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Association between dietary saturated 
fat with cardiovascular disease risk markers 
and body composition in healthy adults: 
findings from the cross‑sectional BODYCON 
study
Ezgi Ozen, Rada Mihaylova, Michelle Weech, Sam Kinsella, Julie A. Lovegrove and Kim G. Jackson*   

Abstract 

Background:  Diets high in saturated fatty acids (SFAs) and greater abdominal obesity are both associated with raised 
low-density lipoprotein cholesterol (LDL-C) concentrations, an independent cardiovascular disease (CVD) risk marker. 
Although reducing SFA intake is a public health strategy for CVD prevention, the role of body fat distribution on the 
relationship between SFA and LDL-C is unclear. Therefore, our objective was to investigate whether the association 
between dietary SFAs and LDL-C concentrations is related to body composition.

Methods:  In the BODYCON (impact of physiological and lifestyle factors on body composition) study, 409 adults 
[mean age 42 ± 16 years and median BMI of 23.5 (21.5–25.9) kg/m2] underwent a measure of body composition 
by dual energy x-ray absorptiometry, assessment of habitual dietary intake using a 4-day weighed food diary and 
physical activity level using a tri-axial accelerometer. Blood pressure was measured, and a fasting blood sample was 
collected to determine cardiometabolic disease risk markers. Correlations between body composition, circulating risk 
markers and dietary macronutrients were assessed prior to multivariate regression analysis. The effect of increasing 
intakes of dietary SFA on outcome measures was assessed using ANCOVA after adjusting for covariates.

Results:  Abdominal visceral adipose tissue (VAT) mass was moderately positively correlated with total cholesterol 
(TC), LDL-C, systolic blood pressure (SBP), diastolic blood pressure and HOMA-IR (rs = 0.25–0.44, p < 0.01). In multiple 
regression analysis, 18.3% of the variability in LDL-C was explained by SFA intake [% total energy (TE)], abdominal VAT 
mass, carbohydrate%TE and fat%TE intakes. When data were stratified according to increasing SFA%TE intakes, fasting 
TC, LDL-C and non-high-density lipoprotein-cholesterol were higher in Q4 compared with Q2 (p ≤ 0.03). SBP was 
higher in Q4 versus Q3 (p = 0.01). Android lean mass was also higher in Q3 versus Q1 (p = 0.02). Other anthropometric 
and CVD risk markers were not different across quartile groups.
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Introduction
Diet is one of the most important modifiable risk factors 
for cardiovascular diseases (CVDs), with studies report-
ing a link between high intakes of dietary saturated fatty 
acids (SFAs) and elevated low-density lipoprotein-cho-
lesterol (LDL-C), a well-documented independent risk 
factor for this disease [1, 2]. Although many studies have 
investigated the effect of reducing dietary SFA intake on 
the fasting lipid profile, replacement with unsaturated 
fatty acids was found to be more beneficial compared to 
carbohydrates or protein [3, 4]. Thus, current UK rec-
ommendations for CVD prevention are to decrease die-
tary SFA intake to less than 10% of total energy (TE) via 
replacement with polyunsaturated (PUFAs) and mono-
unsaturated fatty acids (MUFAs) [5]. However, there is 
also consistent evidence suggesting no beneficial effect 
of reducing dietary SFA intake on CVD mortality [6–8]. 
These discrepancies between studies indicate that there 
may be other factors affecting this relationship.

Obesity is a rapidly growing global public health prob-
lem affecting over one third of the world’s population [9, 
10]. An excessive accumulation of body fat is positively 
associated with the risk of cardiometabolic diseases such 
as CVD and type 2 diabetes [11]. Body mass index (BMI) 
has been used routinely at a population level to assess 
adiposity and identify people with increased metabolic 
disease risk. However, body fat distribution is now con-
sidered to be a better indicator of chronic disease risk 
than BMI, with fat accumulation in the abdominal area 
[especially visceral adipose tissue (VAT)] associated 
with greater CVD risk compared with gynoid adipos-
ity [12–15]. Moderately elevated LDL-C concentrations 
and insulin resistance have been observed in people with 
increased abdominal fat accumulation [16–18]. As a 
result, there is a considerable interest in the physiological 
and lifestyle characteristics that influence body fat distri-
bution [19, 20].

Storage of body fat is influenced by non-modifiable fac-
tors such as age and sex [21], but also by modifiable life-
style factors such as diet [22]. Studies have investigated 
the effect of dietary fat quality on body composition, 
with differential associations shown between dietary SFA 
(positive) and PUFA/MUFA (negative) with abdominal 
obesity [23–25]. Although the impact of dietary SFAs 

on LDL-C concentrations has been shown in many stud-
ies, the effect of body composition on this relationship 
is poorly understood. A small number of studies have 
reported BMI to be inversely associated with the LDL-C 
response to reduced SFA intake [26]. As dietary SFAs are 
reported to influence both LDL-C concentrations and 
body composition, the effect of dietary SFAs on LDL-C, 
therefore, might be related to its effect on body fat con-
tent and distribution.

Thus, the purpose of this study was to investigate 
whether the impact of dietary SFA on LDL-C was asso-
ciated with body composition. We hypothesized that 
higher SFA intakes are related to increased LDL-C 
concentrations due to greater fat accumulation in the 
abdominal area.

Methods
Subjects
Healthy men and women (n = 409) aged 18–70  years 
were recruited from Reading and the surrounding area 
(UK), from 2014 through 2019 using posters, pamphlets 
and by contacting previous volunteers registered on the 
Hugh Sinclair Unit of Human Nutrition volunteer data-
base at the University of Reading. A Medical and Lifestyle 
questionnaire was used to assess the suitability of inter-
ested volunteers before potentially eligible individuals 
were invited to attend a screening session in which they 
were provided with detailed information about the study 
before signing a consent form. All subjects were assessed 
after fasting overnight for 12  h. During the screening 
visit, blood pressure and anthropometric measurements 
were taken and a fasting blood sample was collected for 
the measurement of fasting blood lipids [total cholesterol 
(TC), triacylglycerol (TAG) and high density lipoprotein 
cholesterol (HDL-C)], glucose, kidney and liver function 
markers (alkaline phosphatase, alanine aminotransferase, 
γ-glutamyl transferase, serum creatinine, total bilirubin 
and uric acid) by using the ILAB 600 clinical chemistry 
analyser (Werfen Ltd, Warrington,UK). To determine 
the haemoglobin level, a further blood sample was sent 
to the Royal Berkshire Hospital Pathology Department 
(Reading, UK). All participants whose screening meas-
urements matched the following inclusion criteria were 
invited to participate in the study: BMI 18.5–39.9 kg/m2, 

Conclusions:  Although dietary SFA was found to explain 9% of the variability in LDL-C, stratification of data accord-
ing to quartiles of SFA intake did not reveal a dose-dependent relationship with LDL-C concentration. Furthermore, 
this association appeared to be independent of abdominal obesity in this cohort.

Clinical Trail registration: Trial registration: clinicaltrials.gov as NCT02658539. Registered 20 January 2016, https://​clini​
caltr​ials.​gov/​ct2/​show/​NCT02​658539.

Keywords:  Body composition, Abdominal obesity, Dietary fat quality, SFA intake, DXA
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TC < 7.8  mmol/l, TAG < 2.3  mmol/l, fasting blood glu-
cose < 7.8 mmol/l, haemoglobin > 115 g/l for women and 
130 g/l for men. Exclusion criteria included the following: 
having suffered a myocardial infarction/stroke in the past 
12 months, history of diabetes or other endocrine disor-
ders, bowel disease, cholestatic liver disease, pancreatitis, 
cancer, being on medication for hyperlipidemia, hyper-
tension, inflammation or hypercoagulation, being on a 
weight reducing diet and excessive alcohol consump-
tion (< 14 units/wk). Furthermore, due to the use of the 
dual energy x ray absorptiometry (DXA) to assess body 
composition, further exclusion criteria included arthritis 
or fracture deformity of spine or femur, history of bone 
related surgeries, radio-opaque implants or implanted 
medical devices. Females were also excluded if they were 
breast feeding, may be pregnant or planning a pregnancy 
in the next 12 months.

