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 2 

Next generation restoration metrics: Using soil eDNA bacterial community data to 30 

measure trajectories towards rehabilitation targets 31 

 32 

Abstract 33 

In post-mining rehabilitation, successful mine closure planning requires specific, measurable, 34 

achievable, relevant and time-bound (SMART) completion criteria, such as returning 35 

ecological communities to match a target level of similarity to reference sites. Soil microbiota 36 

are fundamentally linked to the restoration of degraded ecosystems, helping to underpin 37 

ecological functions and plant communities. High-throughput sequencing of soil eDNA to 38 

characterise these communities offers promise to help monitor and predict ecological 39 

progress towards reference states. Here we demonstrate a novel methodology for monitoring 40 

and evaluating ecological restoration using three long-term (> 25 year) case study post-41 

mining rehabilitation soil eDNA-based bacterial community datasets. Specifically, we 42 

developed rehabilitation trajectory assessments based on similarity to reference data from 43 

restoration chronosequence datasets. Recognising that numerous alternative options for 44 

microbiota data processing have potential to influence these assessments, we 45 

comprehensively examined the influence of standard versus compositional data analyses, 46 

different ecological distance measures, sequence grouping approaches, eliminating rare taxa, 47 

and the potential for excessive spatial autocorrelation to impact on results. Our approach 48 

reduces the complexity of information that often overwhelms ecologically-relevant patterns 49 

in microbiota studies, and enables prediction of recovery time, with explicit inclusion of 50 

uncertainty in assessments. We offer a step change in the development of quantitative 51 

microbiota-based SMART metrics for measuring rehabilitation success. Our approach may 52 

also have wider applications where restorative processes facilitate the shift of microbiota 53 

towards reference states.   54 
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1. INTRODUCTION 59 

Land degradation and transformation, with negative impacts to biodiversity and ecosystem 60 

function, are estimated to impact 75% of the Earth's land surface, and this figure is projected 61 

to rise to over 90% by 2050 (IPBES, 2018). Ecological restoration—activity that supports 62 

rehabilitation of locally representative, sustainable, biodiverse ecosystems (Gann et al., 63 

2019)—is seen as integral to reversing these impacts, as highlighted by the UN declaration of 64 

2021–2030 as the Decade on Ecosystem Restoration (https://www.decadeonrestoration.org/). 65 

Restoration is technically challenging and requires considerable investment, without 66 

guaranteed success (Tibbett, 2015). With large investments in restoration (e.g. BenDor et al., 67 

2015 estimate US$9.5 billion/yr is spent in the USA alone; Menz et al., 2013 estimate US$18 68 

billion/yr is required to restore degraded lands globally), there is a need to improve the 69 

evidence base to guide continuous improvement in restoration outcomes and to underpin 70 

future investment. 71 

Reference ecosystems provide an important basis for establishing targets and 72 

monitoring progress of restoration activities (Gann et al., 2019) (refer to online 73 

Supplementary Materials in Appendix A, Figure S1). In post-mining contexts, best practice 74 

guidelines require formal mine completion criteria to be prescribed in a matter that is 75 

specific, measurable, achievable, relevant and time-bound (SMART) 76 

(Australian_Government, 2016; Manero et al., 2021). To-date, completion criteria have 77 

largely focussed on vegetation community variables, with typical ecological measures 78 

including alpha and beta diversity reflecting the number of different taxa and community 79 

composition, respectively. For example, targets may be set at a minimum threshold similarity 80 

to a reference community. Despite available guidance, many completion criteria are 81 

ambiguous or ill-defined, and can result in unclear standards for regulators, unrealistic 82 

expectations for stakeholders, and represent a key barrier to the relinquishment of minesites 83 
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(Manero et al., 2021). To help move the industry towards improved definitions of completion 84 

criteria, Manero et al. (2021) suggest criteria for industry best practice, which include using 85 

multiple reference sites, monitoring and corrective actions (i.e., adaptive management), 86 

allowing innovation-guided completion criteria, and specific objectives and indicators. 87 

Soil microbial communities (microbiota) have essential roles in organic matter 88 

decomposition, soil formation, and nutrient cycling, and therefore help regulate plant 89 

productivity and community dynamics (Harris, 2009). Patterns of land use, vegetation 90 

communities, and soil quality each help to shape soil microbiota (Bulgarelli et al., 2013; 91 

Delgado‐Baquerizo et al., 2018; Turner et al., 2013). Microbiota depend on the resource and 92 

energy flows associated with aboveground biota, and therefore their monitoring may help 93 

indicate the impact of restoration interventions (Harris, 2009; Jiao et al., 2018; van der Heyde 94 

et al., 2020). 95 

The development of low-cost, high-throughput sequencing of environmental DNA 96 

(eDNA) has enabled affordable, rapid and comprehensive assessment of soil microbiota; and 97 

these genomic techniques are now being used widely in a restoration context (Breed et al., 98 

2019; Mohr et al., 2022). Applying recognised ecological assessment approaches to abundant 99 

eDNA-based microbiota data has potential to provide a novel tool for measuring trajectories 100 

and predicting time to recover towards restoration targets (Rydgren et al., 2019). 101 

Chronosequence study designs, while containing limitations (Walker et al., 2010), are 102 

commonly used to examine ecosystem recovery following restoration activities (Tibbett, 103 

2010). However, there are few studies of soil microbiota from restoration chronosequences 104 

that explicitly visualise and evaluate patterns in ecological similarity to reference data with 105 

time since rehabilitation. It is customary for such studies (e.g., Fernandez Nuñez et al., 2021; 106 

Jiao et al., 2018; Schmid et al., 2020) to examine patterns in microbiota composition via 107 

analysis of taxonomic groups and ordination techniques which project multivariate 108 
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community data into lower dimensional space (e.g., 2-d plots). These popular techniques 109 

often characterise the complexity and site-specificity of soil ecosystems. However, a focus on 110 

measuring ‘similarity to reference’ may help cut through the complexity inherent to 111 

microbiota data. Along these lines, van der Heyde et al. (2020) visualised temporal trends in 112 

ecological similarity to reference data in post-mining rehabilitation—however, in their 113 

example each rehabilitation sample was only compared to a single closest reference sample, 114 

which potentially limited insight into variability and uncertainty in microbiota recovery. 115 

