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ABSTRACT

Extreme Mei-yu rainfall (MYR) can cause catastrophic impacts to the economic development and societal welfare in
China. While significant improvements have been made in climate models, they often struggle to simulate local-to-regional
extreme rainfall (e.g., MYR). Yet, large-scale climate modes (LSCMs) are relatively well represented in climate models.
Since there exists a close relationship between MYR and various LSCMs, it might be possible to develop causality-guided
statistical models for MYR prediction based on LSCMs. These statistical models could then be applied to climate model
simulations to improve the representation of MYR in climate models.

In this pilot study, it is demonstrated that skillful causality-guided statistical models for MYR can be constructed based
on known LSCMs. The relevancy of the selected predictors for statistical models are found to be consistent with the
literature. The importance of temporal resolution in constructing statistical models for MYR is also shown and is in good
agreement with the literature. The results demonstrate the reliability of the causality-guided approach in studying complex
circulation systems such as the East Asian summer monsoon (EASM). Some limitations and possible improvements of the
current approach are discussed. The application of the causality-guided approach opens up a new possibility to uncover the
complex interactions in the EASM in future studies.
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Article Highlights:

¢ Skillful spatiotemporal statistical models of extreme Mei-yu rainfall can be produced using the causality approach.
¢ Based on spatial consistency, the large-scale climate modes that are relevant to the regional extreme Mei-yu rainfall can

be identified.

1. Introduction

Meteorological extreme events affect economic develop-
ment and societal welfare in an extraordinary way. Many
countries in East Asia are affected by a variety of natural
meteorological related hazards, e.g., tropical cyclones and
extreme rainfall events associated with the Mei-yu front
(MYF) embedded in the East Asian Summer Monsoon
(EASM) system. It is estimated by the Chinese government
that the direct economic losses caused by extreme meteorolog-
ical events is about 1%-3% of gross domestic product
(GDP) every year (Sall, 2013). The exposure could further
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increase due to the rapid economic development and migra-
tion patterns in China. In 2020, record-breaking amounts of
extreme Mei-yu rainfall (MYR) were observed over the
Yangtze River Valley region (YV) (Liu et al., 2020). This
led to severe flooding in the YV, more than 140 casualties,
and more than 82 billion renminbi (RMB) direct economic
loss (Gan, 2020). Given the enormous impact of MYR, it is
necessary to deepen our understanding of various aspects of
the MYR, including the onset, duration, and intensity of rain-
fall (Ding et al., 2021). This could then increase our capability
to predict MYR for the near- (e.g. Martin et al., 2020) and
the long-term future. Consequently, this will allow policy
and decision makers to be able to develop optimal disaster
risk reduction and mitigation strategies to strengthen the
resilience of society and minimize the impact of meteorologi-
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cal extremes on society.

The MYF is one of the main features of the EASM.
The MYF rain band moves in a stepwise manner from low
to higher latitudes as the EASM advances northwards from
May to August (Ding and Chan, 2005; Wang et al., 2009; Li
et al.,, 2018). While significant improvements have been
made in forecasting Mei-yu rainfall using dynamical models
on seasonal time scales (e.g. Martin et al., 2020), the accurate
prediction of MYR in climate models remains one of the
major challenges in the scientific community. This is partially
due to coarse climate model spatial resolution, whereby key
processes on relevant spatial and temporal scales are not
well represented.

Many studies in the past have found a significant associa-
tion between MYR and several large-scale climate modes
(LSCMs), including the Indian Summer Monsoon (ISM)
(Wang and LinHo, 2002; Liu and Ding, 2008), the western
North Pacific subtropical high (WNPSH) (Zhou and Wang,
2006; Ninomiya and Shibagaki, 2007; Liu and Ding, 2008;
Sampe and Xie, 2010; Ding et al., 2021), the South Asian
High (SAH) (Liu and Ding, 2008; Ning et al., 2017), the El
Nino—Southern Oscillation (ENSO) (Wu et al., 2003; Wang
et al., 2009; Ye and Lu, 2011), the Pacific—Japan teleconnec-
tion pattern (PJ) (Kosaka et al., 2011; Ding et al., 2021), sea
surface temperature anomaly (SSTA) in the Indian Ocean
and the South China Sea (e.g. Zhou and Wang, 2006), as
well as middle-to-high-latitude features (e.g., the Silk Road
Pattern; SRP) (Wang and He, 2015; Ning et al., 2017).
Based on these associations, different theories and hypotheses
for the underlying mechanisms that control different aspects
of MYR have been proposed (e.g., Ding and Liu, 2008;
Sampe and Xie, 2010; Ning et al., 2017; Li et al., 2018).
Given that many LSCMs have been found to be important
in controlling the MYF and MYR, one idea is to construct sta-
tistical prediction models for MYR based on relevant
LSCMs, because LSCMs are better simulated by climate mod-
els (Flato et al., 2013). However, due to the complexity of
the EASM system and the limitations of traditional
approaches, e.g., the correlation-based approach, in process-
ing large amounts of information, it is difficult to reliably
identify robust and comprehensive relationships between
MYR and LSCMs. Consequently, this remains as a major
challenge.