Study design
Impact of physiological and lifestyle factors on body 
composition (BODYCON) was a single-centered obser-
vational cross-sectional study conducted in the Hugh 
Sinclair Unit of Human Nutrition at the University of 
Reading. The NHS and University of Reading Research 
Ethics Committees (reference numbers 14/SC/1095 and 
13/55, respectively) both gave a favorable ethical opinion 
for conduct. This study was carried out in accordance 
with the Declaration of Helsinki and was registered at 
www.​clini​caltr​ials.​gov (NCT02658539).

Participants attended a single study visit. For the day 
prior to this visit, participants were requested to abstain 
from strenuous exercise and consuming alcohol. A low-
fat evening study meal and low-nitrate water (Buxton 
mineral water, Nestlé waters, UK) were provided by the 
researchers and participants were asked not to con-
sume anything apart from this water after their evening 
meal. Before starting the study visit, a spot urine sam-
ple was collected and urine osmolarity was measured 
using an Osmocheck device (Vitech Scientific Ltd., UK) 
to ensure participants were sufficiently hydrated for the 
body composition measurements and asked to complete 
a pre-DXA scan questionnaire. Weight, waist and hip 
circumferences were measured, followed by clinic blood 
pressure. Total body composition was assessed by DXA 
scan before a fasting blood sample was taken to meas-
ure cardiometabolic disease risk markers. Additionally, 
in the few days before their visit participants were asked 
to complete a 4-day weighed food diary for 3 consecu-
tive weekdays and 1 weekend day while wearing a triax-
ial Actigraph activity monitor (ActiGraph, Florida, US) 
during the same time to assess dietary intake and physi-
cal activity levels, respectively. Premenopausal women 
not taking oral contraceptives attended their main study 

visit during the same phase of their menstrual cycle (days 
1–7).

Anthropometric and blood pressure measurements
Anthropometric and body composition measurements 
were performed with participants wearing light clothing 
and no shoes or metal objects. Height was measured to 
the nearest 1  cm using a stadiometer, facing forwards, 
and standing as straight as possible with their arms hang-
ing loosely by their side and their head in the Frankfort 
plane. Body weight and BMI were determined by using a 
bioelectrical impedance analyser (Tanita BC-418, TAN-
ITA UK Ltd, Middlesex, UK) and 1 kg was automatically 
deducted to account for the weight of the subject’s light 
clothing. Waist circumference (WC) was measured at 
the midpoint between the lowest ribs and the top of the 
iliac crest while hip circumference was measured at the 
largest circumference around the buttocks. Both meas-
urements were taken by a trained researcher while par-
ticipants were standing straight after a gentle expiration. 
A non-stretch tape measure (Seca, UK) was used for both 
measures. The waist to hip ratio (WHR) and waist to 
height ratio (WHtR) were calculated as estimates of body 
fat distribution.

Blood pressure was measured three times using an 
Omron blood pressure monitor (Omron M3 digital auto-
matic upper arm blood pressure monitor, Omron Health-
care Co UK Ltd.) and the average systolic blood pressure 
(SBP) and diastolic blood pressure (DBP) were calcu-
lated. Pulse pressure was determined by subtracting DBP 
from SBP.

Visceral adiposity, fat mass and lean mas index calculations
Anthropometric indices were calculated to determine 
their relationship with dietary SFA and cardiometabolic 
disease risk markers. These included the visceral adipos-
ity index (VAI = waist circumference/(39.68 + (1.88 × BM
I))  × (TAG(mmol/L)/1.03) × (1.31/HDL-C(mmol/L)) for 
men and VAI = waist circumference/(36.58 + (1.89 × BM
I)) × (TAG(mmol/L)/0.81) × (1.52/HDL-C(mmol/L)) for 
women as an indicator of visceral adipose tissue function 
[27]), fat mass index (FMI = fat mass(kg)/height in m2) 
and lean mass index (LMI = lean mass(kg)/height in m2) 
[28].

Assessment of dietary intake
Habitual dietary intake was evaluated by using a 4-day 
weighed diet diary. To increase accuracy, an electronic 
kitchen scale and a selection of food portion sizes from 
the Food Atlas to record meals consumed outside of 
home [29] were provided to the participants. Instruc-
tions on how to complete the diary were given both ver-
bally and in written form by the researchers. For each 

http://www.clinicaltrials.gov
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subject, nutrient and energy intakes were calculated 
using Dietplan 7 (Forestfield Software) and the total die-
tary intakes were divided by the number of days recorded 
to give mean daily intakes. Data entered on Dietplan was 
checked by a single researcher at the end of the study. 
For dietary data inclusion, participants were required to 
complete at least 3 days of the diet diary and report feasi-
ble dietary intakes between 500 and 3500 kcal per day for 
women and 800 and 4000 kcal per day for men. Individu-
als with dietary intakes outside of these ranges have been 
previously reported to be under and over reporters [30].

Physical activity
A tri-axial accelerometer was used to measure physical 
activity levels (Actigraph wGT3X+, Actigraph, LLC). 
Participants were asked to wear the accelerometer for 4 
consecutive days including 3 weekdays and 1 weekend 
day and keep an activity diary for data cleaning purposes. 
It was worn around the abdomen above their right hip 
bone, and they were asked to remove the device only 
for showering or during swimming. Device initializa-
tion, data processing and analysis were conducted using 
Actilife Data Analysis Software (Version 6.11.5) as previ-
ously described [31]. Raw data was collected at a 30 Hz 
sample rate. For inclusion in the physical activity analysis, 
participants were required to have produced counts on 
their activity monitor for ≥ 3-days (> 600 min/day of wear 
time) [32]. Non-wear-time was defined as ≥ 60  min of 
zero activity counts [33]. Data were summarized in 60-s 
epochs and cut-points were used to classify wear time 
as: sedentary behaviour (< 100 counts/min), light/life-
style physical activity (760–1951 counts/min), moderate 
physical activity (1952–5724 counts/min) and vigorous 
physical activity (≥ 5725 counts/min) [34]. For the pur-
poses of the data analysis, the time spent in moderate and 
vigorous physical activity was combined. Mean energy 
expenditure from physical activity (EEPA) was calculated 
as kcal/day.

Details of the DXA procedure
Prior to the DXA scan assessment, participants changed 
into clothing without zips and metal buttons or a dis-
posable hospital garment and all metal artefacts were 
removed. Whole body composition was measured by 
Lunar iDXA (GE Healthcare, UK) and two operators per-
formed the scanning and followed the manufacturer’s 
guidelines for volunteer positioning and for scan acqui-
sition. Participants laid supine on the Lunar iDXA scan-
ning table with knees and ankles positioned together 
using the Lunar Velcro supports. Arms were positioned 
to the side of the body, with palms facing towards the 
body and participants were required to lie still during 
the total body composition scan. All scans were analysed 

using enCORE Software, version 15 (GE Healthcare, UK) 
with the advance software package CoreScan, which also 
estimates the mass and volume of visceral fat within the 
abdomen. The machine’s performance was checked daily 
by running a quality assurance test according to the man-
ufacturer’s instructions before each scanning session.

