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Next generation restoration metrics: Using soil eDNA bacterial community data to

measure trajectories towards rehabilitation targets

Abstract

In post-mining rehabilitation, successful mine closure planning requires specific, measurable,
achievable, relevant and time-bound (SMART) completion criteria, such as returning
ecological communities to match a target level of similarity to reference sites. Soil microbiota
are fundamentally linked to the restoration of degraded ecosystems, helping to underpin
ecological functions and plant communities. High-throughput sequencing of soil eDNA to
characterise these communities offers promise to help monitor and predict ecological
progress towards reference states. Here we demonstrate a novel methodology for monitoring
and evaluating ecological restoration using three long-term (> 25 year) case study post-
mining rehabilitation soil eDNA-based bacterial community datasets. Specifically, we
developed rehabilitation trajectory assessments based on similarity to reference data from
restoration chronosequence datasets. Recognising that numerous alternative options for
microbiota data processing have potential to influence these assessments, we
comprehensively examined the influence of standard versus compositional data analyses,
different ecological distance measures, sequence grouping approaches, eliminating rare taxa,
and the potential for excessive spatial autocorrelation to impact on results. Our approach
reduces the complexity of information that often overwhelms ecologically-relevant patterns
in microbiota studies, and enables prediction of recovery time, with explicit inclusion of
uncertainty in assessments. We offer a step change in the development of quantitative
microbiota-based SMART metrics for measuring rehabilitation success. Our approach may
also have wider applications where restorative processes facilitate the shift of microbiota

towards reference states.
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1. INTRODUCTION

Land degradation and transformation, with negative impacts to biodiversity and ecosystem
function, are estimated to impact 75% of the Earth's land surface, and this figure is projected
to rise to over 90% by 2050 (IPBES, 2018). Ecological restoration—activity that supports
rehabilitation of locally representative, sustainable, biodiverse ecosystems (Gann et al.,
2019)—is seen as integral to reversing these impacts, as highlighted by the UN declaration of
2021-2030 as the Decade on Ecosystem Restoration (https://www.decadeonrestoration.org/).
Restoration is technically challenging and requires considerable investment, without
guaranteed success (Tibbett, 2015). With large investments in restoration (e.g. BenDor et al.,
2015 estimate US$9.5 billion/yr is spent in the USA alone; Menz et al., 2013 estimate US$18
billion/yr is required to restore degraded lands globally), there is a need to improve the
evidence base to guide continuous improvement in restoration outcomes and to underpin
future investment.

Reference ecosystems provide an important basis for establishing targets and
monitoring progress of restoration activities (Gann et al., 2019) (refer to online
Supplementary Materials in Appendix A, Figure S1). In post-mining contexts, best practice
guidelines require formal mine completion criteria to be prescribed in a matter that is
specific, measurable, achievable, relevant and time-bound (SMART)
(Australian_Government, 2016; Manero et al., 2021). To-date, completion criteria have
largely focussed on vegetation community variables, with typical ecological measures
including alpha and beta diversity reflecting the number of different taxa and community
composition, respectively. For example, targets may be set at a minimum threshold similarity
to a reference community. Despite available guidance, many completion criteria are
ambiguous or ill-defined, and can result in unclear standards for regulators, unrealistic

expectations for stakeholders, and represent a key barrier to the relinquishment of minesites
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(Manero et al., 2021). To help move the industry towards improved definitions of completion
criteria, Manero et al. (2021) suggest criteria for industry best practice, which include using
multiple reference sites, monitoring and corrective actions (i.e., adaptive management),
allowing innovation-guided completion criteria, and specific objectives and indicators.

Soil microbial communities (microbiota) have essential roles in organic matter
decomposition, soil formation, and nutrient cycling, and therefore help regulate plant
productivity and community dynamics (Harris, 2009). Patterns of land use, vegetation
communities, and soil quality each help to shape soil microbiota (Bulgarelli et al., 2013;
Delgado-Baquerizo et al., 2018; Turner et al., 2013). Microbiota depend on the resource and
energy flows associated with aboveground biota, and therefore their monitoring may help
indicate the impact of restoration interventions (Harris, 2009; Jiao et al., 2018; van der Heyde
et al., 2020).

The development of low-cost, high-throughput sequencing of environmental DNA
(eDNA) has enabled affordable, rapid and comprehensive assessment of soil microbiota; and
these genomic techniques are now being used widely in a restoration context (Breed et al.,
2019; Mohr et al., 2022). Applying recognised ecological assessment approaches to abundant
eDNA-based microbiota data has potential to provide a novel tool for measuring trajectories
and predicting time to recover towards restoration targets (Rydgren et al., 2019).
Chronosequence study designs, while containing limitations (Walker et al., 2010), are
commonly used to examine ecosystem recovery following restoration activities (Tibbett,
2010). However, there are few studies of soil microbiota from restoration chronosequences
that explicitly visualise and evaluate patterns in ecological similarity to reference data with
time since rehabilitation. It is customary for such studies (e.g., Fernandez Nuiez et al., 2021;
Jiao et al., 2018; Schmid et al., 2020) to examine patterns in microbiota composition via

analysis of taxonomic groups and ordination techniques which project multivariate
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community data into lower dimensional space (e.g., 2-d plots). These popular techniques
often characterise the complexity and site-specificity of soil ecosystems. However, a focus on
measuring ‘similarity to reference’ may help cut through the complexity inherent to
microbiota data. Along these lines, van der Heyde et al. (2020) visualised temporal trends in
ecological similarity to reference data in post-mining rehabilitation—however, in their
example each rehabilitation sample was only compared to a single closest reference sample,
which potentially limited insight into variability and uncertainty in microbiota recovery.

