period 1950–2020
and is accessible from https://doi.org/10.17864/1947.000321 (Bloomfield and Brayshaw, 2021a).

As well as this a companion dataset is created where the ERA5 reanalysis is adjusted to represent the impacts
of near-term climate change (centred on the year 2035) based on five high-resolution climate model simulations.
These data are available for a 70-year period for central and northern Europe. The data are accessible from
https://doi.org/10.17864/1947.000331 (Bloomfield and Brayshaw, 2021b).

To the authors’ knowledge, this is the first time a comprehensive set of high-quality hourly time series relating
to future climate projections has been published, which is specifically designed to support the energy sector. The
purpose of this paper is to detail the methods required for processing the climate model data and illustrate the
importance of accounting for climate variability and climate change within energy system modelling from the
sub-national to European scale. While this study is therefore not intended to be an exhaustive analysis of climate
impacts, it is hoped that publishing these data will promote greater use of climate data within energy system
modelling.

Published by Copernicus Publications.
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1 Introduction

Energy systems are rapidly decarbonising to meet climate
mitigation targets such as the Paris Agreement. There are
many possible steps to this decarbonising, including electri-
fying heat (Eggimann et al., 2020; Kozarcanin et al., 2020)
and transport (McCollum et al., 2014; Boßmann and Staffell,
2015; Bellocchi et al., 2020) and installing more renew-
able energy generation to provide clean electricity (Zeyringer
et al., 2018; Babatunde et al., 2019). There has been a marked
uptake of renewable energy generation in the last few years
(Abdelilah et al., 2020). These changes in power system
composition result in an increasing dependence on meteoro-
logical conditions (Bloomfield et al., 2016). The availability
of high-quality meteorological data for use in energy system
modelling has therefore become extremely important.

The relationship between temperature and electricity de-
mand is well documented in the energy–meteorology litera-
ture, with low temperatures leading to increased demand for
heating and high temperatures resulting in increased demand
for cooling (Taylor and Buizza, 2003; Bessec and Fouquau,
2008; Cassarino et al., 2018). Other weather conditions can
also impact demand, such as wind speed (via wind chill), rel-
ative humidity (via cooling requirements), and incoming so-
lar radiation (via lighting demand; Bunn and Farmer, 1985).
It is common for this relationship to be modelled using a
regression-based framework, including exogenous variables
such as day of the week and national holidays (Bloomfield
et al., 2016; Deakin et al., 2021). The meteorological rela-
tionship between weather and renewable generation is well
known, with wind power relating to wind speeds at wind tur-
bine hub height and solar power generation predominantly
relating to the amount of incoming solar radiation on the so-
lar panel. The efficiency of a solar panel is also influenced by
the panel temperature, with panels being less efficient at high
temperatures (Evans and Florschuetz, 1977). These relation-
ships are however complicated in reality by factors such as
grid constraints, unplanned outages, and curtailment of re-
newable generators.

There are a number of pre-processed meteorological
datasets available, providing national-level time series of de-
mand, wind power, and solar power generation across mul-
tiple European countries, though almost all of these fo-
cus exclusively on historic conditions. Examples include
those available from the Copernicus Climate Change Ser-
vice (CDS, 2021), Renewables Ninja (Staffell and Pfen-
ninger, 2016), and the University of Reading data reposito-
ries (e.g. Gonzalez et al., 2020; Bloomfield et al., 2020a).
These datasets are also mostly limited to national-scale re-
constructions, which previous work has shown can lead to
sub-optimal investment decisions for wind and solar genera-
tion within capacity expansion modelling (Frysztacki et al.,
2021). A number of automated tools have now also been de-
veloped to convert gridded meteorological data into time se-

ries of renewable generation (e.g. atlite Hofmann et al., 2021,
and pvlib Holmgren et al., 2018).

Although the importance of weather to modern-day en-
ergy systems is well understood (Troccoli et al., 2014), the
procedure for converting gridded meteorological data (often
output from numerical weather prediction simulations) into
time series of energy variables requires specialist climate
data knowledge (Bloomfield et al., 2021b). This is partly
due to the large meteorological data volumes, which can be
stored in potentially unfamiliar file formats (e.g. .grib, .pp,
or .netcdf). However, a more fundamental and scientifically
important challenge is the interpretation of climate model
simulations. For example, all climate models contain biases
and deficiencies that may require calibration and quantifica-
tion before realistic impact assessment can be performed. As
well as this, multiple types of uncertainty exist within climate
modelling. These include the model set-up (such as choice
of greenhouse gas emissions pathway or whether the atmo-
spheric model is coupled to an ocean model), the models
representation of internal climate variability, and the model
uncertainty (i.e. how the model responds to the changing ra-
diative forcing). The relative importance of these factors de-
pends on the variables considered, the spatial and temporal
scales considered, and the lead time of the projection re-
quired (Hawkins and Sutton, 2009).

While creating the following datasets, discussions in the
energy–meteorology community (further outlined in Bloom-
field et al., 2021b) lead to a list of requirements being created.
The datasets must meet the following requirements.