In recent years, data-driven, causality-guided
approaches have started to gain attention from the climate
community (Ebert-Uphoff and Deng, 2012; Runge et al.,
2012a, b, 2014, 2019a, b; Chaudhary et al., 2016;
Kretschmer et al., 2016, 2017; Di Capua et al., 2019).
Kretschmer et al. (2017) and Di Capua et al. (2019) demon-
strated the advantages of using a causality-guided approach
(response-guided causal precursor detection; RG-CPD), to
construct statistical forecast models for meteorological
extremes. RG-CPD is a two-step procedure. The first step is
to construct relevant climate indices, which are related to
the response, from the data field using the response-guided
community detection algorithm (Bello et al., 2015). This is
done by first calculating lagged correlation maps between cli-
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mate variables and the response. Then the adjacent grid
points with significant correlations of the same sign with the
response form so-called precursor regions. Climate indices
are then constructed by area-weighted averages over the pre-
cursor regions. The second step is to apply a causal discovery
algorithm (Spirtes et al., 2001; Runge et al., 2012a, 2014,
2015; Runge, 2015) to explore the causal relationship
between the climate indices, which are found in the first
step. The statistical models constructed, using RG-CPD, by
Kretschmer et al. (2017) and Di Capua et al. (2019) have
been shown to have excellent performance in predicting
extreme stratospheric polar vortex states and Indian summer
monsoon rainfall, respectively. This shows the potential of
the causality approach in applying it to the prediction on
half-monthly to seasonal time scales of other meteorological
and climatological extremes as well as exploring underlying
physical processes. Our work aims to explore the applicability
of the causality approach for predicting MYR based on
known LSCMs.

Traditionally, predictors in statistical models are chosen
based on the association with the responses, i.e., correlation.
However, correlation-based statistical models may have no
physical meaning because correlation does not imply causa-
tion. In addition, all predictors, which describe different
stages of the same process, would be chosen if the traditional
association criteria are used. Consequently, correlation-
based statistical models suffer from overfitting due to non-
causal relationships between predictors and response
(Kretschmer et al., 2017). This also implies that these models
cannot be applied to alternative data as the models are built
using specific datasets. On the other hand, a causality-
guided statistical model (CGSM) does not have these draw-
backs because it captures the underlying physical relations.

In this pilot study, we aim to answer the following ques-
tions: (1) How well do data-driven CGSMs, constructed
using known indices of LSCMs, perform in predicting
MYR both spatially and temporally? (2) What are the limita-
tions of data-driven CGSMs? In this paper, we demonstrate
the usefulness of a data-driven, causality-guided approach,
which allows us to explore the relationship between MYR
and LSCMs in a more comprehensive and efficient manner.
The models constructed based on the predictors, which are
selected using this approach, will be shown to have remark-
able explanatory power. Due to the property of causality-
guided models as discussed above, i.e., CGSMs do not suffer
from overfitting due to non-causal relationships between pre-
dictors and response, the prediction model can be applied to
different datasets for the same phenomena. This opens up
the possibility to apply this type of statistical model to climate
data that are generated from different models and simula-
tions. Consequently, useful and timely information would
be available to policy and decision makers. The paper is
arranged as follows: the datasets that are used in this study
are outlined in section 2. The methodology is described in
section 3. In section 4, we present the main results, including
the performance of the models. The discussion about the cur-
rent approach as well as its limitations can be found in section
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5. Conclusions are presented in section 6.

2. Data

For model development, the fifth generation European
Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis data (ERAS5) (Hersbach et al., 2020) is used.
ERAS is produced based on the Integrated Forecasting Sys-
tem (IFS) Cy4lrl with 4D-Var data assimilation. The
model resolution is T639 (~32 km) with 137 vertical levels.
In this study, ERAS data from 1979-2018 with spatial resolu-
tion of 0.25° x 0.25° is used. Historical rainfall observation
data (1961-2018) is obtained from the high resolution (0.25°
x 0.25°) gridded observed daily precipitation data from the
China Meteorological Administration known as the CN05.1
data set (Wu and Gao, 2013). Similar to the development of
the earlier gridded observation data (Xu et al., 2009), the
CNO5.1 dataset was constructed by interpolation of data
from more than 2400 observation stations in China using
the “anomaly approach ” (Wu and Gao, 2013). In the
anomaly approach, a gridded climatology is first calculated,
and then a gridded daily anomaly is added to the climatology
to obtain the final dataset. The CNO5.1 data in the period of
1979-2018 are used for model construction. To examine the
limitation of this approach for different climate states,
CNO5.1 and ERAS back extension (BE) (preliminary ver-
sion) (Bell et al., 2020a, b) in the period of 1961-78 are also
used.