Here we provide a proof-of-concept demonstration and detailed exploration of a new 116 

complexity-reducing application of eDNA-based soil bacterial community data to assess the 117 

progress of post-mining rehabilitation using three long-term (> 25 year) chronosequence case 118 

studies from south-west Western Australia. Specifically, we aim to demonstrate the use of 119 

chronosequence-based rehabilitation trajectories, using measures of percent similarity of 120 

bacterial community structure to ecological reference sites (hereafter termed references), to 121 

assess progress of soil bacterial communities towards reference states with increasing 122 

rehabilitation age. We note that further work that links microbiota to other ecosystem 123 

components (e.g., vegetation, fauna) is important but beyond the scope of our study. 124 

Our intended audience includes microbiome researchers working in ecosystem 125 

restoration, as well as restoration managers who are considering new methods to add to their 126 

ecological monitoring toolkit. Our approach may also be adapted for monitoring and 127 

predicting microbiota recovery toward reference states in broader contexts, including 128 

microbiota-conscious urban design (Watkins et al., 2020) which represents an extension of 129 

ecosystem restoration in urban areas; and microbiota-mediated human health where the 130 

notion of diverse healthy reference states is well recognised (Lloyd-Price et al., 2016).  131 

Due to the potential for alternative data processing options to cause varying impacts 132 

on our rehabilitation trajectory assessments, we compare outcomes from a range of potential 133 
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options relevant to microbiota data analyses. For example, compositional data analysis 134 

approaches are promoted to have greater statistical rigour compared to standard approaches 135 

(Gloor et al., 2017); grouping bacterial taxa based on sequence similarity (i.e., varying the 136 

resolution of operational taxonomic units, OTUs) might help manage noise associated with 137 

microbiome data; taxonomic grouping might assist interpretation if recognised groups can be 138 

discussed; and eliminating rare taxa (to simulate reduced sequencing depths) might allow 139 

more cost-effective and rapid analyses. We also recognise the potential for spatial 140 

autocorrelation—where measured outcomes are closer in value due to closer spatial 141 

proximity—to confound the assessment of rehabilitation age in chronosequence studies that 142 

lack appropriate spatial design and replication. Accordingly, our a priori research questions 143 

were: (1) can soil bacterial community data be used to establish reference-based targets? (2) 144 

can soil bacterial community rehabilitation trajectory data be used to predict the time to 145 

recover to reference targets? and (3) how are these predictions of recovery influenced by 146 

different ecological distance/similarity measures and sequence data resolution? (4) 147 

Additionally, we conduct a preliminary, illustrative examination of spatial autocorrelation, 148 

and trial an approach to highlight and ‘correct’ datasets where its influence appears 149 

excessive. We then discuss limitations and synthesise our findings to inform future work. 150 

 151 

2. MATERIALS AND METHODS 152 

2.1 Data collection 153 

We used surface soil bacterial 16S rRNA marker gene data from three case study minesites 154 

(Figure 1; Appendix A, Tables S1–S3) from south-west Western Australia. Soil sampling 155 

was undertaken in accordance with Australian Microbiome (AM) protocols (Bissett et al., 156 

2016; https://www.australianmicrobiome.com/protocols; Appendix A, Supplementary 157 

Methods). Each minesite experiences a Mediterranean-type climate with hot, dry summers 158 
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and cool, wet winters. Post-mining rehabilitation activities typically involved deep-ripping, 159 

prior to the ‘direct return’ (where possible) of subsoil and topsoil stripped from a separate pit 160 

about to be mined, followed by revegetation with locally appropriate seed of diverse plant 161 

communities (Tibbett, 2010). Precise soil handling and storage techniques differed between 162 

the minesites and different pits within minesites. Summary information for each minesite is 163 

provided below (see Appendix A, Supplementary Methods for more background information; 164 

other studies in-progress will provide expanded analyses of surface and subsoil data from 165 

these minesites, including additional marker gene datasets). 166 

Alcoa’s Huntly bauxite-producing minesite is approximately 100 km south-east of 167 

Perth, occurring in mixed open forest with dominant overstorey species of Jarrah (Eucalyptus 168 

marginata) and Marri (Corymbia calophylla) on lateritic, nutrient poor soils. We consider 169 

Huntly data sampled in 2016, with rehabilitation ages between 2–29 years old. Huntly’s 36 170 

samples correspond to rehabilitation years: 1987 (n = 3), 1991 (n = 3), 1999 (n = 3), 2002 (n 171 

= 3), 2008 (n = 3), 2014 (n = 3), reference (n = 18), where each reference site was paired with 172 

an adjacent rehabilitation site.  173 

Iluka Resource’s Eneabba mineral-sand minesite is approximately 280 km north of 174 

Perth, occurring in sandplain heath vegetation comprising low shrubland on undulating 175 

infertile siliceous sandplains, predominantly featuring perennial woody species from the 176 

Proteaceae, Myrtaceae, and Fabaceae families. We consider Eneabba data sampled in 2019, 177 

with rehabilitation ages between 7–38 years. Eneabba’s 26 samples correspond to 178 

rehabilitation years: 1981 (n = 3), 1989 (n = 2), 1995 (n = 3), 2000 (n = 2), 2004 (n = 3), 179 

2009 (n = 2), 2012 (n = 2), reference (n = 9).  180 

South32’s Worsley bauxite-producing minesite is located approximately 150 km south 181 

of Perth, occurring in Jarrah (Eucalyptus marginata) forest on lateritic, nutrient poor soils. 182 

We consider Worsley data sampled in 2019, with rehabilitation ages between 2–28 years old. 183 



 9 

Worsley’s 25 samples correspond to rehabilitation years: 1991 (n = 2), 1996 (n = 4), 1999 (n 184 

= 2), 2002 (n = 2), 2005 (n = 2), 2007 (n = 1), 2011 (n = 3), 2017 (n = 3), reference (n = 6).  185 

Each soil sample had physico-chemical analyses performed at CSBP Laboratories 186 

(Perth, Western Australia) to quantify key soil abiotic variables as prescribed by AM 187 

protocols, including soil texture, organic carbon, ammonium, potassium, sulphur, calcium, 188 

pH, nitrate, phosphorous, and electrical conductivity. 189 

 190 

FIGURE 1. Locations of minesites and soil sampling sites: (a) Huntly, (b) Eneabba, 191 

(c) Worsley. (Imagery: Sentinel-2; https://eos.com/landviewer; EOS Data Analytics, Inc.) 192 

 193 
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2.2 eDNA sequencing, bioinformatics, and data preparation 194 

DNA extraction, PCR and preliminary bioinformatic analyses were undertaken in accordance 195 

with AM workflows (Bissett et al., 2016; see Appendix A, Supplementary Methods). From 196 

this workflow, denoised 16S rRNA gene amplicon sequence variant (ASV) level abundance 197 

data were produced for all minesites. Note, in this study ASVs are equivalent to zero radius 198 