Biochemical analysis
Blood samples collected into the serum separator and 
K3EDTA blood tubes were centrifuged at 1700 × g 
(3000  rpm) for 15  min at room temperature and 4  °C, 
respectively before aliquoting into Eppendorf tubes and 
stored at −  20  °C. Fasting serum lipids (non-esterified 
fatty acids (NEFA) (Alpha Laboratories Ltd., Hampshire, 
UK), TC, HDL-C and TAG), glucose, C-reactive protein 
(CRP), and ɣ-glutamyl transferase (GGT) were quanti-
fied in the main study visit sample by using the ILAB 600 
clinical chemistry analyser with reagents from Werfen 
(Werfen (UK) Ltd., Warrington, UK). Plasma uric acid 
was measured using RX Daytona Plus clinical chemis-
try analyser (Randox Laboratories Ltd., County Antrim, 
UK) using a kit supplied by Randox. The Friedewald for-
mula was used to estimate fasting LDL-C concentrations 
[35]. Non-HDL-C was calculated by subtracting HDL-C 
from TC. ELISA kits were used to analyse serum insulin 
(Dako Ltd., High Wycombe, UK) and plasma adiponectin 
(Quantikine kit, R&D Systems, Europe Ltd.) concentra-
tions. Homeostatic model assessment for insulin resist-
ance (HOMA-IR) was calculated by using the following 
equation: [fasting insulin (pmol/l) × fasting glucose 
(mmol/l)]/135 [36]. Serum 25 hydroxyvitamin D2 and 
25 hydroxyvitamin D3 was measured by the LGC group 
(LGC Ltd., Middlesex, UK) and summed to obtain total 
25 hydroxy vitamin D (25(OH)D).

Statistical analysis
Statistical analyses were performed using IBM SPSS Sta-
tistics version 25 (SPSS Inc., IL, US). Data was presented 
as mean ± standard deviation (SD) for normally distrib-
uted variables and as median (interquartile range) for 
non-normally distributed variables in Tables  1 and 2. 
Normality was assessed using the Kolmogorov–Smirnov 
test and Q–Q plots. The logarithms or square root trans-
formations were used for several outcome measures 
including BMI, body fat mass, abdominal VAT mass, 
dietary protein and trans-fat, TAG, LDL-C: HDL-C ratio, 
TC: HDL-C ratio, NEFA, CRP, GGT, adiponectin, insu-
lin and HOMA-IR, steps/day, EEPA, and percentage time 
spent performing moderate to vigorous physical activity. 
Parametric independent sample t tests were used for nor-
mally distributed and transformed data to determine the 
differences between the male and female groups. Spear-
man’s correlations were used to analyse relationships 
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Table 1  Characteristics of BODYCON study participants

A/G fat ratio android to gynoid fat ratio, BMI body mass index, CRP C-reactive protein, F female, FFM fat free mass, FMI fat mass index, GGT​ gamma-glutamyl transferase, 
HC hip circumference, HDL-C high density lipoprotein cholesterol, LDL-C low density lipoprotein cholesterol, LMI lean mass index, M male, NEFA non-esterified fatty 
acids, TAG​ triacylglycerol, TC total cholesterol, VAT visceral adipose tissue, VAI visceral adiposity index, WC waist circumference, WHR waist to hip ratio, WHtR waist to 
height ratio
a Data were analyzed by independent t tests and presented as mean ± SD or median (interquartile range); p ≤ 0.05 was considered significant
b Sample sizes differ as follows: Blood pressure n = 406 (M:187/F:219); body composition measures n = 370 (M:174/F:196); biochemistry n = 405 (M:188/F:217); insulin 
and HOMA-IR n = 272 (M:109/F:163); NEFA n = 362 (M:168/F:194); CRP n = 403 (M:188/F:215), GGT n = 330 (M:135/F:195); UA, adiponectin and 25-hydroxyvitamin D, 
n = 366 (M:172/F:194)

All (n = 409) Men (n = 190) Women (n = 219) p valuea

Outcome measuresb

Age, years 42 ± 16 42 ± 15 42 ± 16 0.93

Weight, kg 70.4 ± 14.0 78.3 ± 12.2 63.5 ± 11.7 < 0.01

Height, m 1.71 ± 0.01 1.78 ± 0.07 1.64 ± 0.07 < 0.01

BMI, kg/m2 23.5 (21.5–23.9) 24.2 (22.7–26.5) 22.5 (20.8–25.4) 0.01

WC, cm 83.8 ± 11.9 89.1 ± 10.3 79.2 ± 11.2 < 0.01

HC, cm 101 ± 9 102 ± 9 100 ± 10 0.04

WHR 0.83 ± 0.08 0.88 ± 0.07 0.79 ± 0.08 < 0.01

WHtR 0.49 ± 0.07 0.50 ± 0.06 0.48 ± 0.07 < 0.01

Blood pressure, mmHg

Systolic 120 ± 14 124 ± 11 117 ± 15 < 0.01

Diastolic 72 ± 9 74 ± 9 70 ± 9 < 0.01

Pulse pressure 48 ± 11 50 ± 10 47 ± 10 < 0.01

Body composition measures

Body fat, % 28.3 ± 8.4 23.7 ± 7.2 32.3 ± 7.4 < 0.01

Fat mass, kg 19.0 (14.3–25.0) 17.8 (12.9–24.9) 19.3 (15.5–25.2) 0.01

Lean mass, kg 48.4 ± 10.5 40.7 ± 5.7 57.2 ± 7.4 < 0.01

Trunk fat mass, kg 10.4 ± 5.0 10.9 ± 5.2 10.0 ± 4.9 0.09

Abdominal VAT, g 393 (178–811) 691 (367–1240) 237 (99–440) < 0.01

Android fat, % 30.5 ± 12.1 29.1 ± 12.1 31.8 ± 11.8 0.03

Gynoid fat, % 32.2 ± 9.9 24.9 ± 7.0 38.7 ± 7.2 0.01

A/G fat ratio 0.96 ± 0.29 1.13 ± 0.28 0.80 ± 0.21 0.01

Body Composition Indexes

FMI, kg/m2 7.05 ± 2.93 6.10 ± 2.43 7.88 ± 3.09 0.01

LMI, kg/m2 16.4 ± 2.2 18.0 ± 1.7 15.0 ± 1.5 0.01

VAI 1.01 ± 0.68 1.03 ± 0.71 1.00 ± 0.65 0.66

Biochemistry

TC, mmol/L 5.13 ± 1.10 5.05 ± 1.18 5.20 ± 1.02 0.10

TAG, mmol/L 0.83 (0.66–1.16) 0.93 (0.69–1.39) 0.79 (0.64–1.02) 0.01

HDL-C, mmol/L 1.65 ± 0.40 1.51 ± 0.40 1.78 ± 0.36 0.01

LDL-C, mmol/L 3.03 ± 0.93 3.07 ± 1.00 2.99 ± 0.86 0.66

Non-HDL-C, mmol/L 3.48 ± 1.00 3.55 ± 1.07 3.43 ± 0.94 0.34

TC:HDL ratio 3.00 (2.63–3.76) 3.44 (2.78–4.03) 2.81 (2.56–3.29) 0.01

LDL-C:HDL-C ratio 1.76 (1.42–2.30) 2.08 (1.58–2.56) 1.60 (1.35–2.04) 0.01

Glucose, mmol/L 5.03 ± 0.48 5.13 ± 0.51 4.94 ± 0.44 0.01

Insulin, pmol/L 26.4 (17.3–39.9) 27.1 (16.9–42.5) 26.3 (18.2–37.7) 0.69

HOMA-IR 0.98 (0.07–5.30) 1.04 (0.63–1.63) 0.97 (0.62–1.41) 0.41

NEFA, μmol/L 416 (318–546) 388 (310–518) 427 (327–567) 0.01

CRP, mg/L 0.62 (0.29–1.46) 0.63 (0.31–1.43) 0.62 (0.28–1.52) 0.91

GGT, U/L 16.9 (14.0–22.7) 20.5 (16.2–27.5) 15.3 (13.2–19.0) 0.01

Uric acid, µmol/L 280 ± 68 323 ± 59 242 ± 51 0.01

Adiponectin, µg/mL 5.11 (2.48–9.07) 4.19 (2.22–6.02) 6.70 (2.93–11.38) 0.01

25-Hydroxyvitamin D, ng/mL 23.9 ± 11.3 23.4 ± 10.8 24.3 ± 11.7 0.50
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between cardiometabolic disease risk markers with 
body composition measurements and dietary macro-
nutrients in the whole group and in men and women 
separately (Spearman’s Rho (rs) = 0–0.3 considered a 
weak correlation, rs = 0.3–0.7 moderate and rs = 0.7–1.0 
strong). Stepwise multiple linear regression analysis was 
performed using P-in of 0.05 and P-out of 0.01 to estab-
lish the independent associations between LDL-C and 
abdominal VAT mass with the anthropometric meas-
ures, cardiometabolic disease risk markers and dietary 
macronutrients.