– They must have hourly temporal resolution. Power sys-
tem planning models tend to run at hourly (or sub-
hourly) resolution to thoroughly consider potential op-
erational constraints (Collins et al., 2018). For example
simulations take into account technologies for bulk en-
ergy storage, changes in diurnal heat demand profiles,
or sub-daily electric vehicle charging patterns.

– They must be provided over a multi-decadal histori-
cal period. Using a typical meteorological year is not
enough to account for the impacts of inter-annual cli-
mate variability in weather-dependent power systems
(Bloomfield et al., 2016; Collins et al., 2018) or to
understand the impact of extreme weather events on
power system operation (Dawkins et al., 2020; Bloom-
field et al., 2020b).

– They must represent the potential impacts of climate
change. It is now a requirement that European Resource
Adequacy Assessments include the impacts of climate
change (ENTSO-E, 2020a). The provision of accurate
future climate information is now critical for multiple
industries including energy.

To the best of our knowledge, there exists no open-source
dataset that meets these requirements. Although existing
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datasets were commonly hourly and multi-decadal, they of-
ten did not include the possible impacts of climate change.
Alternatively they lacked finer spatial resolution than na-
tional level. Having sub-national data allows for a more accu-
rate representation of within-country flows, sensitivity anal-
ysis on future renewable generation locations, and other use-
ful information for cost optimisation modelling (Frysztacki
et al., 2021).

We note the useful work of Bartok et al. (2019), which
processed meteorological variables from EURO-CORDEX
(Jacob et al., 2014) simulations for use in energy modelling.
However, this dataset still requires substantial storage space
and further processing by an end-user to get to regional time
series. Schlott et al. (2018) took meteorological data directly
from selected EURO-CORDEX ensemble members to use
as inputs for an energy system model after conversions to
energy variables. These future climate projections were used
to understand the impacts of climate change on the Euro-
pean energy network. However, climate model inputs were
not calibrated before use, which could lead to errors in the
results due to potential model errors in the representation of
surface meteorological variables. These could manifest in is-
sues with creation of wind and solar photovoltaic (PV) output
due to the strongly non-linear relationships.

When developing these datasets, compatibility issues be-
gan to emerge between the available meteorological data
and the requirements listed above. Firstly, although hourly
present-day meteorological information is commonly avail-
able from meteorological reanalysis products (see Sect. 2.1
for a description of these), hourly future climate simulations
are not commonly available. This is partly due to the signif-
icant amount of storage space required when running global
climate model simulations. However, this also reflects his-
torical practise in climate modelling, where there is scep-
ticism about the usefulness of outputting hourly data given
the difficulty of representing meteorological processes at fine
spatio-temporal scales. A secondary issue is that energy sys-
tem modellers may be required to work on small countries
(e.g. the Netherlands and Belgium) or at the sub-national
level. An example scale here is the nomenclature of territo-
rial units for statistics (NUTS) regions, which can be close to
or smaller than the spatial resolution of climate model sim-
ulations (e.g. less than 100 km). The amount of information
contained in relatively low-resolution climate model simula-
tions (such as those from the Coupled Model Intercompari-
son Project Phase 6, CMIP6, archive, with 100–250 km spa-
tial resolution) could therefore be problematic.

The workflow and resulting datasets presented in this
study demonstrate how to create energy–meteorology
datasets which can be used to model the impact of present-
day climate variability and near-term climate change on Eu-
ropean energy systems. The outlined methods are readily ex-
tendable to include other regions or climate models using the
code provided in the data repositories.

2 Data

2.1 The ERA5 reanalysis

The historical meteorological data used in this study are from
the ERA5 reanalysis (Hersbach et al., 2020), which is avail-
able to download from the Climate Data Store (CDS, 2021).
In essence, a reanalysis is a gridded 3D reconstruction of
the past state of the atmosphere. It is created by running a
numerical weather prediction model, with data assimilation,
to an extensive set of quality-controlled observations for the
required period. The ERA5 reanalysis is currently available
from 1950–present in hourly time steps at 0.3◦ spatial reso-
lution (around 30 km over Europe). The variables taken from
the CDS for use in this study are hourly 2 m temperature,
hourly accumulations of surface solar irradiance, and hourly
10 and 100 m wind speeds. The wind speeds are calculated
from the zonal and meridional wind vectors at hourly fre-
quency prior to any subsequent pre-processing at each height.

It has previously been highlighted that ERA5’s near-
surface wind speeds are subject to some biases compared to
other similar products, particularly over mountainous regions
(Bloomfield et al., 2020b; Jourdier, 2020). To accurately rep-
resent the 100 m wind speeds a mean bias correction proce-
dure was applied to adjust the magnitude of the ERA5 wind
speeds to those from the Global Wind Atlas dataset (GWA,
2018), as in Bloomfield et al. (2020b). This correction is im-
portant for the accurate representation of wind power capac-
ity factors (see Sect. 3.3).