OTUs (zOTUs). Further data preparation and analyses were largely undertaken in R version 199 

4.0.3 (R-Core-Team, 2020) utilising the framework of the R phyloseq package (McMurdie 200 

and Holmes, 2013) to manage the datasets (see Appendix A, Supplementary Methods for 201 

number of sequences and ASVs studied in each minesite, initial data cleaning steps, and 202 

preparation of phylogenetic trees). 203 

 204 

2.3 Data visualisation and statistical analyses 205 

We visualised the sequence depth of samples using rarefaction curves (Appendix A, 206 

Figure S2). We performed exploratory data analyses to visualise ASV alpha diversity, 207 

evenness, and relative abundance via heatmaps of phyla, classes, and orders in each minesite 208 

(Appendix A, Supplementary Methods, Figures S3–S13). Alpha diversity and evenness were 209 

based on rarefied ASV abundances (as below), while relative abundances were computed 210 

using non-rarefied data. We used alternative normalisation approaches consistent with 211 

common practice in the literature (Gloor et al., 2017; Weiss et al., 2017). Further exploratory 212 

data analyses included preliminary visualisations of soil and landscape variables that 213 

associated with the soil bacterial community samples within each minesite (see Appendix A, 214 

Supplementary Methods, Supplementary Data, Figures S14–20). 215 

To prepare for the computation of ‘standard’ ecological distance measures (as 216 

described by Gloor et al., 2017; e.g. Bray-Curtis, Jaccard, UniFrac), we normalised the 217 

sequence data for sampling effort by rarefying abundances of ASVs, and other taxonomic 218 
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levels investigated (see below), to the minimum sample sequence depth within respective 219 

minesites (Huntly, n = 17,485 sequences; Eneabba, n = 10,142 sequences; Worsley, n = 220 

54,122 sequences) using the rarefy_even_depth() function from R phyloseq. 221 

 To prepare ‘compositional’ data analysis distance measures we followed the 222 

recommendations of Gloor et al. (2017) and Quinn et al. (2019), using non-rarefied data. 223 

However, we took the pragmatic initial step of excluding taxa that contained zero counts in 224 

more than 90% of samples within each minesite, to help limit the potential for artefactual 225 

influences (as discussed later) to be introduced by the subsequent steps of zero replacement 226 

and centred log ratio transformation. Then, following Quinn et al. (2019) we used the default 227 

geometric Bayesian multiplicative model in the cmultRepl() function of the R zCompositions 228 

package (Palarea-Albaladejo and Martín-Fernández, 2015) to replace zeros with small 229 

numbers; before computing centred log ratio transformations using the propr() function from 230 

the R propr package (Quinn et al., 2017). Further steps are outlined in section 2.3.1 below. 231 

We examined a range of alternative qualitative and quantitative beta diversity (i.e., 232 

distance or community dissimilarity) measures which were converted to similarity, to model 233 

rehabilitation trajectories and time to reach reference targets (as described further below). For 234 

the minesite with the largest number of samples (Huntly), we also investigated data pre-235 

processing options of grouping by sequence similarity, taxonomic grouping, and excluding 236 

rare taxa. Details of the number of samples, taxa and sequences considered for all minesites, 237 

distance measures and data processing options (see below) are provided in Appendix A, 238 

Table S4. Supporting data and R code used in our study are available online (see data 239 

availability statement). 240 

 241 

2.3.1 Comparison of alternative ecological and compositional similarity measures 242 
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For each minesite, we used the cleaned and rarefied ASV-level bacterial community data to 243 

derive standard ecological distance matrices using distance measures commonly employed in 244 

microbiota studies—i.e., Jaccard, Bray-Curtis, Unweighted UniFrac and Weighted UniFrac 245 

(Lozupone et al., 2007)—via the vegdist() function from the R vegan package (Oksanen et 246 

al., 2020). We also compared results from the Bray-Curtis measures with the compositional 247 

data analysis approach from computing Aitchison distances via vegdist() (i.e., these were 248 

derived from Euclidean distances between samples after centred log ratio transformation; 249 

Gloor et al., 2017). For each minesite, Bray-Curtis distances were visualised using principal 250 

coordinates analysis (PCoA) ordination, while Aitchison distances were visualised using 251 

principal components analysis (PCA) (Gloor et al., 2017) (Figure 2). For the comparison 252 

between Bray-Curtis and Aitchison measures at Worsley we used the spatially filtered dataset 253 

which excluded the southernmost samples as described in section 2.3.6. 254 

The rehabilitation trajectory analyses presented here were then derived from a subset 255 

of data contained in the above distance matrices. Specifically, only pairwise distances 256 

between samples and all reference samples within a minesite were considered (including 257 

distances among reference samples). That is, any pairwise distances not involving a reference 258 

were not included in these analyses. 259 

For standard measures (i.e. Bray-Curtis, Jaccard, Weighted UniFrac and Unweighted 260 

UniFrac), data were then expressed as percent similarity to reference values using (adapted 261 

from Legendre and Legendre, 2012): 262 

%	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑡𝑜	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒!"#$%#&%	()/+	,#-./0	1	#$%	203	4) = 100 ∗ (1 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒14) 263 

For the compositional Aitchison measures, similarity to reference was calculated 264 

using (adapted from Legendre and Legendre, 2012): 265 

%	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑡𝑜	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒61"781,9$	()/+	,#-./0	1	#$%	&03	4) = 100 ∗ (1 −	
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒14
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒-#:

) 266 

  267 
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 268 

 269 

 270 
 271 
FIGURE 2. PCoA and PCA visualisations of differences in soil bacterial communities for: 272 

Huntly (n = 36 samples) using (a) Bray-Curtis distances (30,751 ASVs; 629,460 sequences) 273 

and (b) Aitchison distances (25,720 ASVs, 1,723,759 sequences); Eneabba (n = 26 samples) 274 

using (c) Bray-Curtis distances (27,115 ASVs; 263,692 sequences) and (d) Aitchison 275 

distances (24117 ASVs; 2,042,214 sequences); Worsley (excluding southernmost samples, n 276 
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= 22 samples) using (e) Bray-Curtis distances (53404 ASVs; 1,190,684 sequences) and (f) 277 

Aitchison distances (43,598 ASVs; 1,782,724 sequences). 278 

 279 

2.3.2 Grouping by sequence similarity 280 

For Huntly data only, separate R phyloseq objects were generated to represent soil bacterial 281 

community data with sequences clustered into 99%, 97%, 95%, and 90% identity OTUs (see 282 