For further analysis, the study cohort with dietary data 
was stratified according to dietary SFA intake expressed 
as %TE. Subjects in Q1 were selected to be within die-
tary recommendations for SFA (≤ 10%TE). General lin-
ear model (ANCOVA) was performed to investigate the 
impact of increasing intakes of dietary SFAs on subject 
characteristics, adjusting for age and sex. Post-hoc analy-
ses with a Bonferroni correction were used to compare 
differences between the SFA%TE quartile groups. Results 
are presented as estimated marginal means ± SE for nor-
mally distributed and as median (interquartile range) 
for non-normally distributed variables in Table  5 and 
p ≤ 0.05 was considered significant.

Results
Study participants
A total of 438 healthy subjects were recruited, 29 of 
them dropped out between the screening and the main 
visit and 409 subjects (219 were women and 190 men) 
completed the study. The flow of participants in the 
study is shown in Fig.  1. The cohort had a mean age of 
42 ± 16  years and median BMI of 23.5 (IQR 21.5–25.9) 
kg/m2. The main characteristics of the BODYCON 

Table 2  Dietary intake and physical activity levels of the study participants

AOAC Association of Official Analytical Chemist, MUFA monounsaturated fatty acids, PA physical activity, PUFA polyunsaturated fatty acids, SFA saturated fatty acids, 
%TE % of total energy
a Differences between men and women were analyzed by independent t test and presented as mean ± SD or median (interquartile range); p ≤ 0.05 was considered 
significant
b Sample sizes differed as follows: Physical activity level n = 327 (M:126/F:201) and steps/day n = 309 (M:120/F:189)

All (n = 391) Men (n = 179) Women (n = 239) p valuea

Dietary energy and macronutrient intake

Energy, MJ/day 8.50 ± 2.47 9.62 ± 2.51 7.56 ± 2.00 < 0.01

Total Fat, %TE 36.5 ± 8.6 34.6 ± 9.6 36.4 ± 7.8 0.82

 SFA, %TE 13.0 ± 4.5 13.3 ± 5.2 12.8 ± 3.7 0.36

 MUFA, %TE 13.7 ± 3.8 13.6 ± 4.1 13.8 ± 3.6 0.70

 PUFA, %TE 6.17 ± 2.11 6.09 ± 2.33 6.24 ± 1.91 0.51

 n-6 PUFA, %TE 5.66 ± 2.91 5.33 ± 3.03 5.93 ± 2.79 0.04

 n-3 PUFA, %TE 0.86 ± 0.59 0.82 ± 0.49 0.90 ± 0.67 0.17

 Trans fat, %TE 0.49 (0.34–0.68) 0.50 (0.35–0.72) 0.49 (0.33–0.63) 0.05

Protein, %TE 17.1 (14.8–20.2) 17.0 (14.5–20.4) 17.4 (15.0–19.7) 0.58

Carbohydrate, %TE 45.8 ± 10.9 45.4 ± 12.1 46.1 ± 9.8 0.52

 Total Sugars, %TE 18.7 ± 6.6 17.7 ± 7.0 19.6 ± 6.0 0.01

 Dietary Fibre (AOAC), g/day 24.3 ± 8.8 25.2 ± 8.9 23.5 ± 8.6 0.07

Physical activity levelb

Steps/day 8953 (6948–11,941) 8500 (6517–10,717) 9288 (7193–12,024) 0.02

Energy expended (kcal/day) 254 (157–431) 324 (195–524) 224 (141–349) < 0.01

Percentage time per day spent

 Sedentary 69.8 ± 7.3 71.1 ± 7.4 68.9 ± 7.1 0.01

 Performing light PA 25.5 ± 6.8 24.3 ± 6.6 26.3 ± 6.9 0.01

 Performing moderate to vigorous PA 4.2 (2.7–6.2) 4.0 (2.6–6.1) 4.4 (2.7–6.3) 0.34

Invited to participate (n=489)

Screened (n=440)

Dropouts: n=29

Completed the study (n=409)

Dropouts: n=49

Excluded due to low BMI:

n=2
Eligible to participate (n=438)

Fig. 1  Flow chart of participants from the BODYCON study
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study participants are shown in Table 1. Men (47%) and 
women (53%) were approximately equally distributed 
and matched for age in the study population. Compared 
with women, men had greater BMI, body weight, WC, 
WHR, WHtR, SBP, and DBP (p < 0.01 each). Women 
had significantly higher body fat, android fat percentage, 
gynoid fat percentage and fat mass (p ≤ 0.03), whilst men 
had a higher lean body mass, abdominal VAT mass, and 
android:gynoid (A/G) percentage fat ratio (p < 0.01 each). 
Moreover, men had higher fasting serum TAG, glucose, 
GGT and UA concentrations and TC: HDL-C ratio 
(p < 0.01 for all), while women had higher HDL-C, NEFA 
and adiponectin concentrations (p ≤ 0.01) (Table 1).

The dietary intakes (n = 391) and physical activity 
(n = 327) levels of the study participants are shown in 
Table 2. Within the cohort, 2 subjects were identified as 
under-reporters and 3 as over-reporters, with 13 further 
subjects excluded due to completion of < 3 days of dietary 
intake (n = 1) or did not provide a diet diary (n = 12). For 
the mean dietary intakes, men reported greater energy 
intakes (p < 0.01), but only trans-fat (%TE) intake was 
higher in men in terms of dietary macronutrients com-
pared to women (p = 0.05), while women reported higher 
total sugar (%TE) and n-6 PUFA (%TE) intakes compared 
to men (p ≤ 0.04). Regarding physical activity levels, 82 
subjects were excluded according to inclusion criteria 
for the physical activity analysis. Compared with men, 
women had higher daily step counts and spent a greater 
percentage of time during the day performing light physi-
cal activity (p ≤ 0.02). On average, men expended sig-
nificantly more energy per day (approximately 100 kcal/
day) performing physical activity compared with women 
(p < 0.01). The percentage of time spent performing mod-
erate to vigorous physical activity daily was not different 
between the sexes (p = 0.34) (Table 2).

Association between body composition, cardiometabolic 
disease risk markers and dietary macronutrients
Correlations between body composition measure-
ments, CVD risk markers and dietary macronutrients 
in the whole group are shown in Table 3 and Additional 
file 1: Table 1 and according to sex in Additional file 1: 
Tables S2 and S3. In the whole group body fat mass 
was found to have weak positive correlations with SBP 
and DBP, while abdominal VAT mass and A/G fat ratio 
had moderate positive correlations with both SBP and 
DBP (p < 0.01). In addition, inverse moderate correla-
tions were evident between HDL-C and several adi-
posity measurements, including abdominal VAT mass 
(p < 0.01). In contrast, moderate positive correlations 
were found between TAG, non-HDL-C, TC: HDL-C 
ratio and LDL-C: HDL-C ratio with abdominal VAT 

mass, android fat mass, android fat percentage and A/G 
fat ratio (p < 0.01 for each). There were also weak posi-
tive correlations between LDL-C with SFA (%TE) and 
trans-fat (%TE) (p < 0.01 for each). Weak correlations 
were found between dietary macronutrients and cardi-
ometabolic disease risk markers, with SFA (%TE) intake 
positively associated with TC, LDL-C, non-HDL-C and 
NEFA (p ≤ 0.05), whereas carbohydrate (%TE) intake 
was negatively correlated with LDL-C (p < 0.01).