2.2 Climate model simulations

A key challenge when selecting appropriate climate models
was to find models which output hourly 10 m wind speeds,
surface short-wave irradiance, and 2 m temperatures. The
source of climate data is the PRIMAVERA project data
archive (https://www.primavera-h2020.eu/, last access: 30
June 2021), which produced a set of high-spatial- and high-
temporal-resolution global climate model outputs. However,
of the 17 model simulations available through the Centre
for Environmental Data Analysis (CEDA) archive (avail-
able at https://www.ceda.ac.uk/services/ceda-archive/, last
access: 30 June 2021), only five simulations were avail-
able that output all three meteorological variables required
to model demand and wind and solar power capacity factors
(and even then three of these simulations were at 3-hourly
resolution). This highlights the problem in the climate mod-
elling community that the appropriate surface model outputs
are still not available for high-resolution impact studies. De-
tails of the five available model simulations used are given in
Table 1.

The climate model simulations were downloaded over
a European domain from 30–75◦ N and 15◦W–40◦ E, as
shown in Fig. 1. Table 1 shows that even the highest-
resolution global climate model simulations are approxi-
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Table 1. Details of climate models used in this dataset.

Model name Modelling centre Spatial resolution Temporal resolution
(km) (h)

ERA5 ECMWF 30 1
MOHC-MM-1hr (ens 2) UK Met Office 100 1
MOHC-MM-1hr (ens 3) UK Met Office 100 1
MOHC-HH-3hr UK Met Office 50 3
EC-EARTH3P-HR European Community 50 3
EC-EARTH3P European Community 100 3

mately 50 km resolution over Europe, which is coarser than
the 30 km resolution of ERA5. All of the five model simula-
tions were therefore interpolated onto the ERA5 grid before
calibration and analysis to provide the fairest comparison be-
tween datasets.

A number of 3-hourly regional climate model outputs are
available for analysis using the EURO-CORDEX data (Ja-
cob et al., 2014; available at https://www.euro-cordex.net/,
last access: 30 June 2021). However, in this case we wished
to use global climate model data to improve the reproducibil-
ity for those wishing to implement the code in other regions
(albeit with the limitations of some global climate models’
spatial-temporal resolution). It is well known that global-
scale processes can impact local climate variability and ex-
tremes (see Lledó et al., 2018, and Lledó and Doblas-Reyes,
2020, for energy–meteorology-relevant examples), but these
are not represented in regional climate model simulations due
to the smaller domain size.

Some 3-hourly global climate model data are available
from the Coupled Model Intercomparison Project Phase 6
(CMIP6) data archive. In using global climate model outputs
from the high-resolution PRIMAVERA simulations we have
the opportunity to link to analysis using CMIP6 outputs (even
if they are themselves lower resolution in time and space) in
the future to gain a wider perspective.

2.3 Region masks

Figure 1 shows a schematic diagram of the various zones
provided in the ERA5 dataset. Gridded ERA5 data are ag-
gregated over these regions to resultant time series that can
be used as an input for energy system modelling simula-
tions at the national or continental scale. For the onshore re-
gions, NUTS0-level data are provided for 38 European coun-
tries (see Appendix A for a list of these). The only deviation
from these zones is over the United Kingdom, which is in-
stead split into Great Britain (GB; England, Scotland, and
Wales) and then all of Ireland, to better align with the local
electricity grid structure. As the GB system was a key fo-
cus in this project, this region is further partitioned into the
NUTS1 level, and Scotland is provided at the NUTS2 level
(see Fig. 1). This allows for a demonstration of the value of
sub-national data inputs.

Figure 1. A schematic of the onshore (green box) and offshore
(blue box) zones used in this study for aggregation of meteorologi-
cal variables and capacity factors.

To represent all offshore locations where it is possible for
a nation to build wind turbines, time series are created for
the exclusive economic zones (EEZs) of 25 European coun-
tries (FMI, 2019; see Fig. 1). Finer discretisation was re-
quired around the United Kingdom and the North Sea. The
EEZs from the United Kingdom, Ireland and Norway were
therefore sub-set by the UK Met Office shipping forecast-
ing zones, which align well with the placement of many cur-
rent and planned large offshore wind farms. Although the UK
has been used here as a demonstration of high-resolution off-
shore generation zones, these are available worldwide and
could be implemented for future studies. Appendix A gives
further details of these zones.

Within each zone described above the appropriate meteo-
rological data or capacity factors are given a set of weights
to aggregate to a time series. Equal-area weightings are pro-
vided for all regions for hypothetical studies which are not
focused around existing or future renewable generation lo-
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Figure 2. (a) Population data, (b) wind farm locations, and (c) solar farm locations over Europe used to create the datasets in this study, all
interpolated onto the ERA5 reanalysis grid. See Appendix A for further details of the fields produced in each zone.

cations. Population weighting is provided to the meteoro-
logical fields as this is useful for modelling energy demand
(for example in large countries like Norway, the country-
average temperature is not representative of the relationship
between temperature and demand as very few people live
in the northern latitudes). Population data are taken from
Doxsey-Whitfield et al. (2015). Weightings based on existing
wind and solar farms are also included. Installed wind power
generation is taken from the https://www.thewindpower.net/
(last access: 30 April 2021) database. Solar panel locations
are taken from Dunnett et al. (2020), except for GB, where a
recent dataset from Stowell et al. (2020) is used, as this im-
proves the solar model performance (not shown). Solar panel
locations and population data are kept at 2021 levels for all
of the datasets that are produced.