Appendix A, Supplementary Methods). 99% and 97% identity OTU clustering have been 283 

used widely in recent years (prior to the emergence of zOTUs or ASVs), and accordingly, we 284 

included OTUs with a range of clustering thresholds to examine whether consistent patterns 285 

emerged. For these analyses, OTUs were formed, abundance data were rarefied, and then 286 

Jaccard and Bray-Curtis distances and similarity to references were calculated. 287 

 288 

2.3.3 Taxonomic grouping 289 

For Huntly data only, we examined the influence of taxonomic grouping (i.e., ASV, genus, 290 

family, order, class, and phylum) on the assessments of recovery. We also tested the 291 

influence of discarding versus retaining (at the next available classified grouping) taxa that 292 

were unclassified at each taxonomic rank, which we termed ‘pruned’ and ‘non-pruned’ data 293 

respectively. Grouping was undertaken using tax_glom(); and in ‘pruned’ datasets, 294 

unclassified taxa were removed using prune_taxa() from R phyloseq. For these analyses, taxa 295 

were grouped, abundance data were rarefied, then Jaccard and Bray-Curtis distances and 296 

similarity to references were calculated. Richness and evenness of sequences at the order, 297 

class and phylum level were also visualised based on rarefied data and plotted together with 298 

composite estimates within rehabilitation age groups from merged-sample bootstrap 299 

resampling (Liddicoat et al., 2019) (B=100). 300 
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 301 

2.3.4 Excluding rare taxa 302 

For Huntly data only, we examined the influence of excluding rare taxa, by considering all 303 

ASVs, then ASVs with >0.001 %, > 0.01%, and > 0.1% relative abundance within each 304 

minesite. For these analyses, ASVs with below the respective relative abundance threshold 305 

were removed, abundance data were rarefied, then Jaccard and Bray-Curtis distances and 306 

similarity to references were calculated. 307 

 308 

2.3.5 Rehabilitation trajectory modelling 309 

The progress of rehabilitation was then visualised using boxplots and logarithmic models 310 

based on the similarity to reference data. Boxplots were generated from the series of 311 

similarity to reference data on the y-axis and increasing rehabilitation age on the x-axis, 312 

concluding with reference samples (e.g., Figure 3). Testing for differences in similarities to 313 

reference at each rehabilitation age (as visualised with boxplots) was performed using the 314 

Kruskal-Wallis rank sum test, followed by post-hoc Dunn tests for multiple comparisons, 315 

with Bonferroni adjusted threshold P-values. The multiple comparison testing used default 316 

two-sided P-values and alpha = 0.05 nominal level of significance. 317 

After observing the variation in similarity to reference values among references 318 

within each minesite (e.g., Figure 3), we defined rehabilitation targets for the purpose of this 319 

study as the median (= the central value) of among-reference similarities. This target median 320 

value varied by minesite, distance/similarity measure, and pre-processing option.  321 

We predicted the time to reach a restoration target (= recovery time) by modelling the 322 

trend in similarity to reference with increasing rehabilitation age using bootstrapped (B = 323 

100) logarithmic models. The median, 2.5th and 97.5th percentiles of predicted recovery time 324 

were evaluated. Our use of logarithmic models was consistent with the approach of Rydgren 325 
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et al. (2019), except we used similarity not distance measures. Each iteration of the bootstrap 326 

involved random sampling with replacement from the available chronosequence similarity to 327 

reference data, excluding outliers identified via the boxplot() function in base R, and 328 

developing a predictive logarithmic model for similarity to reference out to a maximum 329 

rehabilitation age of 500 years, or until the target was reached. Models that failed to reach the 330 

target were reported with a prediction time of ‘>500 years’. Rectangular hyperbola and 331 

negative exponential models were also trialled but were abandoned after many cases failed to 332 

produce model fits. During our early analyses, we also uncovered example data that 333 

highlighted a distorting influence on our trajectory (and recovery time) modelling that 334 

appeared to be consistent with the application of ‘direct return’ soils in young rehabilitation 335 

sites. Specifically, this soil material was more similar to references than older rehabilitation 336 

sites. Including these samples with elevated similarity to references in the logarithmic 337 

modelling appeared to bias models towards flatter, longer trajectories of recovery. Therefore, 338 

to reflect the likely onset of recovery towards reference states we decided to only commence 339 

logarithmic models (via our automated modelling algorithm) from the youngest rehabilitation 340 

age group that had a next older group with increased median similarity to references. As 341 

discussed later, this check on model commencement was designed to avoid likely distortions 342 

in the modelling of recovery, in particular, due to potential biological inertia in direct return 343 

soils (Janzen, 2016). 344 

 345 

2.3.6 Exploring spatial autocorrelation 346 

To explore the influence of spatial autocorrelation on our trajectory analyses, we produced 347 

variogram-like plots (adapted from Webster and Oliver, 2007) using Bray-Curtis ecological 348 

distances (between samples and references) on the y-axis, and geographic distances (between 349 

samples and references) on the x-axis. Each rehabilitation age group was modelled as a 350 
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second-order polynomial, allowing the possible expression of curvilinear trendlines that 351 

mimicked variogram-like relationships (i.e., increasing then flattening). Assuming reference 352 

curves offered a natural baseline trend for spatial autocorrelation within each minesite 353 

environment, we applied a 'correction' to the curvilinear trendline for each rehabilitation age 354 

group by calculating the difference in mean-centred model curves (= rehabilitation age group 355 

minus reference), such that 'corrected' data for rehabilitation age groups expressed the same 356 

ecological distance-geographic distance curvilinear trend as seen for references (see 357 

Appendix A, Supplementary Methods for further details of the rationale and approach for this 358 

preliminary analysis). Rehabilitation trajectories and predicted recovery times were compared 359 

between ‘original’ and ‘corrected’ data, for the Bray-Curtis similarities. For the Worsley 360 

minesite, a filtered dataset, and corresponding correction, were also prepared which excluded 361 

the three southernmost samples (i.e., two 2-year old samples and an adjacent reference), 362 

which were geographically separate from the other Worsley samples (see Figure 1, and 363 

Appendix A Table S3). 364 

 365 

3. RESULTS 366 

3.1 General findings 367 

We found remarkable variability among reference samples within each minesite (Figure 3; 368 

Appendix A, Table S5, Figures S21, S23–S25). Median among-reference similarities ranged 369 

from <20% to >95% across all measures, and between approximately 30–40% for Bray-370 