For abdominal VAT mass, moderate positive correla-
tions were found with insulin, HOMA-IR, glucose, CRP 
and uric acid, while there were weak, negative correla-
tions with adiponectin and 25-hydroxyvitamin D lev-
els (p ≤ 0.05). Regarding the association between diet 
and body composition, we observed weak correlations. 
n-6 PUFA (%TE) intake was negatively correlated with 
abdominal VAT mass, while trans-fat (%TE) intake was 
positively correlated (p < 0.01) (Table 3).

After stratifying the group according to sex, a few 
sex-specific associations were observed. Body fat mass 
and abdominal VAT mass were found to have weak to 
moderate positive correlations with both SBP and DBP 
in women, while only with DBP in men (p < 0.01). In 
addition, inverse moderate correlations were evident 
between HDL-C and several adiposity measurements, 
including abdominal VAT mass in men (p < 0.01), while 
there were weak inverse correlations between HDL-C 
and percentage body fat, fat mass and android fat per-
centage in women (p < 0.05). Abdominal VAT mass was 
negatively correlated with n-6 PUFA (%TE) in men 
(p < 0.01), whilst in women there was a weak inverse 
correlation with carbohydrate (%TE) intake (p < 0.05) 
(Additional file 1: S3).

Stepwise multivariate regression analysis
The standardized regression coefficients, adjusted r2 
and p values for the stepwise multivariate regression 
analysis are shown in Table 4. Only SFA (%TE) intake, 
abdominal VAT mass, total fat (%TE) and carbohydrate 
(%TE) intakes were found to be independently associ-
ated with fasting LDL-C, explaining 18.3% of the vari-
ability in this established CVD risk marker. Of these 
variables, 9% of this variability was explained by SFA 
(%TE) intake and 7% by abdominal VAT mass (Table 4).

The TC: HDL-C ratio, DBP, GGT, HOMA-IR, sex, 
age, HDL-C and uric acid were independently associ-
ated with abdominal VAT mass and, together, these 
variables explained 64% of the variability in abdominal 
VAT mass. This analysis showed that TC: HDL-C ratio 
alone explained 33% of the variability in the mass of 
this fat depot.
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Subject characteristics according to quartiles of dietary 
SFA (%TE) intake
There were no significant differences in mean body 
weight (p = 0.10) or BMI (p = 0.20) across quartiles (Q) 
of increasing %TE from SFA (Table 5). However, android 
lean mass was found to be 7% higher in Q3 compared 
with Q1 (p = 0.02). Other anthropometric measures were 
not different across the quartiles of SFA%TE intake.

Significant differences in several cardiometabolic dis-
ease risk markers were also evident across increasing 
quartiles of SFA (%TE) intake. SBP and pulse pressure 
were higher in Q4 compared to Q3 (p ≤ 0.01). TC, LDL-C 
and non-HDL-C levels were 9%, 12% and 10% higher in 
Q4 than Q2, respectively (p ≤ 0.05). Regarding dietary 
intakes, subjects in Q4 reported higher total fat, MUFA 
and trans-fat (%TE) than other quartiles (p < 0.01 each) 

Table 3  Spearman’s correlation coefficients (rs) for the relationship between DXA body composition measurements, with CVD risk 
factors and dietary macronutrients

Data analysed by Spearman’s correlations

AOAC association of analytical chemists, A/G android to gynoid ratio, CRP C-reactive protein, GGT​ gamma-glutamyl transferase, HDL-C high density lipoprotein 
cholesterol, HOMA-IR homeostatic model assessment for insulin resistance, LDL-C low density lipoprotein cholesterol, MUFA monounsaturated fatty acids, NEFA non-
esterified fatty acids, PUFA polyunsaturated fatty acids, SFA saturated fatty acids, TC total cholesterol, TAG​ triacylglycerol, %TE % of total energy, VAT abdominal visceral 
adipose tissue, total 25(OH)D: 25-hydroxyvitamin D

*Significant differences at the 0.05 level

**Significant differences at the 0.01 level

Body fat, % Fat mass, kg Lean mass, kg VAT, g Android fat, kg Android fat % Gynoid fat % A/G

Blood pressure, mmHg

Systolic −0.03 0.15** 0.33** 0.40** 0.25** 0.14** −0.15** 0.33**

Diastolic 0.13* 0.29** 0.21** 0.44** 0.37** 0.31** −0.003 0.39**

Pulse pressure −0.14** −0.02 0.25** 0.16** 0.03 −0.05 −0.19** 0.11*

Biochemistry

TC, mmol/L 0.19** 0.17** −0.11* 0.25** 0.23** 0.23** 0.13* 0.20**

TAG, mmol/L 0.21** 0.35** 0.18** 0.46** 0.42** 0.38** 0.06 0.43**

HDL-C, mmol/L −0.02 −0.23** −0.35** −0.35** −0.29** −0.20** 0.11* −0.34**

LDL-C, mmol/L 0.17** 0.20** −0.02 0.32** 0.27** 0.25** 0.09 0.26**

Non-HDL-C, mmol/L 0.22** 0.27** 0.02 0.41** 0.36** 0.33** 0.10 0.35**

TC: HDL ratio 0.18** 0.37** 0.24** 0.55** 0.47** 0.39** −0.001 0.50**

LDL-C: HDL-C ratio 0.16** 0.33** 0.23** 0.51** 0.43** 0.35** −0.01 0.46**

NEFA, μmol/L 0.20** 0.12* −0.17** 0.04 0.10* 0.15** 0.20** −0.02

Glucose, mmol/L 0.07 0.23** 0.22** 0.41** 0.31** 0.23** −0.05 0.35**

Insulin, pmol/L 0.35** 0.41** 0.02 0.34** 0.41** 0.42** 0.24** 0.32**

HOMA-IR 0.34** 0.42** 0.06 0.38** 0.43** 0.42** 0.21** 0.34**

CRP, mg/L 0.36** 0.41** 0.001 0.29** 0.39** 0.41** 0.27** 0.27**

GGT, U/L −0.09 0.11* 0.35** 0.37** 0.22** 0.11 −0.22** 0.36**

Uric acid, µmol/L −0.16** 0.13* 0.53** 0.43** 0.29** 0.13* −0.35** 0.51**

Adiponectin, µg/mL 0.18** 0.02 −0.25** −0.14** −0.05 0.02 0.25** −0.21

Total 25(OH)D, ng/mL −0.16** −0.14** 0.05 −0.12* −0.08 −0.11* −0.15** −0.14**

Dietary intake

Total fat, %TE 0.02 0.01 −0.03 0.01 0.01 0.01 0.02 0.01

SFA %TE 0.04 0.06 0.01 0.08 0.06 0.04 0.03 0.04

MUFA, %TE 0.01 −0.01 −0.05 −0.02 −0.01 −0.004 0.02 −0.01

PUFA, %TE −0.07 −0.15** −0.09 −0.13* −0.16** −0.13* −0.04 −0.14**

n-6 PUFA, %TE −0.08 −0.16** −0.11* −0.17** −0.19** −0.15** −0.02 −0.18**

n-3 PUFA, %TE −0.004 −0.05 −0.08 0.01 −0.04 −0.01 0.02 −0.03

Trans fat, %TE 0.07 0.11* 0.07 0.16** 0.13** 0.11* 0.04 0.12*

Protein, %TE −0.03 −0.003 0.07 −0.04 −0.02 −0.05 −0.03 −0.07

Carbohydrate, %TE 0.02 0.003 −0.05 −0.03 0.001 0.02 0.03 0.01

Fibre (AOAC), g/day −0.22** −0.14** 0.21** −0.06 −0.13* −0.21** −0.21** −0.07

Total Sugars, %TE 0.03 −0.01 −0.11* −0.14** −0.04 −0.04 0.07 −0.11*
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and lower n-6 PUFA (%TE) intake than Q2 (p < 0.01). 
Carbohydrate (%TE) and fiber (g/day) intakes were low-
est in Q4 compared to other quartiles (p < 0.01 each) 
(Table 5).