The non-meteorological datasets used in this study for the
2021 period are shown in Fig. 2. These have all been inter-
polated on the grid of the ERA5 data used in this study. The
https://www.thewindpower.net/ database also includes some
information on the location of proposed future wind farms
and those currently under construction (not shown). A future
wind power simulation is also included for the wind power
capacity factor datasets for countries where these data are
available.

3 Methods

3.1 Calibration of climate model data

When investigating the impacts of climate change on any im-
pact system, it is important that the underlying climate model
data do not give a biased representation of the present-day
climate as this may result in an incorrect interpretation of
the results. One of the simplest and most common meth-
ods of climate model calibration is known as delta correction
(Hawkins et al., 2013). The delta correction method has a
long history in climate impact research (Belcher et al., 2005;
Maraun, 2016). Rather than performing a bias correction on
the climate model data themselves, this method applies a
modelled climate change response to adjust a set of pre-
existing historical observations. One key merit of the delta

correction is that it is immediately interpretable by a non-
expert audience due to it providing adjustments to known
past weather events. This is opposed to a bias adjustment
technique which scales the climate model data – which do
not relate to past weather events – to remove biases present
in the historical period compared to observations (see Bar-
tok et al., 2019, for a demonstration of this). A key area of
interest within energy–meteorology is the impact of extreme
weather events on potential power system operation (Bloom-
field et al., 2021b). A delta correction can therefore show
potential impacts of climate change on past extreme events
(see Sect. 4.2).

A description of an additive delta correction in its simplest
form is shown in Eq. (1):

OBSdelta(t)= OBShist(t)+ (MODfut−MODhist). (1)

Here t is the hourly time step. The historical (hist) and future
(fut) periods are an average over multiple decades to get a
mean response, and OBS is the observations. A different cor-
rection can be applied for different seasons as the projected
change can vary over each meteorological year. Adaptations
can also be included to correct both the mean and variance of
a dataset (see Maraun, 2016). Quantile mapping corrects both
the mean and variance by applying a different magnitude of
correction at different percentiles (Maraun, 2016). Prelimi-
nary analysis of the five climate models from Table 1 found
they are able to represent the present-day seasonal cycles of
the near-surface weather variables well, with some small bi-
ases. The diurnal cycles of near-surface weather variables
were also reproduced well by the models (not shown), lend-
ing some confidence to the choice of the delta correction ap-
proach. An example of the gridded seasonal-mean delta cor-
rection factor between the 1980–2010 and 2020–2050 peri-
ods is shown in Fig. 3 for the five climate model simulations.
This period was chosen for its relevance to power system in-
frastructure planning and as a period where the large uncer-
tainty in energy system design does not dwarf the possible
impacts of climate change (see Bloomfield et al., 2021a, for
examples). The rate of future warming in the climate model
data used is taken as a multi-model mean from the RCP8.5
climate simulations from the Coupled Model Intercompar-

https://doi.org/10.5194/essd-14-2749-2022 Earth Syst. Sci. Data, 14, 2749–2766, 2022

https://www.thewindpower.net/
https://www.thewindpower.net/


2754 H. C. Bloomfield et al.: Weather-dependent time series for energy system modelling

ison Project Phase 5 (see Haarsma et al., 2016, for further
details of the HighResMIP simulations).

Detailed analysis found that the impact of climate change
on the extremes of the meteorological variables was often
different to the mean response within each season. For this
reason the seasonal delta correction factors were applied
to each percentile of the distribution. Examples of this are
shown in Fig. 4 for one climate model at the grid points of
ERA5 closest to three large European cities. For this chosen
model, London summer temperatures experience larger im-
pacts of climate change than winter temperatures, whereas in
Helsinki winter temperatures (particularly in the lower per-
centiles of the distribution) require larger corrections than the
summer ones.

A seasonal quantile-based correction has been imple-
mented in this study to allow a detailed focus on extreme
events which may impact the energy sector throughout the
year. In this study delta corrections are applied to the grid-
ded hourly ERA5 data to represent the impacts of climate
change. Our particular delta correction takes the form shown
in Eq. (2):

ERA5delta(x,y,season, t)= ERA5hist(x,y,season, t)

+ (MODfut(x,y,season)

−MODhist(x,y,season)), (2)

where x and y are the latitude and longitude of each grid
point the correction is performed on, respectively, and other
variables are as described in Eq. (1). The correction is ap-
plied before computing area-aggregated variables. The delta
corrections for 10 m wind speed are used on the 100 m wind
speed field for ERA5 as this is the closest height available in
the climate model output.

The correction here presents a different approach to a sim-
ilar problem that was tackled in Bartok et al. (2019). This is
an area where substantially more research is needed to work
out the merits and issues of various correction methods for
use in power system modelling.

3.2 De-trended temperature data

As the historical period of ERA5 spans from 1950–2020
some statistically significant impacts of climate change are
already apparent over European land, particularly for 2 m
temperatures. Due to this a de-trended version of the 2 m
temperatures from ERA5 is also provided, where a linear
model is fitted from 1950–2020 to remove the long-term
trend. The data are then scaled to be representative of the
background temperature field from 1950, 1980, and 2010.
This is useful for studies wanting to include the impacts of
year-to-year climate variability but that may have concerns
about the plausibility of past events with current levels of
warming.