Here we provide a proof-of-concept demonstration and detailed exploration of a new
complexity-reducing application of eDNA-based soil bacterial community data to assess the
progress of post-mining rehabilitation using three long-term (> 25 year) chronosequence case
studies from south-west Western Australia. Specifically, we aim to demonstrate the use of
chronosequence-based rehabilitation trajectories, using measures of percent similarity of
bacterial community structure to ecological reference sites (hereafter termed references), to
assess progress of soil bacterial communities towards reference states with increasing
rehabilitation age. We note that further work that links microbiota to other ecosystem
components (e.g., vegetation, fauna) is important but beyond the scope of our study.

Our intended audience includes microbiome researchers working in ecosystem
restoration, as well as restoration managers who are considering new methods to add to their
ecological monitoring toolkit. Our approach may also be adapted for monitoring and
predicting microbiota recovery toward reference states in broader contexts, including
microbiota-conscious urban design (Watkins et al., 2020) which represents an extension of
ecosystem restoration in urban areas; and microbiota-mediated human health where the
notion of diverse healthy reference states is well recognised (Lloyd-Price et al., 2016).

Due to the potential for alternative data processing options to cause varying impacts

on our rehabilitation trajectory assessments, we compare outcomes from a range of potential



134 options relevant to microbiota data analyses. For example, compositional data analysis

135  approaches are promoted to have greater statistical rigour compared to standard approaches
136  (Gloor et al., 2017); grouping bacterial taxa based on sequence similarity (i.e., varying the
137  resolution of operational taxonomic units, OTUs) might help manage noise associated with
138  microbiome data; taxonomic grouping might assist interpretation if recognised groups can be
139  discussed; and eliminating rare taxa (to simulate reduced sequencing depths) might allow
140  more cost-effective and rapid analyses. We also recognise the potential for spatial

141  autocorrelation—where measured outcomes are closer in value due to closer spatial

142 proximity—to confound the assessment of rehabilitation age in chronosequence studies that
143 lack appropriate spatial design and replication. Accordingly, our a priori research questions
144  were: (1) can soil bacterial community data be used to establish reference-based targets? (2)
145  can soil bacterial community rehabilitation trajectory data be used to predict the time to

146  recover to reference targets? and (3) how are these predictions of recovery influenced by
147  different ecological distance/similarity measures and sequence data resolution? (4)

148  Additionally, we conduct a preliminary, illustrative examination of spatial autocorrelation,
149  and trial an approach to highlight and ‘correct’ datasets where its influence appears

150  excessive. We then discuss limitations and synthesise our findings to inform future work.
151

152 2. MATERIALS AND METHODS

153 2.1 Data collection

154  We used surface soil bacterial 16S rRNA marker gene data from three case study minesites
155  (Figure 1; Appendix A, Tables S1-S3) from south-west Western Australia. Soil sampling
156  was undertaken in accordance with Australian Microbiome (AM) protocols (Bissett et al.,
157  2016; https://www.australianmicrobiome.com/protocols; Appendix A, Supplementary

158  Methods). Each minesite experiences a Mediterranean-type climate with hot, dry summers
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and cool, wet winters. Post-mining rehabilitation activities typically involved deep-ripping,
prior to the ‘direct return’ (where possible) of subsoil and topsoil stripped from a separate pit
about to be mined, followed by revegetation with locally appropriate seed of diverse plant
communities (Tibbett, 2010). Precise soil handling and storage techniques differed between
the minesites and different pits within minesites. Summary information for each minesite is
provided below (see Appendix A, Supplementary Methods for more background information;
other studies in-progress will provide expanded analyses of surface and subsoil data from
these minesites, including additional marker gene datasets).

Alcoa’s Huntly bauxite-producing minesite is approximately 100 km south-east of
Perth, occurring in mixed open forest with dominant overstorey species of Jarrah (Eucalyptus
marginata) and Marri (Corymbia calophylla) on lateritic, nutrient poor soils. We consider
Huntly data sampled in 2016, with rehabilitation ages between 229 years old. Huntly’s 36
samples correspond to rehabilitation years: 1987 (n = 3), 1991 (n = 3), 1999 (n = 3), 2002 (n
=3),2008 (n=3), 2014 (n = 3), reference (n = 18), where each reference site was paired with
an adjacent rehabilitation site.

Iluka Resource’s Eneabba mineral-sand minesite is approximately 280 km north of
Perth, occurring in sandplain heath vegetation comprising low shrubland on undulating
infertile siliceous sandplains, predominantly featuring perennial woody species from the
Proteaceae, Myrtaceae, and Fabaceae families. We consider Eneabba data sampled in 2019,
with rehabilitation ages between 7-38 years. Eneabba’s 26 samples correspond to
rehabilitation years: 1981 (n = 3), 1989 (n = 2), 1995 (n = 3), 2000 (n = 2), 2004 (n = 3),
2009 (n=2), 2012 (n = 2), reference (n =9).

South32’s Worsley bauxite-producing minesite is located approximately 150 km south
of Perth, occurring in Jarrah (Eucalyptus marginata) forest on lateritic, nutrient poor soils.

We consider Worsley data sampled in 2019, with rehabilitation ages between 2-28 years old.



184

185

186

187

188

189

190
191

192

193

Worsley’s 25 samples correspond to rehabilitation years: 1991 (n = 2), 1996 (n =4), 1999 (n

=2), 2002 (n = 2), 2005 (n = 2), 2007 (n = 1), 2011 (n = 3), 2017 (n = 3), reference (n = 6).