3. Method

3.1. Indices of LSCM

Indices of LSCMs are calculated using ERAS (Hersbach
et al., 2020) and ERAS BE (preliminary version) (Bell et al.,
2020a, b) for the period 1979-2018 and 1961-78, respec-
tively. Table 1 shows the list of indices of LSCMs considered
in this study. Since there are some reported biases in ERAS
BE (ECMWEF, 2021), consistency checks between the
indices of LSCM calculated from ERAS and ERAS BE
have been performed. In general, indices of LSCM calculated
using ERAS BE are climatologically consistent with ERAS,
except for the area index of the South Asian High (SAHI-
Area). The mean and standard deviation of SAHI-Area in
ERAS5 BE for the period 196178, which are approximately
equivalent to 1.10 x 107 km? and 5.72 x 10° km?2, respec-
tively, are climatologically smaller than those in ERAS,
which are approximately equivalent to 1.54 x 107 km? and
7.70 x 10° km2, respectively. This is related to the decadal
shift of SAH intensity around the late 1970s (e.g. Xue et al.,
2015).

3.2. MYF detection and MYR identification

The MYF detection scheme was developed in the
FOREX project (http://www.birmingham.ac.uk/research/
activity/environmental-health/projects/forex.aspx;  Access
date: 13 December 2021) and was first presented in Befort
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et al. (2016), Leckebusch et al. (2016), and Befort et al.
(2017). This detection scheme is an extension of the Baiu
front detection scheme, which was developed by Tomita et
al. (2011), to identify the Mei-yu-Baiu front over a large
region from China to Japan. The main difference in the detec-
tion schemes is that Tomita et al. (2011) used the minimum
of the meridional gradient of daily equivalent potential tem-
perature at 850 hPa (d6,) to locate the position of the MYF,
whereas the minimum of the product of dé, and specific
humidity at 850 hPa (¢gdf,) was used by Befort et al. (2016)
and Befort et al. (2017). The reason for the difference is that
the position of the MYF that is detected using the minimum
df, appears to be too far north in comparison to the rainfall
over eastern China (Befort et al., 2016, 2017). Tomita et al.
(2011) pointed out that the Mei-yu rainfall over eastern
China depends on instability, which is linked to df,, and
total amount of humidity. In order to include the effect of
moisture, gdé, is chosen here, as in Befort et al. (2016) and
Befort et al. (2017), for MYF detection.

Figure 1 shows a flowchart for the MYF detection
scheme, and a brief description of this scheme is stated as fol-
lows: (1) The 15-day running mean of daily equivalent poten-
tial temperature at 850 hPa (6,) is calculated to remove sub-
synoptic-scale disturbances. (2) ¢dé, is then calculated on a
T63 grid (192 x 96, ~200 km), and values with 6, < 310 K
are masked. (3) An MYF exists if there exist coherent clusters
of gdf, minima exceeding 10 grid points that are in a specific
region, as stated in Fig. 1 and shown in Fig. S1 in the electronic
supplementary material (ESM). (4) The position of the
MYF is delineated by a cubic smoothing spline fitted to the
grid point values identified from the previous step. Figure 2
shows the climatological positions of the MYF in ERAS.
The northward propagation of the MYF from May to
August, as described in the literature (e.g., Ding and Chan,
2005), is well captured, which demonstrates the validity of
the detection scheme.

MYR is defined as all extreme rainfall, which is
defined as daily rainfall greater than or equal to the local
95th percentile climatological daily rainfall, within 500 km
north and south of the position of the MYF after subtraction
of tropical cyclone related rainfall (TCR) from the total rain-
fall. TCR is defined as all rainfall within a 500-km radius of
the center of the TC, where the location of the TC is identified
by the TRACK algorithm (Hodges et al., 2017). The leftmost
column of Fig. 3 shows the climatological monthly mean
MYR for different months in the Mei-yu season. The north-
ward propagation of the rain band is well captured in
CNO5.1.

While many studies in the past have linked LCSMs to
MYR on seasonal and monthly time scales (e.g. Wang et al.,
2009; Ning et al., 2017; Li et al., 2018), high frequency vari-
ability is of critical importance (e.g. Chen et al., 2015; Ding
et al., 2020, 2021). Ding et al. (2021) investigated the
causes of the record-breaking MYR in 2020 and demonstrated
that the WNPSH and other monsoon circulation subsystems
experienced several cycles of quasi-biweekly oscillation.
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Fig. 1. A flowchart for the MYF detection scheme as described in section 3.2 following Befort et al. (2016) and Befort et al.

(2017).
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Fig. 2. Climatological position of the MYF as identified in
ERAS5 (1979-2018).