Curtis measures, with variation depending on the specific distance measure, pre-processing 371 

option, and minesite. All rehabilitation trajectory plots indicated recovery, displaying the 372 

general pattern of increasing similarity to references with increasing rehabilitation age 373 

(Figure 3; Appendix A, Figures S21, S23–S25), although the logarithmic models and 374 

predicted recovery times varied with distance measures, pre-processing and minesite.  375 
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 376 

 377 

 378 

FIGURE 3. Modelled rehabilitation trajectories (a) and predicted recovery times (b) for 379 

Huntly, Eneabba, and Worsley (excluding southernmost samples) based on surface soil 380 

bacterial community similarity to reference data using Bray-Curtis and Aitchison measures. 381 

Plots are derived from the same data that underpin Figure 2. In (a), blue dotted lines denote 382 

the target median similarity among reference soils, and red lines represent logarithmic models 383 
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for changing similarity to reference with rehabilitation age based on bootstrap resampling and 384 

modelling (B=100). Boxplots display the distribution of similarity to reference values across 385 

rehabilitation ages (groups not sharing a letter are significantly different). In (b), violin plots 386 

with boxplot inlays depict the distribution of recovery times from the 100 bootstrap model 387 

runs. D 95% prediction intervals (PI) indicate whether differences in recovery times predicted 388 

using alternative measures (Bray-Curtis versus Aitchison) are significantly different. 389 

 390 

3.2 Alternative ecological and compositional measures 391 

Despite some differences in the expression of rehabilitation trajectories using Bray-Curtis 392 

versus Aitchison measures at Huntly, Eneabba, and Worsley (excluding southernmost 393 

samples), these measures produced comparable predictions for recovery time within each 394 

minesite (Figure 3; Appendix A, Table S6). At Huntly, predicted recovery times differed by 395 

around 12 years, with a median recovery of 43 years for Bray-Curtis measures and 31 years 396 

for Aitchison measures. At Eneabba, the median Bray-Curtis recovery time was 60 years, 397 

while the median Aitchison recovery time was 50 years, however due to the spread of model 398 

outcomes, predictions from these measures were not significantly different (i.e., D 95% 399 

interval contains zero; Figure 3). Similarly, at Worsley (excluding southernmost samples), 400 

the median Bray-Curtis recovery time was 44 years, while the median Aitchison recovery 401 

time was 53 years, however predictions from these measures were not significantly different 402 

(i.e., D 95% interval contains zero; Figure 3). 403 

Among standard measures we found a general increase in similarity to reference 404 

values across the ecological measures, from Jaccard (generally lowest similarities), Bray-405 

Curtis, Unweighted UniFrac, to Weighted UniFrac (generally highest similarities) (Appendix 406 

A, Figure S21, Table S5). The greatest y-axis span, and therefore greatest sensitivity to detect 407 

change, in similarity to reference values between the youngest rehabilitation ages and 408 
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references occurred with Bray-Curtis measures (Appendix A, Figure S21). The smallest span 409 

(or flattest curves) in similarity to reference values between the youngest rehabilitation ages 410 

and references occurred with Weighted UniFrac measures. 411 

Except for the Unweighted Unifrac result at Huntly, Jaccard measures generally 412 

returned the longest predicted recovery times, followed by reduced or similar recovery times 413 

predicted using Bray-Curtis, Unweighted Unifrac and Weighted UniFrac measures 414 

(Appendix A, Figure S22, Table S6). Low sample sizes (and corresponding low numbers of 415 

distance measures) represent a limitation in our analysis, and the ecologically-distant samples 416 

in the 17-year and 25-year rehabilitation age group at Huntly (Figure 2a) are likely 417 

contributing to the reduced similarity and longer rehabilitation trajectory in Unweighted 418 

UniFrac data. These 17-year and 25-year rehabilitation age group data at Huntly express 419 

reduced alpha diversity and evenness compared to other samples, however reasons for this 420 

are unclear (Appendix A, Figures S3–S4). 421 

 422 

3.3 Grouping by sequence similarity (Huntly only) 423 

Grouping by sequence similarity resulted in progressive overall shifts towards increasing 424 

similarity to reference values from ASV-level (generally lowest similarities), 99%, 97%, 425 

95%, to 90%-identity clustered OTUs (generally highest similarities) (Appendix A, Figure 426 

S23). Predicted recovery times with more broadly clustered OTUs followed continuous and 427 

seemingly predictable patterns of: (i) increasing recovery times with Jaccard measures (i.e., 428 

medians of 61 to 134 years), and (ii) decreasing to steadying recovery times with Bray-Curtis 429 

measures (i.e., medians of 43 to 37 years) (Appendix A, Figure S26a, Table S6). 430 

 431 

3.4 Taxonomic grouping (Huntly only) 432 
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Moving from ASV to genus-level data resulted in a pronounced shift towards increasing 433 

similarity to reference, with similar although somewhat flatter rehabilitation trajectory curves 434 

at higher taxonomic groupings (Appendix A, Figure S24). Visually, there appeared to be little 435 

effect on the rehabilitation trajectory plots from pruning unclassified taxa (Appendix A, 436 

Figure S24). Using Jaccard measures, moving from ASV-level to grouping at genus-level or 437 

higher groupings dramatically increased predicted recovery times, compared to other 438 

measures (Appendix A, Figure S26b, Table S6). Also, pruning of unclassified groups reduced 439 

the smoothness or continuity in Jaccard-predicted recovery times (Appendix A, Figure S26b). 440 

Using Bray-Curtis measures, we found a non-linear pattern of recovery times across the 441 

taxonomic groupings, with shorter times to reach the target in genus, family, and order-level 442 

groups, and longer recovery times in other groupings (Appendix A, Figure S26b; see 443 

Appendix A, Figures S5–S13 for relative abundances of order, class, and phylum-level taxa 444 

for each minesite). Richness and evenness of bacterial communities varied across 445 

rehabilitation age groups and taxonomic groupings (e.g., data for phylum, class, and order-446 

level are shown in Appendix A, Figure S27), which may help explain the somewhat erratic 447 

results from taxonomic grouping. 448 

 449 

3.5 Excluding rare taxa (Huntly only) 450 

Removing rare taxa to the point of retaining ASVs with >0.01% relative abundance produced 451 

results from the Jaccard analysis that appeared to mimic results from the Bray-Curtis analysis 452 

