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study

Fzgi Ozen, Rada Mihaylova, Michelle Weech, Sam Kinsella, Julie A. Lovegrove and Kim G. Jackson”

Abstract

Background: Diets high in saturated fatty acids (SFAs) and greater abdominal obesity are both associated with raised
low-density lipoprotein cholesterol (LDL-C) concentrations, an independent cardiovascular disease (CVD) risk marker.
Although reducing SFA intake is a public health strategy for CVD prevention, the role of body fat distribution on the
relationship between SFA and LDL-C is unclear. Therefore, our objective was to investigate whether the association
between dietary SFAs and LDL-C concentrations is related to body composition.

Methods: Inthe BODYCON (impact of physiological and lifestyle factors on body composition) study, 409 adults
[mean age 42 + 16 years and median BMI of 23.5 (21.5-25.9) kg/m?] underwent a measure of body composition

by dual energy x-ray absorptiometry, assessment of habitual dietary intake using a 4-day weighed food diary and
physical activity level using a tri-axial accelerometer. Blood pressure was measured, and a fasting blood sample was
collected to determine cardiometabolic disease risk markers. Correlations between body composition, circulating risk
markers and dietary macronutrients were assessed prior to multivariate regression analysis. The effect of increasing
intakes of dietary SFA on outcome measures was assessed using ANCOVA after adjusting for covariates.

Results: Abdominal visceral adipose tissue (VAT) mass was moderately positively correlated with total cholesterol
(TO), LDL-C, systolic blood pressure (SBP), diastolic blood pressure and HOMA-IR (r,=0.25-0.44, p <0.01). In multiple
regression analysis, 18.3% of the variability in LDL-C was explained by SFA intake [% total energy (TE)], abdominal VAT
mass, carbohydrate%TE and fat%TE intakes. When data were stratified according to increasing SFA%TE intakes, fasting
TC, LDL-C and non-high-density lipoprotein-cholesterol were higher in Q4 compared with Q2 (p <0.03). SBP was
higher in Q4 versus Q3 (p=0.01). Android lean mass was also higher in Q3 versus Q1 (p=0.02). Other anthropometric
and CVD risk markers were not different across quartile groups.
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caltrials.gov/ct2/show/NCT02658539.

Conclusions: Although dietary SFA was found to explain 9% of the variability in LDL-C, stratification of data accord-
ing to quartiles of SFA intake did not reveal a dose-dependent relationship with LDL-C concentration. Furthermore,
this association appeared to be independent of abdominal obesity in this cohort.

Clinical Trail registration: Trial registration: clinicaltrials.gov as NCT02658539. Registered 20 January 2016, https://clini

Keywords: Body composition, Abdominal obesity, Dietary fat quality, SFA intake, DXA

Introduction

Diet is one of the most important modifiable risk factors
for cardiovascular diseases (CVDs), with studies report-
ing a link between high intakes of dietary saturated fatty
acids (SFAs) and elevated low-density lipoprotein-cho-
lesterol (LDL-C), a well-documented independent risk
factor for this disease [1, 2]. Although many studies have
investigated the effect of reducing dietary SFA intake on
the fasting lipid profile, replacement with unsaturated
fatty acids was found to be more beneficial compared to
carbohydrates or protein [3, 4]. Thus, current UK rec-
ommendations for CVD prevention are to decrease die-
tary SFA intake to less than 10% of total energy (TE) via
replacement with polyunsaturated (PUFAs) and mono-
unsaturated fatty acids (MUFAs) [5]. However, there is
also consistent evidence suggesting no beneficial effect
of reducing dietary SFA intake on CVD mortality [6-8].
These discrepancies between studies indicate that there
may be other factors affecting this relationship.