This is one of the reasons that significantly more rainfall
was observed in the 2020 Mei-yu season; there were favorable
conditions for convective activity development in the YV.
To evaluate the impact of the high-frequency variability of
LSCMs in a CGSM, two sets of CGSMs have been con-
structed. CGSM-M is constructed based on monthly indices
of LSCM and monthly accumulated MYR for each month
in the Mei-yu season (May to August). CGSM-HM is con-
structed based on half-monthly indices of LSCM and half-

monthly accumulated MYR for each half-month in the Mei-
yu season.

3.3. Causality-guided statistical model (CGSM)

The CGSM is constructed using a three-step procedure
described as follows: (1) The lagged correlation between
detrended anomalies of indices of LSCM and detrended
anomalies of MYR for each grid point are calculated. The pre-
dictors, which are significantly correlated with MYR at the
0.1 significance level, are considered as potential causal pre-
dictors. (2) The modified Peter—Clark (PC) algorithm
(Tigramite version 4.2, https://github.com/jakobrunge/
tigramite, Runge et al., 2019b; Runge, 2020) is used to evalu-
ate the conditional dependency for all potential causal predic-
tors and MYR. A causal predictor is found if the MYR is
shown to be conditionally dependent on the predictor, given
other causal predictors. (3) A multiple linear regression
model is constructed using all identified causal predictors
from step (2) and MYR as the response. The above procedure
is repeated for all land grid boxes over continental China for
which the number of non-zero MYR entries of the grid box
is at least 30. The choice of at least 30 non-zero MYR
entries is to avoid construction of the model to predict no
MYR.

The significance level of correlation between MYR and
predictor pairs in step (1) is chosen to be 0.1, as this is the
minimum acceptable significance level. Similar results to
those in this study can be obtained if a significance level of
0.05 is used. The significance level of 0.1 is used to maximize
the number of potential causally related LSCM-MYR pairs.
Causally non-relevant LSCM-MYR pairs would be
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Fig. 3. Climatological monthly mean (1979-2018) MYR for May, June, July, and August (top to bottom) from CNO5.1
observations, CGSM-HM predictions, CGSM-M predictions, and ERAS direct output (left to right).

removed by step (2). The conditional dependency in step (2)
is obtained, using the modified PC algorithm, by iteratively
testing whether the relationship between the potential causal
predictor and MYR can be explained by the influence of
other causal predictors (see Di Capua et al., 2019 for
detailed description). The modified PC algorithm is con-
trolled by two main hyperparameters: (i) maximum time lag
with respect to the time of interest and (ii) a regularization
parameter, a,, (see Runge et al., 2019b for detailed explana-
tion of the functionality of each hyperparameter). A detailed
discussion of the choice of the maximum time lag and o,
can be found later in this section and section 5.1, respec-
tively.

The underlying principle of a CGSM is similar to the
studies of Kretschmer et al. (2017) and Di Capua et al.
(2019) but with two major differences. (i) The first step of
RG-CPD, which was used in Kretschmer et al. (2017) and
Di Capua et al. (2019), is to discover new climate indices
that have significant association with the response (see
Bello et al., 2015 for details). In this study, we are not inter-
ested in discovering new indices because we aim to demon-

strate the added value and usefulness of the causality
approach using known LSCM drivers in explaining the vari-
ability of MYR. Consequently, indices of known LSCMs,
which are listed in Table 1, are used in this study. (ii) In the
studies of Kretschmer et al. (2017) and Di Capua et al.
(2019), the responses are area-weighted averages. Conse-
quently, their models are temporal models, which model the
regional changes. Due to the importance of the spatial distri-
bution of MYR, such an approach could be a major limita-
tion. In this study, a model is built for each land grid box
over continental China. The resultant models can thus capture
and explain the spatiotemporal changes of MYR. The total
number of CGSM-M and CGSM-HM is 19 188 and 30 059,
respectively.

The maximum lag with respect to the time of interest
for CGSM-M and CGSM-HM is 11 months and 23 half-
months (HMs), respectively. Although the LSCMs chosen
in this study could play important roles in part of the underly-
ing physical processes, it is possible that there exist hidden
physical processes that are not known yet but are important
in controlling MYR. Large maximum time lag aims to assist
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Table 1. List of the LSCMs considered in the construction of the CGSM.