Figure 3. Seasonal-mean difference in surface solar irradiance be-
tween 1980–2010 and 2020–2050 for the five different climate
model simulations used in this study (see Table 1 for further de-
tails of the models). Stippling shows grid points where no statis-
tically significant climate change signal was found when using a
two-sample t test (Wilks, 2011).

3.3 Wind power capacity factor

A physical model is used to produce estimates of regional
wind power capacity factor. Gridded 100 m wind speeds from
the ERA5 reanalysis are converted into wind power capacity
factors using either an onshore or offshore power curve ex-
tracted from a National Grid report (National Grid, 2019),
shown in Fig. 5. Sensitivity testing was conducted, compar-
ing to curves used in Bloomfield et al. (2020b) to confirm that
these gave an improved fit to measured wind power genera-
tion from ENTSO-E (2020b) across multiple European coun-
tries compared to results from Bloomfield et al. (2020b).

Before passing the gridded 100 m wind speeds through the
appropriate power curve, they are scaled to the UK average
onshore or offshore hub height using Eq. (2).

Uhub = U100 m

(
Zhub

Z100 m

)α
(3)

HereU is the wind speed; Z is the height from the surface;
and α = 1

7 , which is an empirically derived coefficient related
to the stability of the atmosphere. This method is commonly
used in the wind power modelling community (e.g. Lledó
et al., 2019; Bloomfield et al., 2020b). The onshore and off-
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Figure 4. Seasonal percentile distributions of (a, b, c) 2 m temperature, (d, e, f) 100 m wind speed, and (g, h, i) surface short-wave radiation
for the nearest grid point to three major European cities. Solid lines show ERA5; dashed lines show ERA5, including the impact of climate
change from the ECEARTH-3P model.

shore hub heights were 71 and 92 m, respectively. These were
calculated as the weighted average of operational wind farms
in April 2021.

Information regarding the spatial distribution, hub heights,
and installed capacity of wind turbines is taken from the
https://www.thewindpower.net/ database, with the current

wind farm fleet representing those producing electricity in
April 2021 (see Fig. 2). The models perform well compared
to others in the literature, with an average daily R2 of 0.95
and average percentage error of 12 % when validated against
data from ENTSO-E (2020b). Validating a physical wind
power model against measured data is complex due to the
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Figure 5. The onshore (red) and offshore (black) wind power
curves used in this study, taken from National Grid (2019).

models’ inability to represent grid constraint, maintenance
periods, or wind power curtailment. For this reason day-
ahead forecasts from the ELEXON portal (Elexon, 2021) are
used for model verification in GB; an example of these are
shown in Appendix Fig. A3.

3.4 Solar power capacity factor

The solar PV model follows the empirical formulation of
Evans and Florschuetz (1977) but with adaptation to newer
solar PV technologies using methods from Bett and Thorn-
ton (2016) and Bloomfield et al. (2020b). The meteorological
inputs are gridded 2 m temperature (T ) and incoming surface
solar irradiance (G), from which hourly solar power capacity
factor (CF) is calculated using the equation below:

CF(t)=
power

powerSTC
= η(G,T )

G(t)
GSTC(t)

. (4)

Here G is the incoming surface short-wave radiation, T is
2 m temperature, and t is the time step (hours). STC stands
for standard test conditions (T = 25 ◦C, G= 1000 W m−2),
and η is the relative efficiency of the panel following

η(G,T )= ηr[1−βr(Tc− Tr)], (5)

where ηr is the photovoltaic cell efficiency evaluated at the
reference temperature Tr, βr is the fractional decrease in cell
efficiency per unit temperature increase, and Tc is the cell
temperature (assumed to be identical to the grid box temper-
ature). The model performs well, with an average daily R2

of 0.93, with 4.8 % error for countries where data were avail-
able at high enough quality for validation from the ENTSO-
E transparency portal (ENTSO-E, 2020b). Further details
of the model formulation and verification can be found in
Bloomfield et al. (2020b). An example of the model perfor-
mance for GB is given in Fig. A3.

4 Results

In this section some illustrative examples of the two datasets
are given. Firstly the benefits of some of the sub-national
data outputs are demonstrated in Sect. 4.1. Following this the
possible impacts of climate change on notable past events
and compound impacts are discussed in Sect. 4.2. Finally
the impact of climate model selection is briefly discussed
(Sect. 4.3).

4.1 What can we learn with sub-national data outputs?

One of the key advancements of this dataset compared to
many of its predecessors is the inclusion of sub-national time
series, which can be particularly useful for countries span-
ning a large geographical area with significant renewable re-
source diversity. For example, GB has plans to significantly
increase offshore wind capacity, with a very different spatial
distribution to today’s fleet (based on proposed farms from
the https://www.thewindpower.net/ database). Offshore float-
ing designs also have the potential to exploit areas that were
previously infeasible (Moore et al., 2018).