Each soil sample had physico-chemical analyses performed at CSBP Laboratories

(Perth, Western Australia) to quantify key soil abiotic variables as prescribed by AM

protocols, including soil texture, organic carbon, ammonium, potassium, sulphur, calcium,

pH, nitrate, phosphorous, and electrical conductivity.
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FIGURE 1. Locations of minesites and soil sampling sites: (a) Huntly, (b) Eneabba,

(c) Worsley. (Imagery: Sentinel-2; https://eos.com/landviewer; EOS Data Analytics, Inc.)
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2.2 eDNA sequencing, bioinformatics, and data preparation

DNA extraction, PCR and preliminary bioinformatic analyses were undertaken in accordance
with AM workflows (Bissett et al., 2016; see Appendix A, Supplementary Methods). From
this workflow, denoised 16S rRNA gene amplicon sequence variant (ASV) level abundance
data were produced for all minesites. Note, in this study ASVs are equivalent to zero radius
OTUs (zOTUs). Further data preparation and analyses were largely undertaken in R version
4.0.3 (R-Core-Team, 2020) utilising the framework of the R phyloseq package (McMurdie
and Holmes, 2013) to manage the datasets (see Appendix A, Supplementary Methods for
number of sequences and ASVs studied in each minesite, initial data cleaning steps, and

preparation of phylogenetic trees).

23 Data visualisation and statistical analyses

We visualised the sequence depth of samples using rarefaction curves (Appendix A,
Figure S2). We performed exploratory data analyses to visualise ASV alpha diversity,
evenness, and relative abundance via heatmaps of phyla, classes, and orders in each minesite
(Appendix A, Supplementary Methods, Figures S3—S13). Alpha diversity and evenness were
based on rarefied ASV abundances (as below), while relative abundances were computed
using non-rarefied data. We used alternative normalisation approaches consistent with
common practice in the literature (Gloor et al., 2017; Weiss et al., 2017). Further exploratory
data analyses included preliminary visualisations of soil and landscape variables that
associated with the soil bacterial community samples within each minesite (see Appendix A,
Supplementary Methods, Supplementary Data, Figures S14-20).

To prepare for the computation of ‘standard’ ecological distance measures (as
described by Gloor et al., 2017; e.g. Bray-Curtis, Jaccard, UniFrac), we normalised the

sequence data for sampling effort by rarefying abundances of ASVs, and other taxonomic

10
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levels investigated (see below), to the minimum sample sequence depth within respective
minesites (Huntly, n = 17,485 sequences; Eneabba, n = 10,142 sequences; Worsley, n =
54,122 sequences) using the rarefy even depth() function from R phyloseq.

To prepare ‘compositional’ data analysis distance measures we followed the
recommendations of Gloor et al. (2017) and Quinn et al. (2019), using non-rarefied data.
However, we took the pragmatic initial step of excluding taxa that contained zero counts in
more than 90% of samples within each minesite, to help limit the potential for artefactual
influences (as discussed later) to be introduced by the subsequent steps of zero replacement
and centred log ratio transformation. Then, following Quinn et al. (2019) we used the default
geometric Bayesian multiplicative model in the cmultRepl() function of the R zCompositions
package (Palarea-Albaladejo and Martin-Ferndndez, 2015) to replace zeros with small
numbers; before computing centred log ratio transformations using the propr() function from
the R propr package (Quinn et al., 2017). Further steps are outlined in section 2.3.1 below.

We examined a range of alternative qualitative and quantitative beta diversity (i.e.,
distance or community dissimilarity) measures which were converted to similarity, to model
rehabilitation trajectories and time to reach reference targets (as described further below). For
the minesite with the largest number of samples (Huntly), we also investigated data pre-
processing options of grouping by sequence similarity, taxonomic grouping, and excluding
rare taxa. Details of the number of samples, taxa and sequences considered for all minesites,
distance measures and data processing options (see below) are provided in Appendix A,
Table S4. Supporting data and R code used in our study are available online (see data

availability statement).

2.3.1 Comparison of alternative ecological and compositional similarity measures

11
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For each minesite, we used the cleaned and rarefied ASV-level bacterial community data to
derive standard ecological distance matrices using distance measures commonly employed in
microbiota studies—i.e., Jaccard, Bray-Curtis, Unweighted UniFrac and Weighted UniFrac
(Lozupone et al., 2007)—via the vegdist() function from the R vegan package (Oksanen et
al., 2020). We also compared results from the Bray-Curtis measures with the compositional
data analysis approach from computing Aitchison distances via vegdist() (i.e., these were
derived from Euclidean distances between samples after centred log ratio transformation;
Gloor et al., 2017). For each minesite, Bray-Curtis distances were visualised using principal
coordinates analysis (PCoA) ordination, while Aitchison distances were visualised using
principal components analysis (PCA) (Gloor et al., 2017) (Figure 2). For the comparison
between Bray-Curtis and Aitchison measures at Worsley we used the spatially filtered dataset
which excluded the southernmost samples as described in section 2.3.6.

The rehabilitation trajectory analyses presented here were then derived from a subset
of data contained in the above distance matrices. Specifically, only pairwise distances
between samples and all reference samples within a minesite were considered (including
distances among reference samples). That is, any pairwise distances not involving a reference
were not included in these analyses.

For standard measures (i.e. Bray-Curtis, Jaccard, Weighted UniFrac and Unweighted
UniFrac), data were then expressed as percent similarity to reference values using (adapted
from Legendre and Legendre, 2012):

% Similarity to referencesiandaard (b/w sampie i and ref j) = 100 * (1 — distance;;)

For the compositional Aitchison measures, similarity to reference was calculated
using (adapted from Legendre and Legendre, 2012):

distance;;

% Similarity to referenceAitchison (b/w sampleiand ref j) — 100 * (1 - W
max

12
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= 22 samples) using (e) Bray-Curtis distances (53404 ASVs; 1,190,684 sequences) and (f)

Aitchison distances (43,598 ASVs; 1,782,724 sequences).