LSCM Definition/References

Dipole Mode Index (DMI) As in Saji et al. (1999); Black et al. (2003)
Indian Monsoon Index by Wang and Fan (IMI-WF) As in Wang and Fan (1999)

Indian Monsoon Index by Webster and Yang (IMI-WY) As in Webster and Yang (1992)

ENSO (Nifio-3.4) As in Trenberth (1997)

Pacific Japan Pattern (PJ)

South Asian High Area Index (SAHI-Area)

South Asian High Northwest Displacement Index (SAHI-NW)
Silk Road pattern principal component 1 (SRP-PC1)

Silk Road pattern principal component 2 (SRP-PC2)

Sea surface temperature anomaly of Arabian Sea (SSTA-AS)

Sea surface temperature anomaly of Bay of Bengal (SSTA-BoB)
Sea surface temperature anomaly of East China Sea (SSTA-ECS)
Sea surface temperature anomaly of South China Sea (SSTA-SCS)
Western North Pacific Monsoon Index (WNPMI)

Western North Pacific Subtropical High North Index (WNPSH-North)
Western North Pacific Subtropical High West Index (WNPSH-West)

As in Nitta (1987); Wakabayashi and Kawamura (2004);
Choi et al. (2010); Kim et al. (2012); Li et al. (2014)
As in Ning et al. (2017)

As in Ning et al. (2017)

As in Li et al. (2020)

As in Li et al. (2020)

Mean SST anomaly in the region 10°-25° N, 60°-75° E
Mean SST anomaly in the region 10°-23° N, 80°-100° E
Mean SST anomaly in the region 25°-33° N, 120°-130° E
Mean SST anomaly in the region 10°-23° N, 105°-120° E
As in Wang and Fan (1999); Wang et al. (2001, 2008)

As in Lu (2002)

As in Lu (2002)

the models to capture these hidden processes indirectly. For
example, suppose we have a process A(4)—B(2)—C, where
the number in the brackets indicates the time lag with
respect to C. If we only have the information of A and C,
using the causality algorithm with maximum time lag of
three, then we would not be able to identify any causal link
between A and C. However, if we increase the maximum
time lag to five, then we would have captured the causal
link between A and C in the absence of B. The use of large
maximum lag increases the number of potential predictors sig-
nificantly, i.e., the number of possible predictors available
for CGSM-M and CGSM-HM is 176 and 368, respectively.
While this would be an issue in the typical correlation-based
variable selection, this is not the case in the causality frame-
work because predictors are only selected if they are
causally related to the response as discussed before. Further-
more, if there are several predictors that describe different
stages of the same process, only the predictor with the shortest
lagged time with respect to the month (or half-month) of inter-
est would be selected by the procedure. The typical number
of predictors used to construct CGSM-M and CGSM-HM
for all months and half-months is four and seven, respec-
tively, except for the CGSM-HM of the ninth half-month (i.
e., first half of May), where typically only six predictors are
used. It is also found that predictors related to the PJ, Indian
Monsoon Index by Wang and Fan (1999) (IMI-WF),
WNPSH North Index (WNPSH-N), WNPMI, and SRP-
related indices are frequently selected by CGSM-HM and
CGSM-M.

The performances of CGSMs constructed with
detrended variables and non-detrended variables are very simi-
lar. For the rest of the discussion, we focus on the CGSM con-
structed with non-detrended variables. Since a CGSM can pre-
dict negative values, which have no physical meaning, all pre-
dictions of negative values are set to be zero for physical con-
sistency. For model validation, five-fold cross-validation

(CV) is used. In five-fold CV, the original data is randomly
split into five equal sized subsets. Four subsets are used in
model construction, and the remaining subset is used for vali-
dation. This procedure is repeated 1000 times with random
stratification to achieve statistical robustness.

4. Results

Figure 3 shows the spatial distribution of climatological
monthly mean MYR (left to right) from observations, mod-
eled using CGSM-HM, modeled using CGSM-M, and from
ERAS direct output over continental China. ERAS direct out-
put captures the MYR pattern as shown in observations,
except MYR in ERAS direct output appears to be more
extreme than that from observations. This is in agreement
with Jiao et al. (2021), where it was found that ERAS overesti-
mated precipitation in summer over China. Both CGSM-
HM and CGSM-M show similar climatological patterns to
the observed pattern and appear to be better matched with
observations than the ERAS direct output. Although the clima-
tological patterns of CGSM-HM and CGSM-M are very simi-
lar (Fig. 3), CGSM-HM has much better performance in cap-
turing variability than CGSM-M (Fig. 4). The median of Pear-
son’s correlation coefficient between observed and model val-
ues of CGSM-HM (CGSM-M) for May, June, July, and
August, are 0.874 (0.744), 0.847 (0.701), 0.871 (0.754), and
0.858 (0.714), respectively. Figure 4 demonstrates the impor-
tance of submonthly variability in understanding MYR, as dis-
cussed in the literature (e.g., Ding et al., 2021). Low temporal
resolution models (i.e., CGSM-M) would not be able to cap-
ture the high frequency variability. In contrast, higher tempo-
ral resolution models (i.e., CGSM-HM) have the ability to
capture the high frequency variability relevant to MYR
related to smaller temporal scale atmospheric phenomena.