Figure 6 shows an example of how the GB nationally ag-
gregated offshore wind power capacity factor (weighted by
the location of current wind farms shown in Fig. 2) com-
pares to the capacity factor averaged over three of the UK
Met Office shipping zones. The shipping zones are chosen
for the spatial diversity around GB and for the large amount
of wind power generation installed in each one (see caption
of Fig. 6). The period chosen is a cold snap through De-
cember 2020 where generation from wind power was needed
to meet anomalously high demand. Although the modelled
national capacity factor is quite high throughout the period,
we see that there are marked drops in the capacity factor in
the Irish Sea on Christmas Day and in Cromarty on 28 De-
cember. Considerably more ramping is seen at this finer spa-
tial scale, which could create challenges for grid balancing
across GB.

Figure 7 shows the Pearson correlation coefficient between
the GB total offshore wind generation and the capacity factor
from the UK shipping zones throughout the whole reanalysis
period (1950–2020). Neighbouring zones’ wind power ca-
pacity factors have the highest correlations. When comparing
to Fig. 6 we can note a low correlation between Thames and
Cromarty (0.29) but a higher correlation between Thames
and the Irish Sea (0.49) and Cromarty and the Irish Sea
(0.59).

Similar analysis can be completed for solar power capacity
factor across UK NUTS1 and NUTS2 zones (similar results
are seen for 2 m temperature and degree days; not shown).
Figure 7 shows higher correlations for the UK solar capac-
ity factors than seen for wind generation due to the more
pronounced diurnal and seasonal cycles. Again it is notable
that neighbouring regions have the highest correlation, and
the lowest correlations are seen between Scotland (the UKM

Earth Syst. Sci. Data, 14, 2749–2766, 2022 https://doi.org/10.5194/essd-14-2749-2022

https://www.thewindpower.net/


H. C. Bloomfield et al.: Weather-dependent time series for energy system modelling 2757

Figure 6. Case study of a period of variable capacity factors showing national time series of GB offshore wind power capacity factor (black)
and three sub-regions containing a large proportion of UK offshore wind: Cromarty (blue; 0.7 GW), Irish Sea (red; 1.7 GW), and Thames
(Green; 2.3 GW).

zones) and southern England (UKI and UKJ zones). Analy-
sis of this type can be useful to understand potential strains
on existing grid infrastructure and can be used to think about
optimal future wind and solar farm distributions.

4.2 How could climate change impact past power
system extremes?

One potential use of the delta-corrected climate data is to re-
visit notable past weather events and see how they may be
influenced by climate change. Figure 8 shows two examples
of extreme events. The February 1963 big freeze was pre-
viously highlighted as being one of the coldest winters in
the last 80 years by Cattiaux et al. (2010), who used it as a
benchmark for the more recent 2010 cold event. The impact
of a winter with extreme prolonged low temperatures could
cause challenges for maintaining security of supply. Within
the ERA5 data we see the GB population-weighted temper-
ature stayed below 2 ◦C for over 5 d (black line in Fig. 8),
resulting in persistent snowy conditions. If this event were
to happen with the background warming level expected by
2035 (coloured lines in Fig. 8), we see that this event would
still have been exceptionally cold, but the minimum temper-
atures reached would not have been as low as those seen in
1963, implying a slightly reduced strain on the electricity
grids. An important caveat here is that by 2035 we would
expect the proportion of electric heating to have increased,
resulting in a stronger relationship between temperature and
demand. This change in system composition could mean that
even in a warmer climate the winter of 1963 could still be a
challenging peak demand event (Deakin et al., 2021).

The second notable event is the 2003 heatwave. This was
a period of prolonged high temperatures over Europe. Tem-
peratures were the highest seen since the start of the instru-
mental record in 1851 (Stott et al., 2004), which if occur-
ring in a present-day energy system could result in increased
demand for air conditioning and increased cooling water
requirements in traditional thermal power plants. Figure 8
shows that the GB population-weighted temperatures at the
peak of the diurnal cycle exceed 30 ◦C if the impact of poten-
tial near-future climate change is included (coloured lines).
In this event the sensitivity to the quantile-based delta cor-
rections is clear as the high temperatures experience a much
larger correction than the more moderate ones. An area wor-
thy of future investigation is understanding how large the dif-
ferences between climate change projections are compared to
the uncertainty that arrives from the choice of delta correc-
tion procedure (e.g. a percentile-based vs. mean delta correc-
tion).

Using the 70-year delta-corrected dataset, it is also possi-
ble to look at the change in frequency of extreme events. Here
we have chosen to focus on hot days, which are defined as
the exceedance of the 90th percentile of ERA5’s daily mean
2 m temperature. Figure 9 shows how many extra summer-
time (June–August) hot days are seen in the delta-corrected
ERA5 data for each of the five model simulations. It is no-
table that the UK Met Office simulations (MOHC runs) have
a larger summer warming than the EC-EARTH model runs.
This was also evident in the previous case studies (Fig. 8) and
Fig. A1. The response of 10 extra hot days (when averaged
over all five model simulations) is quite uniform across the
north-central European countries analysed.
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Figure 7. Pearson correlation coefficient heat map of (top) hourly offshore wind capacity factor time series from the Met Office shipping
zones, compared to the UK location-weighted total, and (bottom) hourly solar power capacity factor for NUTS1 and NUTS2 zones compared
to the UK location-weighted total.
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Figure 8. Top panels: two case study events showing the possible impacts of climate change on GB population-weighted 2 m temperatures.
ERA5 is shown in black, with delta-corrected model projections in colours. See Table 1 for further details of the models.