Obesity is a rapidly growing global public health prob-
lem affecting over one third of the world’s population [9,
10]. An excessive accumulation of body fat is positively
associated with the risk of cardiometabolic diseases such
as CVD and type 2 diabetes [11]. Body mass index (BMI)
has been used routinely at a population level to assess
adiposity and identify people with increased metabolic
disease risk. However, body fat distribution is now con-
sidered to be a better indicator of chronic disease risk
than BMI, with fat accumulation in the abdominal area
[especially visceral adipose tissue (VAT)] associated
with greater CVD risk compared with gynoid adipos-
ity [12—15]. Moderately elevated LDL-C concentrations
and insulin resistance have been observed in people with
increased abdominal fat accumulation [16-18]. As a
result, there is a considerable interest in the physiological
and lifestyle characteristics that influence body fat distri-
bution [19, 20].

Storage of body fat is influenced by non-modifiable fac-
tors such as age and sex [21], but also by modifiable life-
style factors such as diet [22]. Studies have investigated
the effect of dietary fat quality on body composition,
with differential associations shown between dietary SFA
(positive) and PUFA/MUFA (negative) with abdominal
obesity [23-25]. Although the impact of dietary SFAs

on LDL-C concentrations has been shown in many stud-
ies, the effect of body composition on this relationship
is poorly understood. A small number of studies have
reported BMI to be inversely associated with the LDL-C
response to reduced SFA intake [26]. As dietary SFAs are
reported to influence both LDL-C concentrations and
body composition, the effect of dietary SFAs on LDL-C,
therefore, might be related to its effect on body fat con-
tent and distribution.

Thus, the purpose of this study was to investigate
whether the impact of dietary SFA on LDL-C was asso-
ciated with body composition. We hypothesized that
higher SFA intakes are related to increased LDL-C
concentrations due to greater fat accumulation in the
abdominal area.

Methods

Subjects

Healthy men and women (n=409) aged 18-70 years
were recruited from Reading and the surrounding area
(UK), from 2014 through 2019 using posters, pamphlets
and by contacting previous volunteers registered on the
Hugh Sinclair Unit of Human Nutrition volunteer data-
base at the University of Reading. A Medical and Lifestyle
questionnaire was used to assess the suitability of inter-
ested volunteers before potentially eligible individuals
were invited to attend a screening session in which they
were provided with detailed information about the study
before signing a consent form. All subjects were assessed
after fasting overnight for 12 h. During the screening
visit, blood pressure and anthropometric measurements
were taken and a fasting blood sample was collected for
the measurement of fasting blood lipids [total cholesterol
(TC), triacylglycerol (TAG) and high density lipoprotein
cholesterol (HDL-C)], glucose, kidney and liver function
markers (alkaline phosphatase, alanine aminotransferase,
y-glutamyl transferase, serum creatinine, total bilirubin
and uric acid) by using the ILAB 600 clinical chemistry
analyser (Werfen Ltd, Warrington,UK). To determine
the haemoglobin level, a further blood sample was sent
to the Royal Berkshire Hospital Pathology Department
(Reading, UK). All participants whose screening meas-
urements matched the following inclusion criteria were
invited to participate in the study: BMI 18.5-39.9 kg/m?,
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TC<7.8 mmol/l, TAG<2.3 mmol/], fasting blood glu-
cose <7.8 mmol/l, haemoglobin >115 g/l for women and
130 g/1 for men. Exclusion criteria included the following:
having suffered a myocardial infarction/stroke in the past
12 months, history of diabetes or other endocrine disor-
ders, bowel disease, cholestatic liver disease, pancreatitis,
cancer, being on medication for hyperlipidemia, hyper-
tension, inflammation or hypercoagulation, being on a
weight reducing diet and excessive alcohol consump-
tion (< 14 units/wk). Furthermore, due to the use of the
dual energy x ray absorptiometry (DXA) to assess body
composition, further exclusion criteria included arthritis
or fracture deformity of spine or femur, history of bone
related surgeries, radio-opaque implants or implanted
medical devices. Females were also excluded if they were
breast feeding, may be pregnant or planning a pregnancy
in the next 12 months.