Discussion
The present study investigated the associations between 
dietary SFA intake, cardiometabolic disease risk mark-
ers and body composition to determine whether body fat 
distribution contributed to the relationship between SFA 
and LDL-C in a group of healthy adults. Although our 
study does not establish cause and effect relationships 
due to its cross-sectional nature, we observed interesting 
and novel associations. In particular, dietary SFA, total 
fat and carbohydrate intakes and abdominal VAT mass 
were independently associated with LDL-C and found 
to explain 18.3% of the variability. However, SFA intake 
was not related to abdominal VAT mass. Furthermore, 
stratification according to quartiles of dietary SFA intake 
did not reveal dose-dependent relationships with LDL-C, 
TC, non-HDL-C, blood pressure or android lean mass.

The replacement of dietary SFA with unsaturated 
fatty acids (n-6 PUFA and MUFA) is associated with 
beneficial effects on the fasting blood lipid profiles [37]. 
In the PURE cross-sectional study, which included 104 
486 men and women aged 30–70 years from 18 coun-
tries, dietary SFA intake was positively related with 
LDL-C and replacing 5%TE of dietary SFA with PUFA 
and MUFA was associated with lower LDL-C con-
centrations (between 0.02 and 0.18  mmol/L) using a 

multivariable nutrient density model [38]. In agree-
ment with previous studies, we also observed an inde-
pendent positive association between LDL-C and 
dietary SFA, with dietary SFAs explaining 9% of the 
variability in LDL-C response between individuals. 
However, after stratifying data by SFA intake, we did 
not observe a linear relationship between increasing 
SFA intakes and LDL-C, with differences only evident 
in TC, LDL-C and non-HDL-C concentrations between 
Q2 and Q4. The lack of a dose-dependent relationship 
between SFA intake and LDL-C may reflect the use of 
age and sex as co-variates in the ANCOVA analysis, 
which are both important non-modifiable determi-
nants of LDL-C concentrations [39, 40]. Furthermore, 
the association of dietary SFA with CVD risk has been 
proposed to be dependent on the food source and the 
type of individual SFA rather than the amount of the 
SFA. For example, although high in SFA, dairy have 
been reported to have neutral or positive effects on 
CVD risk markers [41], whereas palmitic acid has been 
reported to be more atherogenic than stearic acid [42]. 
Therefore, determining total dietary SFA intake in the 
current study may have influenced the strength of the 
relationship with fasting LDL-C due to the differences 
in frequency of dairy product and/or individual SFA 
consumption within the quartile groups [41]. Inter-
estingly, n-6 PUFA intake was considerably higher in 
Q2 compared to Q4, which may have also influenced 
blood cholesterol levels. Furthermore, high intakes of 
plant-based MUFA are associated with lower LDL-C 

Table 4  Stepwise multivariate linear regression analysis exploring the relation between dietary macronutrients, body composition 
and biochemical variables with LDL-C and abdominal VAT

GGT​ gamma-glutamyl transferase, HDL-C high density lipoprotein cholesterol, HOMA-IR homeostatic model assessment for insulin resistance, LDL-C low-density 
lipoprotein cholesterol, SFA saturated fatty acid, TC total cholesterol, %TE % of total energy, VAT visceral adipose tissue
a Variables included in the analysis: BMI, body fat %, fat mass, abdominal VAT, android fat mass, android fat %, A/G fat ratio, WC, HC, WHR, WHtR, fat %TE, SFA %TE, 
trans-fat %TE, CHO %TE
b Variables included in the analysis: age, sex, TC, TAG, HDL-C, LDL-C, non-HDL-C, TC: HDL-C, LDL-C: HDL-C, glucose, 25(OH)D, CRP, GGT, UA, adiponectin, insulin, 
HOMA-IR, SBP, DBP, PP, PUFA %TE, n-6 PUFA %TE, trans-fat %TE, total sugars %TE

Dependent variable Independent variable Standardized coefficient Adjusted rb p value

LDL-Ca SFA %TE 0.297 0.085 < 0.01

and Abdominal VAT 0.277 0.160 < 0.01

and Carbohydrate %TE −0.157 0.172 0.013

and Fat %TE −0.261 0.183 0.017

Abdominal VATb TC: HDL-C 0.572 0.325 < 0.01

and DBP 0.314 0.415 < 0.01

and GGT​ 0.253 0.475 < 0.01

and HOMA-IR 0.240 0.518 < 0.01

and Sex (female) −0.237 0.565 < 0.01

and Age 0.222 0.606 < 0.01

and HDL-C −0.202 0.625 0.001

and Uric acid 0.157 0.636 0.005
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Table 5  Participant’s characteristics according to quartiles of dietary saturated fatty acid (%TE) intake

Characteristics2 Q1 (n = 78) Q2 (n = 101) Q3 (n = 109) Q4 (n = 103) p value1

(1.9–10.0%TE) (10.1–11.9%TE) (12.0–14.8%TE) (14.9–38.7%TE)

Weight, kg 68.4 ± 1.3 69.5 ± 1.2 72.5 ± 1.1 69.9 ± 1.2 0.10

BMI, kg/m2 23.0 (20.8–25.4) 23.2 (21.4–25.5) 24.1 (22.0–27.0) 23.6 (21.5–25.7) 0.20

WC, cm 82.5 ± 1.1 83.5 ± 1.0 85.4 ± 1.0 83.3 ± 1.0 0.21

HC, cm 100 ± 1 100 ± 1 103 ± 1 101 ± 1 0.06

WHR 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.99

WHtR 0.49 ± 0.01 0.49 ± 0.01 0.50 ± 0.01 0.49 ± 0.01 0.42

Blood pressure, mmHg

SBP 120 ± 2ab 121 ± 1ab 117 ± 1b 123 ± 2a 0.01

DBP 71 ± 1 72 ± 1 71 ± 1 72 ± 1 0.83

Pulse pressure 48 ± 1ab 49 ± 1a 45 ± 1b 50 ± 1a < 0.01

Body composition measures

Body fat, % 28.4 ± 0.8 28.3 ± 0.7 29.1 ± 0.7 27.6 ± 0.7 0.53

Android fat, % 30.5 ± 1.4 30.8 ± 1.2 31.6 ± 1.2 29.6 ± 1.2 0.68

Gynoid fat, % 32.5 ± 0.8 32.2 ± 0.7 33.2 ± 0.7 31.6 ± 0.7 0.47

A/G fat ratio 0.94 ± 0.03 0.96 ± 0.02 0.97 ± 0.02 0.94 ± 0.02 0.79

Fat mass, kg 17.7 (12.3–25.3) 17.9 (14.5–25.0) 20.2 (16.1–25.4) 19.0 (14.3–24.0) 0.21

Lean mass, kg 46.8 ± 0.8 48.0 ± 0.7 49.2 ± 0.7 48.3 ± 0.7 0.12

Android fat mass, kg 1.63 ± 0.12 1.57 ± 0.10 1.72 ± 0.10 1.54 ± 0.10 0.58

Android lean mass, kg 3.19 ± 0.06a 3.30 ± 0.05ab 3.42 ± 0.05b 3.28 ± 0.05ab 0.02

Abdominal VAT, g 562 ± 56 582 ± 50 651 ± 48 562 ± 49 0.53

Indexes

VAI 1.05 ± 0.08 1.02 ± 0.07 1.06 ± 0.07 0.94 ± 0.07 0.61

Biochemistry

TC, mmol/L 5.17 ± 0.11ab 4.91 ± 0.10a 5.10 ± 0.09ab 5.39 ± 0.09b 0.01

TAG, mmol/L 0.84 (0.67–1.18) 0.82 (0.65–1.07) 0.84 (0.66–1.28) 0.84 (0.67–1.11) 0.59