Furthermore, the root-mean-square error (RMSE) of
CGSM-M is, in general, higher than that of CGSM-HM
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(Fig. 5). The largest differences of RMSE between the two
models can be found in the middle/lower YV (25°-32.5°N,
110°~120°E) as defined in Martin et al. (2020). This further
supports the use of a high temporal resolution CGSM. Sensi-
tivity studies have been performed to investigate the sensitiv-
ity of the current method to the definition of extremes from
the model construction perspective. The local 80th and 90th
percentile thresholds are chosen to be alternative definitions
of extremes, as opposed to the 95th percentile (c.f. section
3.2). Similar patterns to those shown in Fig. 4 emerge. This
suggests that the current method can construct a model with
similar performance for different definitions of extremes.
The RMSEs of the five-fold CV for both CGSM-HM and
CGSM-M (Fig. 6) show similar patterns to those seen in
Fig. 5, which supports the utility of CGSMs.

It is worth pointing out that the region where the largest
RMSE (Fig. 5) is found in both CGSM-HM and CGSM-M
coincides with the region where the highest climatological
monthly mean extreme rainfall is found (Fig. 4). This is
because both CGSM-HM and CGSM-M attempt to model
accumulated extreme precipitation based on a simple multiple
linear regression model, and extreme values tend to be diffi-
cult to model by simple multiple linear regression due to
their rarity. This can be seen in the results of the five-fold
CV (Fig. 6). In the five-fold CV, 32 years of data is used to
construct CGSMs, and eight years of data is used to test
CGSMs, i.e., less available observations to construct
CGSMs. Given that the ability to model extreme MYR is
governed by the existence of extreme MYR in the training
dataset and extreme MYR is relatively rare, the performances
of the CV models are reduced. A possible solution is sug-
gested in section 5.2.2.

To further illustrate the usefulness of CGSMs and the dif-
ference between CGSM-M and CGSM-HM, the mean
MYR time series for the middle/lower YV has been calculated
for observations and for predictions from CGSM-M and
CGSM-HM (Fig. 7). In general, the predictions from
CGSM-M and CGSM-HM agree with observations relatively
well. For the extremes, particularly for 1981, 1995, and
1998, CGSM-HM significantly outperforms CGSM-M.
This confirms the importance of capturing high-frequency
variability in a CGSM.

5. Discussion

5.1. Causality framework

In theory, the causality approach does not suffer from
overfitting because predictors and response are causally
related (Kretschmer et al., 2017). In practice, it would
depend on the choice of hyperparameter a,, in the causal dis-
covery algorithm, as occasionally slightly different results
can be obtained. In this study, we ran the modified PC algo-
rithm (c.f. section 3.3) with five different values of a,, rang-
ing from 0.1 to 0.5, and selected the set of causal predictors
that leads to the highest CGSM performance, i.e., the optimal
model. This is a useful approach even though it might not
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be optimal from the causality discovery point of view, as
the measure of the goodness of fit is not a measure of causal-
1ty.

Fromaphysical perspective, LSCMs trigger physical pro-
cesses that lead to MYR over a large region rather than at a
single local grid box. This implies that if CGSMs are con-
structed based on physical processes rather than purely statisti-
cal associations, the predictors in CGSMs should have a cer-
tain degree of spatial consistency, i.e., the locations of the
grid boxes that select certain predictors should form coherent
large clusters. As demonstrated in Fig. 8, the LSCMs that
are used in CGSMs (e.g., IMI-WF with five half-month lag)
form large coherent spatial clusters. Thus, these LSCMs are
linked to the regional MYR through physical processes, and,
consequently, CGSMs are not purely statistical models but
they have physical significance.

Under the causality framework, the predictors in
CGSMs correspond to different processes. Some of these pre-
dictors could be linked to the following hypotheses: (1) Liu
and Ding (2008) investigated the teleconnection between
ISM precipitation and Mei-yu rainfall over YV. They
reported the southwest—northeastward teleconnection mode
originated from southwestern India, and it propagates
through the Bay of Bengal to the YV and southern Japan.
The IMI-WF predictor (lag five) could correspond to the pre-
conditions of ISM onset. (2) Ning et al. (2017) hypothesized
about the influence of the dynamical changes of the south
Asian high (SAH) on MYR. When the SAH expands and
intensifies, the WNPSH also intensifies and extends west-
ward. More moisture is transported to the YV region. That
combined with other environmental factors leads to more
extreme rainfall in the region. The SAHI-Area predictor
(lagtwo) potentially reflects this mechanism. However, identi-
fying the actual physical processes that relate predictors and
response is beyond the scope of the current study.

5.2. Limitations

There are three noticeable limitations in the current
approach where potential improvement in the future could
be possible.