Study design

Impact of physiological and lifestyle factors on body
composition (BODYCON) was a single-centered obser-
vational cross-sectional study conducted in the Hugh
Sinclair Unit of Human Nutrition at the University of
Reading. The NHS and University of Reading Research
Ethics Committees (reference numbers 14/SC/1095 and
13/55, respectively) both gave a favorable ethical opinion
for conduct. This study was carried out in accordance
with the Declaration of Helsinki and was registered at
www.clinicaltrials.gov (NCT02658539).

Participants attended a single study visit. For the day
prior to this visit, participants were requested to abstain
from strenuous exercise and consuming alcohol. A low-
fat evening study meal and low-nitrate water (Buxton
mineral water, Nestlé waters, UK) were provided by the
researchers and participants were asked not to con-
sume anything apart from this water after their evening
meal. Before starting the study visit, a spot urine sam-
ple was collected and urine osmolarity was measured
using an Osmocheck device (Vitech Scientific Ltd., UK)
to ensure participants were sufficiently hydrated for the
body composition measurements and asked to complete
a pre-DXA scan questionnaire. Weight, waist and hip
circumferences were measured, followed by clinic blood
pressure. Total body composition was assessed by DXA
scan before a fasting blood sample was taken to meas-
ure cardiometabolic disease risk markers. Additionally,
in the few days before their visit participants were asked
to complete a 4-day weighed food diary for 3 consecu-
tive weekdays and 1 weekend day while wearing a triax-
ial Actigraph activity monitor (ActiGraph, Florida, US)
during the same time to assess dietary intake and physi-
cal activity levels, respectively. Premenopausal women
not taking oral contraceptives attended their main study
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visit during the same phase of their menstrual cycle (days
1-7).

Anthropometric and blood pressure measurements
Anthropometric and body composition measurements
were performed with participants wearing light clothing
and no shoes or metal objects. Height was measured to
the nearest 1 cm using a stadiometer, facing forwards,
and standing as straight as possible with their arms hang-
ing loosely by their side and their head in the Frankfort
plane. Body weight and BMI were determined by using a
bioelectrical impedance analyser (Tanita BC-418, TAN-
ITA UK Ltd, Middlesex, UK) and 1 kg was automatically
deducted to account for the weight of the subject’s light
clothing. Waist circumference (WC) was measured at
the midpoint between the lowest ribs and the top of the
iliac crest while hip circumference was measured at the
largest circumference around the buttocks. Both meas-
urements were taken by a trained researcher while par-
ticipants were standing straight after a gentle expiration.
A non-stretch tape measure (Seca, UK) was used for both
measures. The waist to hip ratio (WHR) and waist to
height ratio (WHtR) were calculated as estimates of body
fat distribution.

Blood pressure was measured three times using an
Omron blood pressure monitor (Omron M3 digital auto-
matic upper arm blood pressure monitor, Omron Health-
care Co UK Ltd.) and the average systolic blood pressure
(SBP) and diastolic blood pressure (DBP) were calcu-
lated. Pulse pressure was determined by subtracting DBP
from SBP.

Visceral adiposity, fat mass and lean mas index calculations
Anthropometric indices were calculated to determine
their relationship with dietary SFA and cardiometabolic
disease risk markers. These included the visceral adipos-
ity index (VAI=waist circumference/(39.68 4+ (1.88 x BM
I)) x(TAG(mmol/L)/1.03) x (1.31/HDL-C(mmol/L)) for
men and VAI=waist circumference/(36.58 + (1.89 x BM
I)) x (TAG(mmol/L)/0.81) x (1.52/HDL-C(mmol/L)) for
women as an indicator of visceral adipose tissue function
[27]), fat mass index (FMI=fat mass(kg)/height in m?)
and lean mass index (LMI=lean mass(kg)/height in m?)
[28].