HDL-C, mmol/L 1.67 ± 0.04 1.61 ± 0.04 1.61 ± 0.04 1.73 ± 0.04 0.05

LDL-C, mmol/L 3.00 ± 1.00ab 2.87 ± 0.08a 3.04 ± 0.08ab 3.23 ± 0.08b 0.03

Non-HDL, mmol/L 3.50 ± 0.10ab 3.31 ± 0.09a 3.49 ± 0.09ab 3.66 ± 0.09b 0.05

TC: HDL-C 2.95 (2.65–3.71) 2.94 (2.61–3.44) 3.03 (2.61–3.81) 3.15 (2.61–3.83) 0.61

LDL-C: HDL-C 1.69 (1.43–2.23) 1.71 (1.42–2.13) 1.82 (1.41–2.42) 1.90 (1.41–2.40) 0.50

NEFA, μmol/L 390 (327–534) 403 (294–500) 441 (310–560) 456 (340–598) 0.36

Glucose, mmol/L 4.98 ± 0.05 5.08 ± 0.04 5.01 ± 0.04 5.02 ± 0.04 0.49

CRP, mg/L 0.49 (0.25–1.29) 0.59 (0.27–1.37) 0.66 (0.38–1.54) 0.66 (0.29–1.69) 0.79

Uric acid, µmol/L 270 ± 7 275 ± 6 289 ± 6 282 ± 6 0.14

Adiponectin, µg/mL 6.03 (2.50–10.62)a 4.93 (2.39–7.99)ab 4.09 (1.99–8.12)b 5.45 (3.11–9.87)ab 0.03

Total 25-Hydroxyvitamin D, ng/mL 22.3 ± 1.3 24.3 ± 1.2 24.3 ± 1.1 24.2 ± 1.2 0.63

Insulin, pmol/L 26.0 (20.3–37.5) 26.5 (17.3–38.6) 22.4 (15.9–40.1) 28.7 (18.3–42.7) 0.61

HOMA-IR 1.00 (0.68–1.44) 1.00 (0.65–1.53) 0.85 (0.58–1.44) 1.15 (0.66–1.63) 0.60

Dietary intake

Energy, kcal/day 1906 ± 61 2045 ± 54 2055 ± 51 2092 ± 53 0.13

Energy, MJ/day 7.98 ± 0.26 8.56 ± 0.22 8.60 ± 0.22 8.75 ± 0.22 0.13

Total fat, %TE 28.2 ± 0.7a 34.3 ± 0.6b 36.5 ± 0.6b 44.9 ± 0.6c < 0.01

 MUFA, %TE 11.0 ± 0.4b 13.3 ± 0.3a 13.8 ± 0.3a 16.1 ± 0.3c < 0.01

 PUFA, %TE 5.97 ± 0.24 6.39 ± 0.21 6.04 ± 0.20 6.24 ± 0.21 0.52

 n-6 PUFA, %TE 5.64 ± 0.33ab 6.48 ± 0.29a 5.53 ± 0.28ab 5.00 ± 0.28b < 0.01

 n-3 PUFA, %TE 0.84 ± 0.07ab 0.87 ± 0.06ab 0.76 ± 0.06a 0.98 ± 0.06b 0.06

 PUFA/SFA 0.81 ± 0.03a 0.58 ± 0.03b 0.46 ± 0.03c 0.34 ± 0.03d < 0.01

 MUFA/SFA 1.44 ± 0.04a 1.21 ± 0.03b 1.04 ± 0.03c 0.89 ± 0.03d < 0.01
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concentrations [43] and in this cohort those with the 
highest SFA intakes also had higher total fat and MUFA 
intakes. However, this would not necessarily represent 
a higher intake of plant-based MUFA-rich foods and 
oils, as animal products are also a rich source of both 
SFAs and MUFAs. Similarly, increasing trans-fat intake 
across quartiles of dietary SFA might be due to the 
major dietary sources of trans-fats being high in dietary 
SFA [44]. Participants consuming on average 8%TE 
SFA (Q1) also had the highest carbohydrate intake 
(54.1%TE), which exceeded the recommended intake of 
45–50%TE. It is clear from literature that replacing SFA 
with carbohydrate can increase fasting TAG and lower 
HDL-C concentrations in some population sub-groups 
[45, 46]. Moreover, Hooper et al. [4] reported no effect 
of replacing SFA with carbohydrate on CVD events and 
mortality in a systematic review and meta-analysis of 
6 randomized controlled trials, while Schwab et al. [2] 
reported an increased risk of CVD outcomes in a sys-
tematic review of prospective cohort studies. There-
fore, our contradictory results may be due to the higher 
carbohydrate intakes in the quartile which met the 
SFA dietary recommendation for CVD risk reduction 
(Q1). Interestingly, although Q2 consumed more car-
bohydrate than Q4, their fiber consumption was higher 
which might have positively influenced blood choles-
terol concentrations [47]. This could suggest that the 

positive association of high-fat, low SFA diets on lipid 
risk markers might also be dependent on other dietary 
macronutrients and overall dietary pattern [48].

The observation that dietary SFA intake was indepen-
dently associated with the fasting LDL-C concentration 
may be related to the impact of dietary fatty acids on LDL 
particle clearance. Animal and in  vitro studies have sug-
gested that dietary SFAs increase LDL-C via a downregu-
lation in the number and expression of the hepatic LDL 
receptor (LDL-R) [49–51]. Although the mechanisms are 
still not totally understood, animal studies have provided 
evidence that dietary fat quality affects the LDL-R at the 
molecular level potentially through its effect on mRNA 
expression [52]. A possible explanation is that dietary SFAs 
lower the esterification of cholesterol in the liver by inhib-
iting the cholesterol esterifying enzyme acyl-CoA: cho-
lesterol acyltransferase (ACAT), leading to increased free 
cholesterol accumulation which then suppress the activity 
of transcription factors such as sterol regulatory element-
binding proteins and liver X receptor, downregulating 
LDL-R gene expression [52–54]. In contrast, a recent study 
showed an increase in hepatic expression of ACAT-2 in 
mice fed short-term with a high SFA diet and in HepG2 
cells treated with 0.5 mmol/l and 1 mmol/l palmitic acid 
for 14 h [55]. Furthermore, it has been argued in another 
study in hamsters that increased ACAT activity may result 
in the formation of larger cholesterol ester enriched very 

AOAC Association of Official Analytical Chemist, CRP C-reactive protein, DBP diastolic blood pressure, HC hip circumference, HDL-C high density lipoprotein cholesterol, 
LDL-C low density lipoprotein cholesterol, MUFA monounsaturated fatty acids, NEFA non-esterified fatty acids, PA physical activity, PUFA polyunsaturated fatty acids, 
SFA saturated fatty acids, SBP systolic blood pressure, TC total cholesterol, TAG​ triacylglycerol, UA uric acid, VAI visceral adiposity index, WC waist circumference, WHR 
waist to hip ratio, WHtR waist to height ratio
1 Data were analysed by ANCOVA with age and sex as covariates and presented as estimated mariginal means ± SE or median (interquartile range); p ≤ 0.05 
considered significant
2 Sample sizes differ as follows: Blood pressure, Q1 n = 77, Q2 n = 101, Q3 n = 107, Q4 n = 103; body composition measures, Q1 n = 72, Q2 n = 91, Q3 n = 98, Q4 n = 94; 
VAI, Q1 n = 78, Q2 n = 99, Q3 n = 103, Q4 n = 103; biochemistry, Q1 n = 78, Q2 n = 100, Q3 n = 106, Q4 n = 103; NEFA, Q1 n = 72, Q2 n = 89, Q3 n = 92, Q4 n = 94; CRP, 
Q1 n = 77, Q2 n = 99, Q3 n = 106, Q4 n = 103; UA, adiponectin and 25-hydroxyvitamin D, Q1 n = 72, Q2 n = 90, Q3 n = 95, Q4 n = 94; insulin and HOMA-IR, Q1 n = 52, 
Q2 n = 71, Q3 n = 67, Q4 n = 69; dietary intake, Q1 n = 78, Q2 n = 101, Q3 n = 109, Q4 n = 103; physical activity, Q1 n = 69, Q2 n = 80, Q3 n = 84, Q4 n = 85; steps/day, 
Q1 n = 66, Q2 n = 77, Q3 n = 77, Q4 n = 81