5.2.1. Incomplete set of LSCMs

While a significant number of LSCMs are considered
in the CGSM construction, not all potentially relevant
LSCMs, such as LSCMs that control long-term, low-fre-
quency variability, are included. Ding et al. (2008) found
that the regional rainfall in the EASM region exhibits multi-
decadal variability with the most dominate mode being ~80
years. Other higher-frequency multidecadal oscillations are
also important in controlling regional variability. Further-
more, Ding et al. (2008) has shown that there is a shift in
the meridional precipitation pattern from the tripole pattern
in 1951-78 to the dipole pattern in 1993-2004. This is also
related to variations in the large-scale circulation and the ther-
modynamic and moisture fields in the EASM region in the
same period. Given that the predictor set of the CGSM does
not include any multidecadal LSCMs, it could be problematic
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Fig. 4. Map of Pearson correlation coefficient between CN05.1 and model values of monthly accumulated MYR
calculated using CGSM-HM (left column) and CGSM-M (right column) for May, June, July, and August (from
top to bottom) for the period 1979-2018.
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Fig. 5. RMSE of the optimal models for CGSM-HM (left), CGSM-M (middle), and the difference between CGSM-HM and
CGSM-M (right) for the period 1979-2018. The black box indicates the middle/lower Yangtze River region as defined by

Martin et al. (2020).

to apply the current CGSMs to a different climatic state. To
evaluate the performance of the CGSM in a different climate
state, similar analyses have been done using data from
ERAS5 BE and CNO5.1 in the period of 1961-78. A consis-
tency check based on the climatological monthly MYR pat-
tern between ERAS5 BE and CNO5.1 has been done. While
the general patterns appear to be similar, the region of high-
intensity MYR in ERAS5 BE is much larger and extreme
than that in CNO5.1 (not shown). Possible explanations
could be changes in the global observation system in 1979,

as was found in ERA-40 (Bengtsson et al., 2004), and the
bias in simulated precipitation in the ECMWEF IFS (Lavers
et al., 2021).

Over the study region, the overwhelming advantage of
thehigh-temporal-frequency-resolutionmodelhasbeendimin-
ished (Fig. 9). Although there are patches of regions with rela-
tively high positive Pearson’s correlation coefficient, the
median of Pearson’s correlation coefficient between
observed values and model values (Fig. 9) of both CGSM-
HM and CGSM-M is close to zero for the Mei-yu season.
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Fig. 6. Mean RMSE of five-fold cross-validation of the CGSM-HM (left column) and CGSM-M (right column)
for the period 1979-2018.
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This shows that the CGSM, which is trained with data from
the period 1979-2018, does not have the ability to capture
variability in the entire study region for the period 1961-78.
The CGSM-HM has a smaller RMSE than the CGSM-M in
July within the middle/lower YV region (Fig. 10). The loca-
tion of high RMSE in CGSM-HM and CGSM-M appears to
be similar (e.g., Guangdong province in May and June, and
along the lower/middle YV in July). This could indicate that
some of the key physical processes are not captured by the
current statistical models. This might be related to the limited
number of LSCMs considered in this study as well as the
potential differences in processes in the period 1961-78. Fur-
thermore, in general, the mean five-fold CV RMSE of
CGSMs using data from 1979-2018 (Fig. 6) is lower than
the RMSE of CGSMs using data from 1961-78 (Fig. 10),
except for in the lower/middle YV in June. This shows the
possible shift between the spatial distribution of MYR in the
period 1961-78 and that in the period 1979-2018. Given
that the predictor set of the CGSM does not include any
LSCM that controls multidecadal variability, it would not
be surprising that the CGSM does not have the best perfor-
mance in predicting the MYR in the period 1961-78.

5.2.2. Limited available observations

The CGSMs constructed in this study aim to model
MYR over continental China. Currently the models are built
based on 40 years of observational and reanalysis data. As
briefly discussed in section 4, the performance of the model
is limited by the amount of available extreme observations,

—_
o

(22NN e ]
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N

o

1980 1990 2000 2010

Fig. 7. Time series of mean MYR from observations (black
line), prediction by CGSM-M (blue line), and prediction by
CGSM-HM (red line) in the middle/lower YV (black box in
Fig. 5) for June from 1979-2018.
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as demonstrated in Fig. 6. This can be improved if more
data are available. However, as shown in section 5.1, using
a longer historical record might not improve the model due
to the influence of long-term variability and climatic shifts,
and possible observational biases in the presatellite era. One
potential approach to address this issue is to make use of the
Osinski-Thompson approach (Osinski et al., 2016; Thomp-
son et al., 2017) with an application of a bias correction tech-
nique. The Osinski-Thompson approach has been shown to
be extremely useful in studies of extreme windstorm events
(Osinski et al., 2016; Walz and Leckebusch, 2019; Angus
and Leckebusch, 2020; Ng and Leckebusch, 2021) and
extreme rainfall events (Thompson et al., 2017). The underly-
ing principle is to make use of different atmospheric states,
which are produced by state-of-the-art general circulation
models (GCMs), in a well-defined climate state. Since these
GCMs are governed by physical equations, the physical
causal relationship between LSCMs and MYR should be con-
sistent with the observations. This way, we could increase
the number of extreme “observations” by at least 100-fold.
Although the rainfall simulated in GCMs is typically biased
relative to observations because it is affected by parameteriza-
tion schemes as well as other numerical issues, a bias correc-
tion technique can be used to address this issue. Conse-
quently, CGSMs, which are developed using the underlying
relationships between LSCMs and MYR and the
Osinski—-Thompson approach, may be more robust.