Assessment of dietary intake

Habitual dietary intake was evaluated by using a 4-day
weighed diet diary. To increase accuracy, an electronic
kitchen scale and a selection of food portion sizes from
the Food Atlas to record meals consumed outside of
home [29] were provided to the participants. Instruc-
tions on how to complete the diary were given both ver-
bally and in written form by the researchers. For each
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subject, nutrient and energy intakes were calculated
using Dietplan 7 (Forestfield Software) and the total die-
tary intakes were divided by the number of days recorded
to give mean daily intakes. Data entered on Dietplan was
checked by a single researcher at the end of the study.
For dietary data inclusion, participants were required to
complete at least 3 days of the diet diary and report feasi-
ble dietary intakes between 500 and 3500 kcal per day for
women and 800 and 4000 kcal per day for men. Individu-
als with dietary intakes outside of these ranges have been
previously reported to be under and over reporters [30].

Physical activity

A tri-axial accelerometer was used to measure physical
activity levels (Actigraph wGT3X+, Actigraph, LLC).
Participants were asked to wear the accelerometer for 4
consecutive days including 3 weekdays and 1 weekend
day and keep an activity diary for data cleaning purposes.
It was worn around the abdomen above their right hip
bone, and they were asked to remove the device only
for showering or during swimming. Device initializa-
tion, data processing and analysis were conducted using
Actilife Data Analysis Software (Version 6.11.5) as previ-
ously described [31]. Raw data was collected at a 30 Hz
sample rate. For inclusion in the physical activity analysis,
participants were required to have produced counts on
their activity monitor for > 3-days (> 600 min/day of wear
time) [32]. Non-wear-time was defined as>60 min of
zero activity counts [33]. Data were summarized in 60-s
epochs and cut-points were used to classify wear time
as: sedentary behaviour (<100 counts/min), light/life-
style physical activity (760-1951 counts/min), moderate
physical activity (1952-5724 counts/min) and vigorous
physical activity (>5725 counts/min) [34]. For the pur-
poses of the data analysis, the time spent in moderate and
vigorous physical activity was combined. Mean energy
expenditure from physical activity (EE;,) was calculated
as kcal/day.

Details of the DXA procedure

Prior to the DXA scan assessment, participants changed
into clothing without zips and metal buttons or a dis-
posable hospital garment and all metal artefacts were
removed. Whole body composition was measured by
Lunar iDXA (GE Healthcare, UK) and two operators per-
formed the scanning and followed the manufacturer’s
guidelines for volunteer positioning and for scan acqui-
sition. Participants laid supine on the Lunar iDXA scan-
ning table with knees and ankles positioned together
using the Lunar Velcro supports. Arms were positioned
to the side of the body, with palms facing towards the
body and participants were required to lie still during
the total body composition scan. All scans were analysed
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using enCORE Software, version 15 (GE Healthcare, UK)
with the advance software package CoreScan, which also
estimates the mass and volume of visceral fat within the
abdomen. The machine’s performance was checked daily
by running a quality assurance test according to the man-
ufacturer’s instructions before each scanning session.

Biochemical analysis

Blood samples collected into the serum separator and
K,;EDTA blood tubes were centrifuged at 1700 x g
(3000 rpm) for 15 min at room temperature and 4 °C,
respectively before aliquoting into Eppendorf tubes and
stored at — 20 °C. Fasting serum lipids (non-esterified
fatty acids (NEFA) (Alpha Laboratories Ltd., Hampshire,
UK), TC, HDL-C and TAG), glucose, C-reactive protein
(CRP), and y-glutamyl transferase (GGT) were quanti-
fied in the main study visit sample by using the ILAB 600
clinical chemistry analyser with reagents from Werfen
(Werfen (UK) Ltd., Warrington, UK). Plasma uric acid
was measured using RX Daytona Plus clinical chemis-
try analyser (Randox Laboratories Ltd., County Antrim,
UK) using a kit supplied by Randox. The Friedewald for-
mula was used to estimate fasting LDL-C concentrations
[35]. Non-HDL-C was calculated by subtracting HDL-C
from TC. ELISA kits were used to analyse serum insulin
(Dako Ltd., High Wycombe, UK) and plasma adiponectin
(Quantikine kit, R&D Systems, Europe Ltd.) concentra-
tions. Homeostatic model assessment for insulin resist-
ance (HOMA-IR) was calculated by using the following
equation: [fasting insulin (pmol/l) x fasting glucose
(mmol/1)]/135 [36]. Serum 25 hydroxyvitamin D, and
25 hydroxyvitamin D, was measured by the LGC group
(LGC Ltd., Middlesex, UK) and summed to obtain total
25 hydroxy vitamin D (25(OH)D).