2.3.2 Grouping by sequence similarity

For Huntly data only, separate R phyloseq objects were generated to represent soil bacterial
community data with sequences clustered into 99%, 97%, 95%, and 90% identity OTUs (see
Appendix A, Supplementary Methods). 99% and 97% identity OTU clustering have been
used widely in recent years (prior to the emergence of zOTUs or ASVs), and accordingly, we
included OTUs with a range of clustering thresholds to examine whether consistent patterns
emerged. For these analyses, OTUs were formed, abundance data were rarefied, and then

Jaccard and Bray-Curtis distances and similarity to references were calculated.

2.3.3 Taxonomic grouping

For Huntly data only, we examined the influence of taxonomic grouping (i.e., ASV, genus,
family, order, class, and phylum) on the assessments of recovery. We also tested the
influence of discarding versus retaining (at the next available classified grouping) taxa that
were unclassified at each taxonomic rank, which we termed ‘pruned’ and ‘non-pruned’ data
respectively. Grouping was undertaken using fax_glom(); and in ‘pruned’ datasets,
unclassified taxa were removed using prune_taxa() from R phyloseq. For these analyses, taxa
were grouped, abundance data were rarefied, then Jaccard and Bray-Curtis distances and
similarity to references were calculated. Richness and evenness of sequences at the order,
class and phylum level were also visualised based on rarefied data and plotted together with
composite estimates within rehabilitation age groups from merged-sample bootstrap

resampling (Liddicoat et al., 2019) (B=100).

14
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2.3.4 Excluding rare taxa

For Huntly data only, we examined the influence of excluding rare taxa, by considering all
ASVs, then ASVs with >0.001 %, > 0.01%, and > 0.1% relative abundance within each
minesite. For these analyses, ASVs with below the respective relative abundance threshold
were removed, abundance data were rarefied, then Jaccard and Bray-Curtis distances and

similarity to references were calculated.

2.3.5 Rehabilitation trajectory modelling

The progress of rehabilitation was then visualised using boxplots and logarithmic models
based on the similarity to reference data. Boxplots were generated from the series of
similarity to reference data on the y-axis and increasing rehabilitation age on the x-axis,
concluding with reference samples (e.g., Figure 3). Testing for differences in similarities to
reference at each rehabilitation age (as visualised with boxplots) was performed using the
Kruskal-Wallis rank sum test, followed by post-hoc Dunn tests for multiple comparisons,
with Bonferroni adjusted threshold P-values. The multiple comparison testing used default
two-sided P-values and alpha = 0.05 nominal level of significance.

After observing the variation in similarity to reference values among references
within each minesite (e.g., Figure 3), we defined rehabilitation targets for the purpose of this
study as the median (= the central value) of among-reference similarities. This target median
value varied by minesite, distance/similarity measure, and pre-processing option.

We predicted the time to reach a restoration target (= recovery time) by modelling the
trend in similarity to reference with increasing rehabilitation age using bootstrapped (B =
100) logarithmic models. The median, 2.5™ and 97.5" percentiles of predicted recovery time

were evaluated. Our use of logarithmic models was consistent with the approach of Rydgren

15



326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

et al. (2019), except we used similarity not distance measures. Each iteration of the bootstrap
involved random sampling with replacement from the available chronosequence similarity to
reference data, excluding outliers identified via the boxplot() function in base R, and
developing a predictive logarithmic model for similarity to reference out to a maximum
rehabilitation age of 500 years, or until the target was reached. Models that failed to reach the
target were reported with a prediction time of “>500 years’. Rectangular hyperbola and
negative exponential models were also trialled but were abandoned after many cases failed to
produce model fits. During our early analyses, we also uncovered example data that
highlighted a distorting influence on our trajectory (and recovery time) modelling that
appeared to be consistent with the application of ‘direct return’ soils in young rehabilitation
sites. Specifically, this soil material was more similar to references than older rehabilitation
sites. Including these samples with elevated similarity to references in the logarithmic
modelling appeared to bias models towards flatter, longer trajectories of recovery. Therefore,
to reflect the likely onset of recovery towards reference states we decided to only commence
logarithmic models (via our automated modelling algorithm) from the youngest rehabilitation
age group that had a next older group with increased median similarity to references. As
discussed later, this check on model commencement was designed to avoid likely distortions
in the modelling of recovery, in particular, due to potential biological inertia in direct return

soils (Janzen, 2016).

2.3.6 Exploring spatial autocorrelation

To explore the influence of spatial autocorrelation on our trajectory analyses, we produced
variogram-like plots (adapted from Webster and Oliver, 2007) using Bray-Curtis ecological
distances (between samples and references) on the y-axis, and geographic distances (between

samples and references) on the x-axis. Each rehabilitation age group was modelled as a
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second-order polynomial, allowing the possible expression of curvilinear trendlines that
mimicked variogram-like relationships (i.e., increasing then flattening). Assuming reference
curves offered a natural baseline trend for spatial autocorrelation within each minesite
environment, we applied a 'correction' to the curvilinear trendline for each rehabilitation age
group by calculating the difference in mean-centred model curves (= rehabilitation age group
minus reference), such that 'corrected' data for rehabilitation age groups expressed the same
ecological distance-geographic distance curvilinear trend as seen for references (see
Appendix A, Supplementary Methods for further details of the rationale and approach for this
preliminary analysis). Rehabilitation trajectories and predicted recovery times were compared
between ‘original’ and ‘corrected’ data, for the Bray-Curtis similarities. For the Worsley
minesite, a filtered dataset, and corresponding correction, were also prepared which excluded
the three southernmost samples (i.e., two 2-year old samples and an adjacent reference),
which were geographically separate from the other Worsley samples (see Figure 1, and

Appendix A Table S3).