Figure 9. (a) The number of extra days per summer (June–August) in a possible future climate where daily population-weighted 2 m
temperature exceeds the 90th percentile value. (b) Number of days where 2 m temperature exceeds 90th percentile, and 10 m wind speed is
below the 10th percentile. (c) Number of days where 2 m temperature exceeds 90th percentile, and surface solar irradiance is below the 10th
percentile. See Table 1 for further details of the models.

Extra hot days could result in increased demand. However,
Fig. 9 shows that of these extra hot days only around 15 % of
these are both hot and still (2 m temperature exceeding the
90th percentile in ERA5 and 10 m wind speeds below the
10th percentile), suggesting that there may be wind power
generation available to meet elevated demands in general.
Only 5 % of the days are hot and cloudy (2 m temperature
exceeding the 90th percentile in ERA5 and surface solar ir-
radiance below the 10th percentile), suggesting a good com-
plementarity between solar power and periods of elevated de-
mand. We note there that these results are a set of first impres-

sions of the dataset and require further scientific analysis to
fully understand the potential impacts on society.

Another relevant compound weather event is periods of
low temperatures (associated with high demands; Bloom-
field et al., 2020b) and low wind speeds (resulting in low
wind power generation). Figure 10 shows histograms of the
70 coldest days from the ERA5 reanalysis and their corre-
sponding wind power generation. The 70 d are chosen as
this is equivalent to a once-yearly peak, although in reality
these events will often be grouped together during the pres-
ence of high-pressure systems (see Bloomfield, 2017). An
installed wind power capacity of 22 GW is used, as taken
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Figure 10. (a) The minimum 70 d of GB-average 2 m temperatures over the historical period. (b) GB-average daily mean wind power
generation on the 70 d of lowest temperature for ERA5 (black) and the delta-corrected ERA5 data (colours). See Table 1 for further details
of the models used for the delta corrections.

from the https://www.thewindpower.net/ database for 2021.
Generally these cold temperatures are associated with rela-
tively low wind power generation (with capacity factors of
around 20 %). However, days of much higher generation are
possible (with capacity factors up to 50 %). Figure 10 also
shows the potential impacts of climate change by including
the 70 coldest days from each of the delta-corrected sim-
ulations (coloured lines). In each simulation the climate is
warming, resulting in potentially lower peak demands. How-
ever, there are not noticeable differences in the amount of
wind power generation present. This shows that within our
chosen climate scenarios wind power still has the potential
to provide useful capacity at times of system stress.

4.3 The impact of climate model selection

In this study five climate model simulations have been used
from two modelling centres (see Table 1 for full details). It
is beyond the scope of the present paper to provide a com-
prehensive discussion of the differences between the climate
model projections. However, the importance of using both
multi-model and multi-realisation climate model archives for
power system applications is illustrated by the following ob-
servations.

When initially analysing Figs. 3, A1, and A2, it appears
that all five simulations have a broadly similar response to
climate change. All models’ 2 m temperatures increase in
a future climate, with the largest increase seen in summer
(Fig. A1) Similar results are seen for surface solar irradiance
over central Europe (Fig. 3). However, there are some quanti-
tative differences in the projected responses. The two differ-
ent modelling centres (EC-EARTH vs. MOHC) produce op-
posite winter wind speed projections over the North Sea, with
increases seen in the Met Office model and decreases seen in

EC-EARTH (Fig. A2). The differences between models are
also seen in Fig. 9, where the UK Met Office model runs (or-
ange and red colours) experience double the number of hot
days compared to the EC-EARTH model across Europe.

The second observation is that multiple runs with the same
model set-up (e.g. the two MOHC-MM-1hr simulations) can
give different results. An example of this is seen in Fig. A2,
where spring average wind speeds show opposite signs of
change over the North Sea and central Europe. Given that
these changes are both statistically significant, this suggests
that the differences are likely due to internal variability (see
Bloomfield et al., 2021a, for further discussion) and require
careful interpretation. With these short (30-year) samples
used to create the climate change impact, it is difficult to
attribute any differences between simulations to changes in
model resolution, but understanding these differences is the
subject of ongoing work in the meteorological community
(see Bador et al., 2020).

This shows the importance of considering multiple possi-
ble future simulations, and future work could extend this sub-
set of models even further when more high-resolution data
are available through future projects.

5 Code and data availability

Hourly time series of 2 m temperature, 10 m wind speed,
100 m wind speed, surface solar irradiance, degree days,
wind power capacity factor, and solar power capacity fac-
tor from 1950–2020, derived from the ERA5 reanalysis, are
available at https://doi.org/10.17864/1947.000321, (Bloom-
field and Brayshaw, 2021a). Future climate projections of
surface weather variables, wind power, and solar power ca-
pacity factors across north-western Europe and the code
used to create time series used in the paper are available
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from https://doi.org/10.17864/1947.000331 (Bloomfield and
Brayshaw, 2021b).

The Global Wind Atlas data used to calibrate the ERA5
100 m wind speeds are available at https://globalwindatlas.
info/download/gis-files (GWA, 2018).