(Appendix A, Figure S25). When only more common ASVs with >0.1% relative abundance 453 

were retained, both the Jaccard and Bray-Curtis results appeared to reflect over-simplified 454 

communities, resulting in shorter predicted recovery times. However, including only ASVs 455 

with >0.001% relative abundance resulted in a dataset with approximately 60% of the 456 

original taxa and 95.8% of total sequences after rarefying (i.e., 17,941 compared to 30,751 457 
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ASVs and 603,072 compared to 629,460 sequences; Appendix A, Table S4) and produced 458 

only a small increase in predicted recovery times for both Jaccard and Bray-Curtis measures 459 

(Appendix A, Figure S26c, Table S6). 460 

 461 

3.6 Correcting for spatial autocorrelation 462 

We modelled the slope-trends of the relationships between ecological distance to references 463 

and geographic distance to references, within rehabilitation age classes, for each of the 464 

minesites using Bray-Curtis measures (see Appendix A, Huntly and Eneabba: Figures S28–465 

S29; Worsley: Figure 4). We also applied a ‘correction’ for the spatial autocorrelation, such 466 

that rehabilitation age groups were adjusted to display the same ecological-geographic slope 467 

trend as found in references (refer to the ‘c’ panels in Appendix A, Figures S28–S29; Figure 468 

4). Figure 4d–f also includes the Worsley ‘filtered’ dataset and corresponding correction, 469 

where the three southernmost geographically separate samples were excluded. Rehabilitation 470 

trajectory plots, and predicted recovery times, using corrected data were compared to the 471 

original uncorrected data (see Figure 5 and Appendix A, Table S6). In the case of Huntly and 472 

Eneabba, only minor differences were found between original and corrected predicted 473 

recovery times (Huntly: medians of 43 vs. 41 years, D 95% prediction interval = [1, 4]; 474 

Eneabba: medians of 60 vs. 56 years, D 95% prediction interval = [-1, 11]). 475 

However, results from the Worsley data are featured because of the illustrative signal 476 

we found there. Worsley displayed a strong ecological distance-geographic distance trend in 477 

among-reference data indicating excessive spatial autocorrelation (note the upward sloping 478 

‘Ref’ line in Figure 4a), and the greatest divergence of all the minesites in predicted recovery 479 

times between original and corrected data (i.e., medians of 39 vs. 50 years, D 95% prediction 480 

interval = [-49, 5]; Figure 5; Appendix A, Table S6). Notably, the spatial autocorrelation 481 

correction at Worsley caused such an adjustment in similarity to reference values that the 482 
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youngest rehabilitation age group was included in the logarithmic trajectory models in the 483 

corrected data, but not in the original data. However, with exclusion of the southernmost 484 

Worsley samples (i.e., the filtered dataset), the signal of spatial autocorrelation disappeared 485 

(i.e., absence of upward sloping lines in Figure 4d, f) and predicted recovery times for filtered 486 

and filtered-corrected data displayed almost identical distributions (i.e., median recovery 487 

times were equivalent at 44 years in each scenario, D 95% prediction interval = [-9, 9]; Figure 488 

5; Appendix A, Table S6). 489 

 490 

 491 

 492 
FIGURE 4. Exploring spatial autocorrelation in the Worsley (a–c) and filtered Worsley 493 

(excluding southernmost samples) (d–f) datasets, based on Bray-Curtis distance measures. 494 
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(a, d) Ecological distance to reference versus geographic distance to reference for 495 

rehabilitation age groups. (b, e) Mean-centred difference in ecological distance to reference 496 

between rehabilitation age groups and among references. (c, f) Corrected ecological distance 497 

to reference versus geographic distance to reference for rehabilitation age groups, to match 498 

the slope-trend of ecological to geographic distances as found among references.  499 
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 501 
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FIGURE 5. Modelled rehabilitation trajectories (a) and predicted recovery times (b) for 502 

Huntly, Eneabba, Worsley, and Worsley (excluding southernmost samples) based on surface 503 

soil bacterial community similarity to reference data using Bray-Curtis measures, with and 504 

without correction for spatial autocorrelation. Other features are as described in Figure 3. 505 

 506 

4. DISCUSSION 507 

4.1 Standard vs. compositional data analysis 508 

Our rehabilitation trajectory models produced comparable predictions for recovery times 509 

using Bray-Curtis (standard) and Aitchison (compositional) measures. At Huntly, Eneabba, 510 

and Worsley (excluding southernmost samples) median recovery times differed by around a 511 

decade (i.e., 43 vs. 31 years, 60 vs. 50 years, 44 vs. 53 years respectively), however for two 512 

out of three minesites the distribution of bootstrap model predicted recovery times was not 513 

significantly different. We suspect that both Bray-Curtis (standard) and Aitchison 514 

(compositional) measures will provide slightly different perspectives to the trajectory 515 

modelling (discussed below), while neither method is perfect. 516 

Compositional data analysis has been recently promoted as a more robust approach 517 

for analysing microbiome datasets (Gloor et al., 2017; Quinn et al., 2019), however it is not 518 

without limitations particularly for sparse datasets (containing many zeros), and where low 519 

sequence counts are commonly encountered (Lovell et al., 2020). In particular, replacement 520 

of zeros with small positive numbers has potential to cause distortions in data that will affect 521 

the relative abundance of small counts to a greater degree than large counts (Lovell et al., 522 

2020). Distortions in data due to zero replacement are also increased where there are large 523 

numbers of zeros present (Martín-Fernández et al., 2015). Therefore, our approach to exclude 524 

taxa that contained zero counts in more than 90% of samples within each minesite represents 525 

a compromise between losing representation of less common taxa and potentially introducing 526 
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spurious log ratio abundance patterns within the compositional data analysis. Following log 527 

ratio analysis, only the relative information is of interest; for example, counts of 1,2,3 528 

become equivalent to counts of 100, 200, 300. However, advocates of these approaches have 529 

suggested that it is up to the analyst to decide whether the relative, rather than the absolute, 530 

structure of the parts is of primary interest (Martín-Fernández et al., 2015). Also, the 531 

replacement of absolute zeros (representing true absences; as opposed to zeros due to 532 

rounding or resulting from insufficiently large samples) with small numbers is potentially 533 

inappropriate (Martín-Fernández et al., 2015), and creates a theoretical challenge to 534 

performing log ratio analyses on soil microbiota data from diverse environments where many 535 

absolute zeros (true absences) are likely. 536 

 537 

4.2 Alternative standard ecological measures 538 

Bray-Curtis measures produced the greatest range in similarity values between young 539 

rehabilitation and reference samples, and therefore are likely to offer the greatest sensitivity 540 

to quantify the progress of recovery of soil bacterial communities towards reference states. In 541 

contrast, Weighted UniFrac offered limited sensitivity to detect changes with rehabilitation 542 

age (i.e., shallow trajectory curves) and may result in under-prediction of recovery times. 543 