3. RESULTS

3.1 General findings

We found remarkable variability among reference samples within each minesite (Figure 3;
Appendix A, Table S5, Figures S21, S23—-S25). Median among-reference similarities ranged
from <20% to >95% across all measures, and between approximately 30—40% for Bray-
Curtis measures, with variation depending on the specific distance measure, pre-processing
option, and minesite. All rehabilitation trajectory plots indicated recovery, displaying the
general pattern of increasing similarity to references with increasing rehabilitation age
(Figure 3; Appendix A, Figures S21, S23-S25), although the logarithmic models and

predicted recovery times varied with distance measures, pre-processing and minesite.
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for changing similarity to reference with rehabilitation age based on bootstrap resampling and
modelling (B=100). Boxplots display the distribution of similarity to reference values across
rehabilitation ages (groups not sharing a letter are significantly different). In (b), violin plots
with boxplot inlays depict the distribution of recovery times from the 100 bootstrap model
runs. A 95% prediction intervals (PI) indicate whether differences in recovery times predicted

using alternative measures (Bray-Curtis versus Aitchison) are significantly different.

3.2 Alternative ecological and compositional measures

Despite some differences in the expression of rehabilitation trajectories using Bray-Curtis
versus Aitchison measures at Huntly, Eneabba, and Worsley (excluding southernmost
samples), these measures produced comparable predictions for recovery time within each
minesite (Figure 3; Appendix A, Table S6). At Huntly, predicted recovery times differed by
around 12 years, with a median recovery of 43 years for Bray-Curtis measures and 31 years
for Aitchison measures. At Eneabba, the median Bray-Curtis recovery time was 60 years,
while the median Aitchison recovery time was 50 years, however due to the spread of model
outcomes, predictions from these measures were not significantly different (i.e., A 95%
interval contains zero; Figure 3). Similarly, at Worsley (excluding southernmost samples),
the median Bray-Curtis recovery time was 44 years, while the median Aitchison recovery
time was 53 years, however predictions from these measures were not significantly different
(i.e., A 95% interval contains zero; Figure 3).

Among standard measures we found a general increase in similarity to reference
values across the ecological measures, from Jaccard (generally lowest similarities), Bray-
Curtis, Unweighted UniFrac, to Weighted UniFrac (generally highest similarities) (Appendix
A, Figure S21, Table S5). The greatest y-axis span, and therefore greatest sensitivity to detect

change, in similarity to reference values between the youngest rehabilitation ages and
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references occurred with Bray-Curtis measures (Appendix A, Figure S21). The smallest span
(or flattest curves) in similarity to reference values between the youngest rehabilitation ages
and references occurred with Weighted UniFrac measures.

Except for the Unweighted Unifrac result at Huntly, Jaccard measures generally
returned the longest predicted recovery times, followed by reduced or similar recovery times
predicted using Bray-Curtis, Unweighted Unifrac and Weighted UniFrac measures
(Appendix A, Figure S22, Table S6). Low sample sizes (and corresponding low numbers of
distance measures) represent a limitation in our analysis, and the ecologically-distant samples
in the 17-year and 25-year rehabilitation age group at Huntly (Figure 2a) are likely
contributing to the reduced similarity and longer rehabilitation trajectory in Unweighted
UniFrac data. These 17-year and 25-year rehabilitation age group data at Huntly express
reduced alpha diversity and evenness compared to other samples, however reasons for this

are unclear (Appendix A, Figures S3—S4).

33 Grouping by sequence similarity (Huntly only)

Grouping by sequence similarity resulted in progressive overall shifts towards increasing
similarity to reference values from ASV-level (generally lowest similarities), 99%, 97%,
95%, to 90%-identity clustered OTUs (generally highest similarities) (Appendix A, Figure
S23). Predicted recovery times with more broadly clustered OTUs followed continuous and
seemingly predictable patterns of: (i) increasing recovery times with Jaccard measures (i.e.,
medians of 61 to 134 years), and (ii) decreasing to steadying recovery times with Bray-Curtis

measures (i.e., medians of 43 to 37 years) (Appendix A, Figure S26a, Table S6).

34 Taxonomic grouping (Huntly only)
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Moving from ASV to genus-level data resulted in a pronounced shift towards increasing
similarity to reference, with similar although somewhat flatter rehabilitation trajectory curves
at higher taxonomic groupings (Appendix A, Figure S24). Visually, there appeared to be little
effect on the rehabilitation trajectory plots from pruning unclassified taxa (Appendix A,
Figure S24). Using Jaccard measures, moving from ASV-level to grouping at genus-level or
higher groupings dramatically increased predicted recovery times, compared to other
measures (Appendix A, Figure S26b, Table S6). Also, pruning of unclassified groups reduced
the smoothness or continuity in Jaccard-predicted recovery times (Appendix A, Figure S26b).
Using Bray-Curtis measures, we found a non-linear pattern of recovery times across the
taxonomic groupings, with shorter times to reach the target in genus, family, and order-level
groups, and longer recovery times in other groupings (Appendix A, Figure S26b; see
Appendix A, Figures S5-S13 for relative abundances of order, class, and phylum-level taxa
for each minesite). Richness and evenness of bacterial communities varied across
rehabilitation age groups and taxonomic groupings (e.g., data for phylum, class, and order-
level are shown in Appendix A, Figure S27), which may help explain the somewhat erratic

results from taxonomic grouping.

3.5  Excluding rare taxa (Huntly only)

Removing rare taxa to the point of retaining ASVs with >0.01% relative abundance produced
results from the Jaccard analysis that appeared to mimic results from the Bray-Curtis analysis
(Appendix A, Figure S25). When only more common ASVs with >0.1% relative abundance
were retained, both the Jaccard and Bray-Curtis results appeared to reflect over-simplified
communities, resulting in shorter predicted recovery times. However, including only ASVs
with >0.001% relative abundance resulted in a dataset with approximately 60% of the

original taxa and 95.8% of total sequences after rarefying (i.e., 17,941 compared to 30,751
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ASVs and 603,072 compared to 629,460 sequences; Appendix A, Table S4) and produced
only a small increase in predicted recovery times for both Jaccard and Bray-Curtis measures

(Appendix A, Figure S26c, Table S6).