Statistical analysis

Statistical analyses were performed using IBM SPSS Sta-
tistics version 25 (SPSS Inc., IL, US). Data was presented
as mean =+ standard deviation (SD) for normally distrib-
uted variables and as median (interquartile range) for
non-normally distributed variables in Tables 1 and 2.
Normality was assessed using the Kolmogorov—Smirnov
test and Q—Q plots. The logarithms or square root trans-
formations were used for several outcome measures
including BMI, body fat mass, abdominal VAT mass,
dietary protein and trans-fat, TAG, LDL-C: HDL-C ratio,
TC: HDL-C ratio, NEFA, CRP, GGT, adiponectin, insu-
lin and HOMA-IR, steps/day, EE;,, and percentage time
spent performing moderate to vigorous physical activity.
Parametric independent sample t tests were used for nor-
mally distributed and transformed data to determine the
differences between the male and female groups. Spear-
man’s correlations were used to analyse relationships
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Table 1 Characteristics of BODYCON study participants

All (n=409) Men (n=190) Women (n=219) p value®
Outcome measures®
Age, years 42416 42415 42416 0.93
Weight, kg 704+140 783+£122 635+£11.7 <0.01
Height, m 1.71£0.01 1.78+0.07 1.64+0.07 <0.01
BMI, kg/m2 23.5(21.5-23.9) 24.2 (22.7-26.5) 22.5(20.8-25.4) 0.01
WC, cm 838+£119 89.1£103 792+£112 <0.01
HC cm 101+9 102+£9 100+ 10 0.04
WHR 0.83+£0.08 0.88£0.07 0.79£0.08 <0.01
WHtR 049+0.07 0.50£0.06 0.48£0.07 <0.01
Blood pressure, mmHg
Systolic 12014 12411 117+£15 <0.01
Diastolic 72+9 74£9 70£9 <001
Pulse pressure 48+ 11 50+10 47+£10 <001
Body composition measures
Body fat, % 283+84 23.7+72 323+£74 <0.01
Fat mass, kg 19.0 (14.3-25.0) 17.8(12.9-24.9) 19.3 (15.5-25.2) 0.01
Lean mass, kg 484+£105 40.7£5.7 572+74 <0.01
Trunk fat mass, kg 104£50 109+52 10.0£4.9 0.09
Abdominal VAT, g 393 (178-811) 691 (367-1240) 237 (99-440) <0.01
Android fat, % 30.5£12.1 29.1£12.1 31.8£118 0.03
Gynoid fat, % 322+99 249+70 387+72 0.01
A/G fat ratio 0.96£0.29 1.13£0.28 0.80£0.21 0.01
Body Composition Indexes
FMI, kg/m? 7054+293 6.10£243 7.88+3.09 0.01
LM, kg/m2 164+£2.2 180+1.7 150£15 0.01
VAI 1.01£0.68 1.03£0.71 1.00£0.65 0.66
Biochemistry
TC, mmol/L 513£1.10 505£1.18 520£1.02 0.10
TAG, mmol/L 0.83 (0.66-1.16) 0.93 (0.69-1.39) 0.79 (0.64-1.02) 0.01
HDL-C, mmol/L 1.65+0.40 1.51£040 1.78£0.36 0.01
LDL-C, mmol/L 3.03+£093 3.07£1.00 299+0.86 0.66
Non-HDL-C, mmol/L 348+£1.00 3.55+1.07 3431094 034
TCHDL ratio 3.00 (2.63-3.76) 344 (2.78-4.03) 2.81(2.56-3.29) 0.01
LDL-C:HDL-C ratio 1.76 (1.42-2.30) 2.08 (1.58-2.56) 1.60 (1.35-2.04) 0.01
Glucose, mmol/L 503£048 5134051 4944044 0.01
Insulin, pmol/L 264 (17.3-39.9) 27.1(16.9-42.5) 26.3(182-37.7) 0.69
HOMA-IR 0.98 (0.07-5.30) 1.04 (0.63-1.63) 0.97 (0.62-1.41) 041
NEFA, pmol/L 416 (318-546) 388 (310-518) 427 (327-567) 0.01
CRP, mg/L 0.62 (0.29-1.46) 0.63(031-1.43) 0.62 (0.28-1.52) 091
GGT, U/L 16.9 (14.0-22.7) 205 (16.2-27.5) 15.3(13.2-19.0) 0.01
Uric acid, umol/L 280+£68 323£59 242£51 0.01
Adiponectin, pg/mL 5.11(2.48-9.07) 4.19(2.22-6.02) 6.70 (2.93-11.38) 0.01
25-Hydroxyvitamin D, ng/mL 239£113 234£108 243%£117 0.50