The exclusive economic zones used in this project are
taken from https://www.marineregions.org/downloads.php
(FMI, 2019). The shapefiles of Met Office shipping zones
were provided by the UK Met Office on request.

6 Conclusions

This paper showcases a new dataset of European meteoro-
logical variables and weather-dependent energy variables for
use in energy system modelling, providing information on
both past (1950–2020) and future (2020–2050) climate con-
ditions. The dataset provides time series over a number of
national, regional, and offshore zones.

The future climate data correspond to a set of climate-
change-corrected 70-year climate samples (based on five dif-
ferent climate model projections), each representing the cli-
mate epoch 2020–2050. This allows the impacts of climate
change from five different high-resolution climate models to
be investigated. The climate change impacts are centred on
2035 to maximise their relevance to near-future infrastruc-
ture planning while ensuring that the uncertainty in energy
system design does not dwarf the possible impacts of climate
change.

Examples of the datasets are shown in the “Results” sec-
tion to display the different modelled regions as well as the
possible impacts of climate change on past notable events
and compound extremes. Future work could include a much
broader spectrum of outputs such as data from the Coupled
Model Intercomparsion Project Phase 6 (CMIP6) archive and
EURO-CORDEX to complement the work of Bartok et al.
(2019).

It is hoped that publishing these data will promote the up-
take and use of state-of-the-art climate data within energy
system modelling. The code to create all of the data outputs
from this project has been made available, and the authors
welcome discussion from users in other impact fields or re-
gions of the globe.

Appendix A: Details of aggregated regions

In the ERA5 dataset national-level 2 m temperature, 10 m
wind speed, 100 m wind speed, heating degree days, cool-
ing degree days, wind power capacity factor, and solar power
capacity factor data are created for the following coun-
tries: Austria, Albania, Belarus, Belgium, Bosnia and Herze-
govina, Bulgaria, Croatia, Czech Republic, Denmark, Esto-
nia, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Kosovo, Latvia, Lithuania, Luxembourg, Macedonia,
Moldova, Montenegro, the Netherlands, Norway, Poland,
Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Swe-
den, Switzerland, Turkey, Ukraine, and the United Kingdom.

Location-weighted onshore and offshore wind power gen-
eration is created for the United Kingdom, Ireland, the
Netherlands, France, Belgium, Germany, Denmark, Norway,
Sweden, Austria, Estonia, Lithuania, and Latvia. Nomencla-
ture of territorial units for statistics (NUTS) 1 and 2 regions
included in this study are UKC, UKD, UKE, UKF, UKG,
UKH, UKI, UKJ, UKK, UKL, UKM, and UKN as well as
UKM5, UKM6, UKM7, UKM8, and UKM9, respectively.

Offshore wind power generation averaged over exclusive
economic zones is calculated for France, Italy, Portugal, Es-
tonia, Latvia, Lithuania, Croatia, Romania, Slovenia, Greece,
Montenegro, Albania, Bulgaria, Spain, Norway, the United
Kingdom, Ireland, Finland, Sweden, Belgium, the Nether-
lands, Germany, Denmark, and Poland.

Within the exclusive economic zones of the United
Kingdom, offshore wind power generation is calcu-
lated for the following Met Office shipping zones (see
https://www.metoffice.gov.uk/weather/specialist-forecasts/
coast-and-sea/shipping-forecast, last access: 30 April 2021,
for more details): Forties, Cromarty, Forth, Tyne, Dogger,
Fisher, Humber, Thames, Dover, Wight, Portland, Plymouth,
Lundy, Irish Sea, Malin, Hebrides, and Fair Isle (for the
United Kingdom); Lundy, Fastnet, Irish Sea, Shannon,
Rockall, and Malin (for Ireland); and South Utsire, Forties,
and Fisher (for Norway).

For the datasets including delta corrections, the above de-
scriptions are limited to data from the following countries:
the United Kingdom, Austria, Belgium, Denmark, Finland,
France, Germany, Ireland, the Netherlands, Norway, Swe-
den, Latvia, Lithuania, and Estonia.
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Figure A1. Seasonal-mean difference in 2 m temperature between
1980–2010 and 2020–2050 for the five different climate model sim-
ulations used in this study (see Table 1 for further details of the
models). Stippling shows grid points where no statistically signif-
icant climate change signal was found when using a two-sample t
test (Wilks, 2011).

Figure A2. Seasonal-mean difference in 10 m wind speed between
1980–2010 and 2020–2050 for the five different climate model sim-
ulations used in this study (see Table 1 for further details of the
models). Stippling shows grid points where no statistically signif-
icant climate change signal was found when using a two-sample t
test (Wilks, 2011).

Earth Syst. Sci. Data, 14, 2749–2766, 2022 https://doi.org/10.5194/essd-14-2749-2022



H. C. Bloomfield et al.: Weather-dependent time series for energy system modelling 2763

Figure A3. Example verification of the wind and solar PV models for (top) onshore wind, (middle) offshore wind, and (bottom) solar PV.
For the wind power model, validation data (black) are taken from the ELEXON data portal, and for the solar PV data they are taken from
ENTSO-E (ENTSO-E, 2020b).
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