3.6  Correcting for spatial autocorrelation

We modelled the slope-trends of the relationships between ecological distance to references
and geographic distance to references, within rehabilitation age classes, for each of the
minesites using Bray-Curtis measures (see Appendix A, Huntly and Eneabba: Figures S28—
S29; Worsley: Figure 4). We also applied a ‘correction’ for the spatial autocorrelation, such
that rehabilitation age groups were adjusted to display the same ecological-geographic slope
trend as found in references (refer to the ‘c’ panels in Appendix A, Figures S28-S29; Figure
4). Figure 4d—f also includes the Worsley ‘filtered’ dataset and corresponding correction,
where the three southernmost geographically separate samples were excluded. Rehabilitation
trajectory plots, and predicted recovery times, using corrected data were compared to the
original uncorrected data (see Figure 5 and Appendix A, Table S6). In the case of Huntly and
Eneabba, only minor differences were found between original and corrected predicted
recovery times (Huntly: medians of 43 vs. 41 years, A 95% prediction interval = [1, 4];
Eneabba: medians of 60 vs. 56 years, A 95% prediction interval = [-1, 11]).

However, results from the Worsley data are featured because of the illustrative signal
we found there. Worsley displayed a strong ecological distance-geographic distance trend in
among-reference data indicating excessive spatial autocorrelation (note the upward sloping
‘Ref” line in Figure 4a), and the greatest divergence of all the minesites in predicted recovery
times between original and corrected data (i.e., medians of 39 vs. 50 years, A 95% prediction
interval = [-49, 5]; Figure 5; Appendix A, Table S6). Notably, the spatial autocorrelation

correction at Worsley caused such an adjustment in similarity to reference values that the
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youngest rehabilitation age group was included in the logarithmic trajectory models in the
corrected data, but not in the original data. However, with exclusion of the southernmost
Worsley samples (i.e., the filtered dataset), the signal of spatial autocorrelation disappeared
(i.e., absence of upward sloping lines in Figure 4d, f) and predicted recovery times for filtered
and filtered-corrected data displayed almost identical distributions (i.e., median recovery
times were equivalent at 44 years in each scenario, A 95% prediction interval = [-9, 9]; Figure

5; Appendix A, Table S6).
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(excluding southernmost samples) (d—f) datasets, based on Bray-Curtis distance measures.
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(a, d) Ecological distance to reference versus geographic distance to reference for
rehabilitation age groups. (b, €) Mean-centred difference in ecological distance to reference
between rehabilitation age groups and among references. (c, f) Corrected ecological distance
to reference versus geographic distance to reference for rehabilitation age groups, to match

the slope-trend of ecological to geographic distances as found among references.
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FIGURE 5. Modelled rehabilitation trajectories (a) and predicted recovery times (b) for
Huntly, Eneabba, Worsley, and Worsley (excluding southernmost samples) based on surface
soil bacterial community similarity to reference data using Bray-Curtis measures, with and

without correction for spatial autocorrelation. Other features are as described in Figure 3.

4. DISCUSSION

4.1 Standard vs. compositional data analysis

Our rehabilitation trajectory models produced comparable predictions for recovery times
using Bray-Curtis (standard) and Aitchison (compositional) measures. At Huntly, Eneabba,
and Worsley (excluding southernmost samples) median recovery times differed by around a
decade (i.e., 43 vs. 31 years, 60 vs. 50 years, 44 vs. 53 years respectively), however for two
out of three minesites the distribution of bootstrap model predicted recovery times was not
significantly different. We suspect that both Bray-Curtis (standard) and Aitchison
(compositional) measures will provide slightly different perspectives to the trajectory
modelling (discussed below), while neither method is perfect.

Compositional data analysis has been recently promoted as a more robust approach
for analysing microbiome datasets (Gloor et al., 2017; Quinn et al., 2019), however it is not
without limitations particularly for sparse datasets (containing many zeros), and where low
sequence counts are commonly encountered (Lovell et al., 2020). In particular, replacement
of zeros with small positive numbers has potential to cause distortions in data that will affect
the relative abundance of small counts to a greater degree than large counts (Lovell et al.,
2020). Distortions in data due to zero replacement are also increased where there are large
numbers of zeros present (Martin-Fernadndez et al., 2015). Therefore, our approach to exclude
taxa that contained zero counts in more than 90% of samples within each minesite represents

a compromise between losing representation of less common taxa and potentially introducing
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spurious log ratio abundance patterns within the compositional data analysis. Following log
ratio analysis, only the relative information is of interest; for example, counts of 1,2,3
become equivalent to counts of 100, 200, 300. However, advocates of these approaches have
suggested that it is up to the analyst to decide whether the relative, rather than the absolute,
structure of the parts is of primary interest (Martin-Fernandez et al., 2015). Also, the
replacement of absolute zeros (representing true absences; as opposed to zeros due to
rounding or resulting from insufficiently large samples) with small numbers is potentially
inappropriate (Martin-Fernandez et al., 2015), and creates a theoretical challenge to
performing log ratio analyses on soil microbiota data from diverse environments where many

absolute zeros (true absences) are likely.