Table 5  (continued)

Characteristics2 Q1 (n = 78) Q2 (n = 101) Q3 (n = 109) Q4 (n = 103) p value1

(1.9–10.0%TE) (10.1–11.9%TE) (12.0–14.8%TE) (14.9–38.7%TE)

 Trans fat, %TE 0.30 (0.23–0.40)a 0.41 (0.31–0.54)b 0.53 (0.43–0.68)c 0.76 (0.56–0.96)d < 0.01

Protein, %TE 17.6 (14.7–20.5) 18.1 (15.7–20.9) 16.5 (14.5–19.2) 16.5 (14.5–19.8) 0.44

Carbohydrate, %TE 54.1 ± 1.1b 47.3 ± 0.9a 46.1 ± 0.9a 37.7 ± 0.9c < 0.01

 Fiber (AOAC), g/day 27.3 ± 1.0a 26.3 ± 0.9ab 23.8 ± 0.8b 20.5 ± 0.8c < 0.01

 Total Sugars, %TE 19.6 ± 0.7 18.9 ± 0.6 19.4 ± 0.6 17.1 ± 0.6 0.03

Physical activity level

Steps/day 9786 (7583–12,573) 9153 (6883–11,523) 8937 (6876–11,973) 8177 (6715–11,206) 0.25

Energy expended (kcal/day) 296 (164–525) 265 (162–450) 249 (146–385) 231 (144–330) 0.16

Percentage time spent per day

 Sedentary 70.0 ± 0.9 69.7 ± 0.8 69.8 ± 0.8 70.1 ± 0.8 0.98

 Performing light PA 25.0 ± 0.8 25.7 ± 0.7 25.6 ± 0.7 25.4 ± 0.7 0.89

 Performing moderate to vigorous PA 4.6 (2.9–6.8) 4.2 (3.1–6.4) 4.0 (2.5–6.6) 4.0 (2.5–5.6) 0.64
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low-density lipoprotein (VLDL) particles which may be the 
reason for increased LDL-C concentrations. The authors 
discussed that the effect of dietary fat composition on cir-
culating cholesterol concentration might be via increased 
hepatic lipoprotein secretion rather than clearance [56]. 
Findings from an in vitro study conducted in HepG2 cells 
suggested that enrichment of VLDL particles with apoE 
following a meal rich in dietary SFA could lead to greater 
competition with LDL for hepatic LDL-R uptake [57]. 
However, these findings are from cell or animal studies, so 
there is a need for further studies in humans to understand 
the mechanisms behind the association between dietary 
SFAs and LDL-C concentrations.

Higher intakes of dietary SFAs have been suggested to 
be associated with abdominal fat accumulation, increas-
ing CVD risk [23]. In contrast to some studies [23, 25, 
58–60], we found no relationship between body fat dis-
tribution including abdominal VAT mass and SFA intake 
in this study. However, our findings are consistent with 
Greenfield et al. [61] who reported a lack of association 
between adiposity and dietary fat composition in their 
cross-sectional study in 334 female twins. This discrep-
ancy between studies might be due to the difference in 
participant characteristics, study design or methods used 
for dietary and body composition assessments. Surpris-
ingly, android lean mass was highest in Q3. This finding 
might be associated with their low carbohydrate, high 
SFA diet, which has previously been reported to increase 
lean mass, but this has only been observed in diets with 
high protein intakes (20–30%TE) [62–64]. Therefore, 
although abdominal VAT mass explained 7% of vari-
ability in LDL-C, it was not found to be different across 
dietary SFA quartiles. These findings suggest that dietary 
SFAs and abdominal VAT may impact on LDL-C via dif-
ferent mechanisms.

Body fat distribution, especially abdominal VAT accu-
mulation, has been associated with CVD risk independ-
ent of BMI, while gynoid fat is thought to be protective 
against metabolic diseases [65, 66]. In the current study, 
fasting blood lipids (TC, TAG and LDL-C) which are 
established CVD risk markers, were positively associated 
with body fat distribution measures, including abdominal 
VAT mass, which confirms previous studies [67]. Fur-
thermore, we found the TC: HDL-C ratio to explain the 
largest proportion of variability in abdominal VAT mass 
between individuals, which highlights the importance of 
body fat distribution in relation to CVD risk.

One proposed link between abdominal VAT and CVD 
is chronic and systemic inflammation, which may occur 
due to impaired adipocyte differentiation [68]. People 
with VAT accumulation have been shown to have hyper-
trophic dysfunctional adipocytes which release pro-
inflammatory factors. Due to the location of abdominal 

VAT, these pro-inflammatory factors can enter the liver 
via the portal vein and increase glucose production lead-
ing to insulin resistance, which plays a role in the devel-
opment of CVD [69]. In agreement, our study showed 
independent associations between CRP and HOMA-IR 
with abdominal VAT mass, supporting previous studies 
showing that increased abdominal VAT leads to devel-
opment of pro-inflammatory state and insulin resist-
ance [70]. Moreover, adipocyte hypertrophy is related 
to decreased adiponectin levels which has been associ-
ated with increased CVD incidence [71, 72]. In line with 
this, in our study, adiponectin levels were negatively cor-
related with abdominal VAT mass and were higher in 
women, who were shown to have lower abdominal VAT 
mass compared to men. Therefore, our findings lend sup-
port to the previously reported potential mechanisms for 
abdominal VAT mass and CVD risk.

Strengths of this study include the large sample size, 
the use of DXA scans to accurately measure body fat 
distribution and the use of detailed dietary and physical 
activity assessment. Moreover, compared to the results 
from the current National Diet and Nutrition Survey, the 
dietary intake of our cohort compared closely with this 
representative UK population [73]. Several limitations 
need consideration. First, our study cannot investigate 
cause and effect relationship due to its observational, 
cross-sectional design. Furthermore, dietary intake was 
self-reported using a 4-day weighed food diary, therefore 
measurement errors are inevitable. A further limitation is 
that participants can under and overestimate their food 
intake. We have tried to address this limitation by remov-
ing the under (n = 2) and over (n = 3) reporters from the 
dataset for dietary analysis. In addition, as it is not always 
possible to exactly match the food from volunteer’s diet 
diary with the food composition databases available, this 
may have influenced the dietary analysis data. Moreover, 
as limited data are available for n-3 and n-6 PUFA on the 
current UK food composition databases, these dietary 
data should be interpreted with caution. Furthermore, 
dietary SFA was assessed as a single nutrient instead of 
the food matrix (e.g., dairy and red meat), type (e.g., pal-
mitic and stearic acid) or source (e.g., animal or plant 
sources) of SFA, which may modify its effect on disease 
risk markers. Lastly, our study attracted individuals with 
a predominately normal BMI and higher physical activity 
level than the average UK population, therefore, it may be 
difficult to translate our results to the general population.

In conclusion, the findings from this cross-sectional 
study indicate that both dietary SFA (%TE) and abdomi-
nal VAT mass were important determinants of the fasting 
LDL-C concentration. However, the lack of dose dependent 
relationships between quartiles of dietary SFA intake with 
abdominal VAT mass and LDL-C suggests that different 
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mechanisms of action may exist for their impact on LDL. 
Therefore, further studies are needed to determine the 
impact of the types and sources of dietary SFA, and their 
relationship to abdominal obesity and CVD risk.
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