Low variation in Weighted Unifrac similarities likely reflects a level of consistency of high 544 

proportions of somewhat closely related organisms across the samples. Jaccard distances 545 

represent the proportion of unshared taxa out of the total number of taxa recorded in two 546 

groups (Anderson et al., 2006). Unweighted UniFrac uses phylogenetic information and 547 

calculates the fraction of the branch length in a phylogenetic tree that leads to descendants in 548 

either, but not both, of the two communities (Lozupone et al., 2007). These qualitative 549 

measures reflect the survival and presence of taxa (Jaccard) and related lineages (Unweighted 550 

UniFrac), where loss of sequences may reflect extreme or limiting environmental conditions 551 
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(e.g., soil abiotic factors) or limited geographic distribution. Meanwhile, Bray-Curtis and 552 

Weighted UniFrac measures emphasise abundant organisms. Similarity to reference generally 553 

increased with increasing abundances of shared taxa for Bray-Curtis, and shared lineages of 554 

related sequences for Weighted UniFrac. The quantitative measures often reflect the growth 555 

or decline of certain organisms due to factors such as nutrient availability and variation in 556 

environmental conditions (Lozupone et al., 2007). 557 

 558 

4.3 Grouping by sequence similarity 559 

Grouping near identical sequences will reduce the denominator used in calculating Jaccard 560 

distances. For a given number of unshared taxa between samples, using broader OTU clusters 561 

will make the proportion of unshared taxa (compared to all taxa) larger when there are a 562 

smaller number of total taxa present. Our data suggest this shifting Jaccard calculation can 563 

impact some samples strongly (e.g., note the 17-year age group in Appendix A, Figure S23) 564 

resulting in a gradual increase in predicted recovery times with broader (reduced identity 565 

threshold) OTU clusters. On the other hand, broader OTU clusters will aggregate some 566 

sequences into already large groups and will tend to further emphasise abundant groups. 567 

Consequently, our Bray-Curtis data suggest broader OTU clustering will make the target 568 

similarity easier to reach and predicted recovery times reduced accordingly. 569 

 570 

4.4 Taxonomic grouping 571 

We do not recommend grouping 16S rRNA data by taxonomy to quantify recovery in soil 572 

bacterial communities due to the erratic behaviour of predicted recovery times. 573 

 574 

4.5 Excluding rare taxa 575 
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We show that filtering out of rare taxa to a limited extent (>0.001% relative sequence 576 

abundance) produces a relatively small increase in predicted recovery times for both Jaccard 577 

and Bray-Curtis measures. In our case, this filtering removed many ASVs but only a low 578 

percentage of total sequences. Interestingly, this low level of exclusion of rare taxa does not 579 

appear to moderate the assessment by producing reduced recovery times. At the low level of 580 

exclusion, our analysis using rarefied data and similarity to reference measures may help 581 

mitigate some of the impacts and concerns of removal of rare sequences experienced 582 

elsewhere (e.g., Schloss, 2020). This raises the prospect to reduce sequencing depth, and 583 

potential for shifting investment towards more robust assessments that incorporate a larger 584 

number of samples with reduced sequencing depth and cost per sample. 585 

 586 

4.6 Influence of ‘direct return’ soils in young rehabilitation sites 587 

For reasons discussed here and below, we suggest it is prudent for these similarity to 588 

reference trajectory assessments to exclude young rehabilitation sites with ‘direct return’ soils 589 

that display elevated similarity to reference—as we implemented in our automated trajectory 590 

modelling algorithm. In earlier preliminary work at Eneabba and Worsley, we observed that 591 

the inclusion of young rehabilitation samples that were overly similar to references resulted 592 

in seemingly biased, longer predictions of recovery time. The industry best practice of ‘direct 593 

return’ of topsoil to new rehabilitation sites is based on objectives to minimise soil 594 

degradation and expedite ecosystem recovery. However, our use of monotonic logarithmic 595 

models applied to a data series that contains young rehabilitation sites with elevated 596 

similarity to reference values, followed by older sites with reduced similarity to reference 597 

values, results in the seemingly perverse outcome of a flatter, longer modelled trajectory of 598 

recovery. The enhanced ecological similarity to reference in young rehabilitation sites with 599 

‘direct return’ soils reflects a biological inertia, or temporary carryover effect, from unmined 600 
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areas where the soils originate, and confounds the relationship between soil microbiota 601 

development and rehabilitation age. For ‘direct return’ soils, we speculate the time taken for 602 

local influences to become dominant in shaping the resident microbiota may be in the order 603 

of 1-10 years, varying on a case-by-case basis, e.g., due to soil factors including organic 604 

matter and clay content, as well as the magnitude of environmental influences. Soil 605 

microbiota will be shaped by influences including local rainfall, temperature, aspect, soil 606 

water availability and transport (e.g., run-on, lateral flow), and vegetation communities via 607 

plant-soil feedbacks. Existing deeper soil and substrate may also influence rehabilitation 608 

surface soils via upward movement of water, nutrients, and some microbiota through 609 

mechanisms including: hydraulic redistribution by plant root systems (Neumann and Cardon, 610 

2012); potential microbiota uptake and transfer via xylem into the phyllosphere (Deyett and 611 

Rolshausen, 2019; Fausto et al., 2018) and subsequent leaf litter; and capillary rise in heavier 612 

textured soils under conditions of soil water evaporation. Other factors affecting the 613 

similarity to reference of direct return soils include their source location (are they taken from 614 

sites that are generally closer to other reference sites or adjacent to rehabilitation sites?), the 615 

depth of fresh topsoil applied, the condition of subsurface layers (e.g., fresh vs. stockpiled), 616 

and the depth and method of tillage or mixing of the soil surface and subsurface layers 617 

following soil return. Our approach to automate the commencement of logarithmic models 618 

once there is at least an initial increase in similarity to reference values provides an objective 619 

approach to help overcome the potential model-biasing effect of biological inertia that is 620 

found in some direct return soils. 621 

 622 

4.7 Spatial autocorrelation 623 

As observed in the Worsley data, we found signals of excessive spatial autocorrelation where 624 

strong slopes were detected in plots of ecological distance to reference versus geographic 625 