4.2 Alternative standard ecological measures

Bray-Curtis measures produced the greatest range in similarity values between young
rehabilitation and reference samples, and therefore are likely to offer the greatest sensitivity
to quantify the progress of recovery of soil bacterial communities towards reference states. In
contrast, Weighted UniFrac offered limited sensitivity to detect changes with rehabilitation
age (i.e., shallow trajectory curves) and may result in under-prediction of recovery times.
Low variation in Weighted Unifrac similarities likely reflects a level of consistency of high
proportions of somewhat closely related organisms across the samples. Jaccard distances
represent the proportion of unshared taxa out of the total number of taxa recorded in two
groups (Anderson et al., 2006). Unweighted UniFrac uses phylogenetic information and
calculates the fraction of the branch length in a phylogenetic tree that leads to descendants in
either, but not both, of the two communities (Lozupone et al., 2007). These qualitative
measures reflect the survival and presence of taxa (Jaccard) and related lineages (Unweighted

UniFrac), where loss of sequences may reflect extreme or limiting environmental conditions
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(e.g., soil abiotic factors) or limited geographic distribution. Meanwhile, Bray-Curtis and
Weighted UniFrac measures emphasise abundant organisms. Similarity to reference generally
increased with increasing abundances of shared taxa for Bray-Curtis, and shared lineages of
related sequences for Weighted UniFrac. The quantitative measures often reflect the growth
or decline of certain organisms due to factors such as nutrient availability and variation in

environmental conditions (Lozupone et al., 2007).

4.3 Grouping by sequence similarity

Grouping near identical sequences will reduce the denominator used in calculating Jaccard
distances. For a given number of unshared taxa between samples, using broader OTU clusters
will make the proportion of unshared taxa (compared to all taxa) larger when there are a
smaller number of total taxa present. Our data suggest this shifting Jaccard calculation can
impact some samples strongly (e.g., note the 17-year age group in Appendix A, Figure S23)
resulting in a gradual increase in predicted recovery times with broader (reduced identity
threshold) OTU clusters. On the other hand, broader OTU clusters will aggregate some
sequences into already large groups and will tend to further emphasise abundant groups.
Consequently, our Bray-Curtis data suggest broader OTU clustering will make the target

similarity easier to reach and predicted recovery times reduced accordingly.

4.4 Taxonomic grouping

We do not recommend grouping 16S rRNA data by taxonomy to quantify recovery in soil

bacterial communities due to the erratic behaviour of predicted recovery times.

4.5  Excluding rare taxa
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We show that filtering out of rare taxa to a limited extent (>0.001% relative sequence
abundance) produces a relatively small increase in predicted recovery times for both Jaccard
and Bray-Curtis measures. In our case, this filtering removed many ASVs but only a low
percentage of total sequences. Interestingly, this low level of exclusion of rare taxa does not
appear to moderate the assessment by producing reduced recovery times. At the low level of
exclusion, our analysis using rarefied data and similarity to reference measures may help
mitigate some of the impacts and concerns of removal of rare sequences experienced
elsewhere (e.g., Schloss, 2020). This raises the prospect to reduce sequencing depth, and
potential for shifting investment towards more robust assessments that incorporate a larger

number of samples with reduced sequencing depth and cost per sample.

4.6  Influence of ‘direct return’ soils in young rehabilitation sites

For reasons discussed here and below, we suggest it is prudent for these similarity to
reference trajectory assessments to exclude young rehabilitation sites with ‘direct return’ soils
that display elevated similarity to reference—as we implemented in our automated trajectory
modelling algorithm. In earlier preliminary work at Eneabba and Worsley, we observed that
the inclusion of young rehabilitation samples that were overly similar to references resulted
in seemingly biased, longer predictions of recovery time. The industry best practice of ‘direct
return’ of topsoil to new rehabilitation sites is based on objectives to minimise soil
degradation and expedite ecosystem recovery. However, our use of monotonic logarithmic
models applied to a data series that contains young rehabilitation sites with elevated
similarity to reference values, followed by older sites with reduced similarity to reference
values, results in the seemingly perverse outcome of a flatter, longer modelled trajectory of
recovery. The enhanced ecological similarity to reference in young rehabilitation sites with

‘direct return’ soils reflects a biological inertia, or temporary carryover effect, from unmined
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areas where the soils originate, and confounds the relationship between soil microbiota
development and rehabilitation age. For ‘direct return’ soils, we speculate the time taken for
local influences to become dominant in shaping the resident microbiota may be in the order
of 1-10 years, varying on a case-by-case basis, e.g., due to soil factors including organic
matter and clay content, as well as the magnitude of environmental influences. Soil
microbiota will be shaped by influences including local rainfall, temperature, aspect, soil
water availability and transport (e.g., run-on, lateral flow), and vegetation communities via
plant-soil feedbacks. Existing deeper soil and substrate may also influence rehabilitation
surface soils via upward movement of water, nutrients, and some microbiota through
mechanisms including: hydraulic redistribution by plant root systems (Neumann and Cardon,
2012); potential microbiota uptake and transfer via xylem into the phyllosphere (Deyett and
Rolshausen, 2019; Fausto et al., 2018) and subsequent leaf litter; and capillary rise in heavier
textured soils under conditions of soil water evaporation. Other factors affecting the
similarity to reference of direct return soils include their source location (are they taken from
sites that are generally closer to other reference sites or adjacent to rehabilitation sites?), the
depth of fresh topsoil applied, the condition of subsurface layers (e.g., fresh vs. stockpiled),
and the depth and method of tillage or mixing of the soil surface and subsurface layers
following soil return. Our approach to automate the commencement of logarithmic models
once there is at least an initial increase in similarity to reference values provides an objective
approach to help overcome the potential model-biasing effect of biological inertia that is

found in some direct return soils.

4.7 Spatial autocorrelation

As observed in the Worsley data, we found signals of excessive spatial autocorrelation where

strong slopes were detected in plots of ecological distance to reference versus geographic
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distance to reference, and where substantial differences were detected in the logarithmic
models and/or predicted recovery times between original and corrected datasets. Excluding
geographic outliers in the filtered Worsley analysis also removed a clear spatial
autocorrelation signal in the data, which indicates the importance of sampling designs. If
rehabilitation sites reflect environmental settings or imported soils that are overly similar or
dissimilar to references (i.e., different to natural background rates of spatial autocorrelation),
this may unduly bias predicted recovery times. Where possible, we recommend a sampling
approach that resembles the approach used at Huntly, where each reference site was spatially
paired with an adjacent rehabilitation site. This approach helps capture variation among
references (within a given minesite) relevant to the broader range of rehabilitation sites; and
provided there is adequate spatial replication and geographic outliers are avoided, then undue
influence from spatial autocorrelation should be avoided.