5.2.3.

Although the predictors selected in the causality frame-
work should be physically linked to the response, the set of
selected predictors could be sensitive to the choice of hyperpa-
rameter in the causality algorithm, as discussed before. One
approach to improve the stability and reliability of the causal-
ity-based predictor selection procedure is to make use of the
fact that selected predictors have to be spatially consistent
(Fig. 8). For example, if a predictor is selected for a particular
grid box but not for the neighboring grid box, then this predic-
tor is said to be spatially inconsistent and would be removed
from the final model. On the other hand, if a predictor is
selected for a particular grid box and the grid box is part of
a large, spatially coherent cluster, then this predictor would
be kept in the final model. This approach can improve the

Optimization of predictor selection

IMI-WF (lag 5) Count :974 SRP-PC2 (lag 3) Count :485 SAHI-Area (lag 2) Count :445
40N : : 40N -+ ' : 40N : :
30N - - 30N {* - 30N -
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Fig. 8. Map of the three most frequently chosen predictors for the second half of June.
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Fig. 9. (Left) Climatological MYR for May, June, July, and August in the period 1961-78. Map of Pearson correlation
coefficient between observations and predictions from CGSM-HM (middle) and CGSM-M (right) for May, June, July, and
August (top to bottom) using data in the period of 1961-78. The black box indicates the middle/lower YV as defined by

Martin et al. (2020).

physical consistency in predictor selection procedure.

6. Conclusions

This is a pilot study for the potential application of a
data-driven, causality-guided statistical approach to explore
the relationship between extreme Mei-yu rainfall (MYR)
and known large-scale climate modes (LSCMs) through the
construction of a prediction model based on the causal rela-

tionships. Using the causality approach, we have demon-
strated that known LSCMs from literature can be used to
model MYR with good accuracy (Fig. 4). Since the causality
approach does not lead to overfitting due to the inclusion of
noncausal-related predictors in the model, as shown in
Kretschmer et al. (2017), the approach is reliable in identify-
ing important LSCMs, which causally control MYR. Further-
more, the causality-guided statistical approach shows the
importance of capturing high-frequency variability by using
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Fig. 10. RMSE of the optimal models for CGSM-HM (left), CGSM-M (middle), and the difference between CGSM-HM and
CGSM-M (right) for May, June, July, and August (top to bottom) using data in the period of 1961-78. The black box
indicates the middle/lower YV as defined by Martin et al. (2020).

high-temporal-resolution predictors and responses to model
the MYR, which is in good agreement with the literature (e.
g., Chen et al., 2015; Ding et al., 2020, 2021). Based on the
causality approach, it is possible to identify the main
LSCMs controlling MYR in specific regions based on the spa-
tially consistent pattern of selected predictors (Fig. 8).
Known limitations of this approach have also been discussed
in detail, and methods to address these limitations have
been suggested (section 5.2).

While we have demonstrated the causality-guided

approach is useful in constructing models by uncovering the
underlying causal physical relationship between LSCMs
and MYR, a detailed investigation of the underlying physical
processes that are driven by LSCMs to influence MYR is
beyond the scope of this study and should be explored further
once a full causally explanatory model is identified. For this,
further investigations on the underlying physical processes
can be done using the causality approach by combining the
method described in this study and response-guided commu-
nity detection (Bello et al., 2015), and, consequently, the
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dynamical relationship between LSCMs and MYR in differ-
ent stages of the Mei-yu season in a given region could be
revealed. This can then optimize the index, which represents
a LSCM, and at the same time provide necessary physical
understanding of the index.

This study shows the importance of LSCMs in modelling
MYR. This is consistent with the analysis, which was done
by Martin et al. (2020), on the source of skill in predicting
June mean EASM rainfall over China using GloSea5. They
identified that the main source of skill comes from the equato-
rial SST from the preceding winter by influencing the
WNPSH. Using the causality approach, the importance of
LSCMs at different stages of the EASM can be identified in
a more comprehensive and efficient manner. The statistical
model constructed based on predictors, which are selected
using the causality approach, have high explanatory power
as well as transferability. This study also indicates that the pre-
dictability of the seasonal forecast of EASM rainfall can be
improved by improving the forecast ability of relevant
LSCMs. Ultimately, the causality approach can play an impor-
tant role in improving the prediction of MYR in the future cli-
mate due to its ability to uncover the intimate relationship
between LSCMs and MYR.
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