 31 

distance to reference, and where substantial differences were detected in the logarithmic 626 

models and/or predicted recovery times between original and corrected datasets. Excluding 627 

geographic outliers in the filtered Worsley analysis also removed a clear spatial 628 

autocorrelation signal in the data, which indicates the importance of sampling designs. If 629 

rehabilitation sites reflect environmental settings or imported soils that are overly similar or 630 

dissimilar to references (i.e., different to natural background rates of spatial autocorrelation), 631 

this may unduly bias predicted recovery times. Where possible, we recommend a sampling 632 

approach that resembles the approach used at Huntly, where each reference site was spatially 633 

paired with an adjacent rehabilitation site. This approach helps capture variation among 634 

references (within a given minesite) relevant to the broader range of rehabilitation sites; and 635 

provided there is adequate spatial replication and geographic outliers are avoided, then undue 636 

influence from spatial autocorrelation should be avoided. 637 

Our analysis of spatial autocorrelation should be viewed as introductory and 638 

illustrative. For ‘direct return’ soils at young rehabilitation sites, our approach is deficient 639 

because we do not account for their previous location. Although, we anticipate localised 640 

influences would dominate the shaping of resident soil microbiota in rehabilitation sites after 641 

a few years, as discussed above. 642 

Plant-soil-microbiota feedbacks represent a complicating factor for disentangling 643 

effects of soil abiotic condition, rehabilitation age, and residual/unexplainable spatial 644 

autocorrelation in restoration chronosequence studies. This is because chronosequence 645 

studies (which presume a ‘space-for-time’ proxy relationship between treatments and 646 

outcomes) typically do not collect sufficient data to determine whether soil conditions have 647 

influenced rehabilitation outcomes, plants have conditioned soils, or both situations have 648 

occurred. Studies that have considered plant-soil feedbacks in restored Jarrah forest (Huntly) 649 

sites have shown differential correlative effects of rehabilitated soil biotic and abiotic 650 
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properties (Orozco-Aceves et al., 2017). Also, plant-soil feedbacks behave differently in 651 

unmined versus rehabilitated soils (Orozco-Aceves et al., 2015). Further work is required to 652 

build understanding of this topic (e.g., via longitudinal studies). 653 

Study designs should account for geographically variable factors that may influence 654 

soil bacterial communities to build robust evidence. Microbial communities are influenced by 655 

a range of often complex edaphic, physiographic, climatic and biotic factors (e.g., vegetation 656 

and land use history, soil texture, available nutrients and moisture, drainage, pH, salinity, 657 

sunlight; Brown et al., 2018; Delgado‐Baquerizo et al., 2018; Zhu et al., 2021). The need to 658 

reflect such environmental variation through choosing appropriate references is well 659 

recognised by industry (Australian_Government, 2016; Manero et al., 2021). 660 

Accordingly, where restoration study locations are characterised by distinct modes of 661 

geographically distributed soil and landscape conditions or pre-disturbance ecosystem types 662 

(e.g., uplands vs. lowlands; riparian vs. non-riparian; dune vs. swale) it would be appropriate 663 

to reflect this striking contrast in reference environmental conditions and desired 664 

rehabilitation outcomes by undertaking separate rehabilitation trajectory assessments for each 665 

major representative target ecosystem type. The optimal distribution of each set of 666 

rehabilitation and reference sites should reflect the spatial composition of major landform- or 667 

post-restoration target ecosystem-types specific to each study area, and might be informed via 668 

pre-existing mapping or imagery, digital elevation models, and other land resource 669 

assessment tools and techniques (e.g., digital clustering of landscape types; de Bruin and 670 

Stein, 1998). 671 

 672 

4.8 Other limitations 673 

There are important limitations in our study, in addition to those already discussed. The 674 

robustness of our study would be improved with more samples per minesite to help better 675 
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capture minesite-wide variation. We did not consider soil microbiota patterns at depth, which 676 

are also important. Also, major changes to rehabilitation practices over time will disrupt the 677 

‘space-for-time’ substitutive modelling approach that is relied upon in chronosequence 678 

studies such as ours. For any restoration chronosequence study careful sample selection is 679 

required to avoid confounding factors as much as possible (Walker et al., 2010). There are 680 

potential limitations in our study associated with the phylogenetic trees we used to generate 681 

UniFrac distances (see Appendix A, Supplementary Methods for details). Tree-building often 682 

represents a compromise between accuracy in representing phylogenetic relationships and 683 

computing time, and it was beyond the scope of our study to test the sensitivity of our 684 

UniFrac-based analyses to the quality of trees used. We used logarithmic models which 685 

assume a monotonic recovery function, however other models that account for variable trends 686 

over time, and varying success for different rehabilitation techniques or sites, may offer 687 

improved estimates of recovery time. We suggest these limitations should be investigated in 688 

future studies. 689 

 690 

5. CONCLUSIONS 691 

We provide a proof-of-concept demonstration of an innovative, chronosequence-based, 692 

similarity to reference trajectory assessment method, to quantitatively track progress in soil 693 

microbiota with post-mining rehabilitation. Through incorporating microbiota survey data 694 

from multiple reference sites of varying character, we revealed substantial variation among 695 

reference ecosystems within each minesite that can inform realistic rehabilitation targets. Our 696 

method reduces the complexity associated with microbiota data and enables prediction of 697 

recovery time to reach reference-based targets with explicit inclusion of uncertainty in 698 

assessments. Also, the use of soil microbiota data provides another line of evidence, which in 699 

conjunction with wider minesite information, could assist in the examination of potential 700 
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impediments to the progress of rehabilitation, thereby helping to inform adaptive 701 

management. From our investigations, we recommend using ASV-level Bray-Curtis 702 

similarities which appear to offer a relatively sensitive and stable basis for modelling 703 

rehabilitation trajectories. We recommend wherever possible to maximise sample sizes, 704 

employ spatial pairing of reference and rehabilitation sites, and to exclude geographically-705 

distant, non-representative sampling areas. We used an automated modelling routine to 706 

exclude young rehabilitation sites with 'direct return' soils that displayed elevated similarity 707 

to reference values, which would have biased the trajectory modelling. Further fine-tuning to 708 

identify possible minor reductions in sequencing depths (eliminating some rare taxa) offers 709 

promise to reduce per sample costs, enabling investment in more samples, to help deliver 710 

more robust assessments. This work represents an important step towards a reduced-711 

complexity microbiota-based monitoring and evaluation framework consistent with many 712 

best practice principles for setting, monitoring and managing towards mine completion 713 

criteria recommended by (Manero et al., 2021). We anticipate that our approach could be 714 

expanded to other eDNA sequence-based survey data (e.g., fungal ITS and eukaryote 18S 715 

rRNA marker genes, functional potential from shotgun metagenomic data), and may have 716 

application in wider contexts where there is interest in monitoring restorative processes that 717 

facilitate a shift in microbiota towards reference states.  718 
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