Our analysis of spatial autocorrelation should be viewed as introductory and
illustrative. For ‘direct return’ soils at young rehabilitation sites, our approach is deficient
because we do not account for their previous location. Although, we anticipate localised
influences would dominate the shaping of resident soil microbiota in rehabilitation sites after
a few years, as discussed above.

Plant-soil-microbiota feedbacks represent a complicating factor for disentangling
effects of soil abiotic condition, rehabilitation age, and residual/unexplainable spatial
autocorrelation in restoration chronosequence studies. This is because chronosequence
studies (which presume a ‘space-for-time’ proxy relationship between treatments and
outcomes) typically do not collect sufficient data to determine whether soil conditions have
influenced rehabilitation outcomes, plants have conditioned soils, or both situations have
occurred. Studies that have considered plant-soil feedbacks in restored Jarrah forest (Huntly)

sites have shown differential correlative effects of rehabilitated soil biotic and abiotic
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properties (Orozco-Aceves et al., 2017). Also, plant-soil feedbacks behave differently in
unmined versus rehabilitated soils (Orozco-Aceves et al., 2015). Further work is required to
build understanding of this topic (e.g., via longitudinal studies).

Study designs should account for geographically variable factors that may influence
soil bacterial communities to build robust evidence. Microbial communities are influenced by
a range of often complex edaphic, physiographic, climatic and biotic factors (e.g., vegetation
and land use history, soil texture, available nutrients and moisture, drainage, pH, salinity,
sunlight; Brown et al., 2018; Delgado-Baquerizo et al., 2018; Zhu et al., 2021). The need to
reflect such environmental variation through choosing appropriate references is well
recognised by industry (Australian_Government, 2016; Manero et al., 2021).

Accordingly, where restoration study locations are characterised by distinct modes of
geographically distributed soil and landscape conditions or pre-disturbance ecosystem types
(e.g., uplands vs. lowlands; riparian vs. non-riparian; dune vs. swale) it would be appropriate
to reflect this striking contrast in reference environmental conditions and desired
rehabilitation outcomes by undertaking separate rehabilitation trajectory assessments for each
major representative target ecosystem type. The optimal distribution of each set of
rehabilitation and reference sites should reflect the spatial composition of major landform- or
post-restoration target ecosystem-types specific to each study area, and might be informed via
pre-existing mapping or imagery, digital elevation models, and other land resource
assessment tools and techniques (e.g., digital clustering of landscape types; de Bruin and

Stein, 1998).

4.8 Other limitations

There are important limitations in our study, in addition to those already discussed. The

robustness of our study would be improved with more samples per minesite to help better
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capture minesite-wide variation. We did not consider soil microbiota patterns at depth, which
are also important. Also, major changes to rehabilitation practices over time will disrupt the
‘space-for-time’ substitutive modelling approach that is relied upon in chronosequence
studies such as ours. For any restoration chronosequence study careful sample selection is
required to avoid confounding factors as much as possible (Walker et al., 2010). There are
potential limitations in our study associated with the phylogenetic trees we used to generate
UniFrac distances (see Appendix A, Supplementary Methods for details). Tree-building often
represents a compromise between accuracy in representing phylogenetic relationships and
computing time, and it was beyond the scope of our study to test the sensitivity of our
UniFrac-based analyses to the quality of trees used. We used logarithmic models which
assume a monotonic recovery function, however other models that account for variable trends
over time, and varying success for different rehabilitation techniques or sites, may offer
improved estimates of recovery time. We suggest these limitations should be investigated in

future studies.

5. CONCLUSIONS

We provide a proof-of-concept demonstration of an innovative, chronosequence-based,
similarity to reference trajectory assessment method, to quantitatively track progress in soil
microbiota with post-mining rehabilitation. Through incorporating microbiota survey data
from multiple reference sites of varying character, we revealed substantial variation among
reference ecosystems within each minesite that can inform realistic rehabilitation targets. Our
method reduces the complexity associated with microbiota data and enables prediction of
recovery time to reach reference-based targets with explicit inclusion of uncertainty in
assessments. Also, the use of soil microbiota data provides another line of evidence, which in

conjunction with wider minesite information, could assist in the examination of potential
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impediments to the progress of rehabilitation, thereby helping to inform adaptive
management. From our investigations, we recommend using ASV-level Bray-Curtis
similarities which appear to offer a relatively sensitive and stable basis for modelling
rehabilitation trajectories. We recommend wherever possible to maximise sample sizes,
employ spatial pairing of reference and rehabilitation sites, and to exclude geographically-
distant, non-representative sampling areas. We used an automated modelling routine to
exclude young rehabilitation sites with 'direct return' soils that displayed elevated similarity
to reference values, which would have biased the trajectory modelling. Further fine-tuning to
identify possible minor reductions in sequencing depths (eliminating some rare taxa) offers
promise to reduce per sample costs, enabling investment in more samples, to help deliver
more robust assessments. This work represents an important step towards a reduced-
complexity microbiota-based monitoring and evaluation framework consistent with many
best practice principles for setting, monitoring and managing towards mine completion
criteria recommended by (Manero et al., 2021). We anticipate that our approach could be
expanded to other eDNA sequence-based survey data (e.g., fungal ITS and eukaryote 18S
rRNA marker genes, functional potential from shotgun metagenomic data), and may have
application in wider contexts where there is interest in monitoring restorative processes that

facilitate a shift in microbiota towards reference states.
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