A/G fat ratio android to gynoid fat ratio, BMI body mass index, CRP C-reactive protein, F female, FFM fat free mass, FMI fat mass index, GGT gamma-glutamyl transferase,
HC hip circumference, HDL-C high density lipoprotein cholesterol, LDL-C low density lipoprotein cholesterol, LM/ lean mass index, M male, NEFA non-esterified fatty
acids, TAG triacylglycerol, TC total cholesterol, VAT visceral adipose tissue, VAl visceral adiposity index, WC waist circumference, WHR waist to hip ratio, WHtR waist to
height ratio

2 Data were analyzed by independent t tests and presented as mean + SD or median (interquartile range); p <0.05 was considered significant

b Sample sizes differ as follows: Blood pressure n=406 (M:187/F:219); body composition measures n =370 (M:174/F:196); biochemistry n =405 (M:188/F:217); insulin
and HOMA-IR n=272 (M:109/F:163); NEFA n =362 (M:168/F:194); CRP n =403 (M:188/F:215), GGT n =330 (M:135/F:195); UA, adiponectin and 25-hydroxyvitamin D,
n=366 (M:172/F:194)
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Table 2 Dietary intake and physical activity levels of the study participants
All (n=391) Men (n=179) Women (n=239) p value?
Dietary energy and macronutrient intake
Energy, MJ/day 850+247 9.62+251 7.56+2.00 <001
Total Fat, %TE 365+86 346496 364478 0.82
SFA, %TE 13.0+45 133+£52 128+37 0.36
MUFA, %TE 13.7+£38 13.6+£4.1 13.8+3.6 0.70
PUFA, %TE 6.17+2.11 6.09+233 6.24+191 051
n-6 PUFA, %TE 5664291 533£3.03 5934279 0.04
n-3 PUFA, %TE 0.86£0.59 0.82+£049 090+£0.67 0.17
Trans fat, %TE 049 (0.34-0.68) 0.50 (0.35-0.72) 049 (0.33-0.63) 0.05
Protein, %TE 17.1 (14.8-20.2) 17.0 (14.5-204) 174 (15.0-19.7) 0.58
Carbohydrate, %TE 4584109 4544121 46.14+9.8 0.52
Total Sugars, %TE 18.7+£6.6 17.7+£7.0 19.6+6.0 0.01
Dietary Fibre (AOAC), g/day 243+88 252+89 235+86 0.07
Physical activity level®
Steps/day 8953 (6948-11,941) 8500 (6517-10,717) 9288 (7193-12,024) 0.02
Energy expended (kcal/day) 254 (157-431) 324 (195-524) 224 (141-349) <0.01
Percentage time per day spent
Sedentary 69.8+7.3 711474 689+7.1 0.01
Performing light PA 255+68 243466 263469 0.01
Performing moderate to vigorous PA 42(2.7-6.2) 4.0 (2.6-6.1) 44 (2.7-6.3) 0.34

AOAC Association of Official Analytical Chemist, MUFA monounsaturated fatty acids, PA physical activity, PUFA polyunsaturated fatty acids, SFA saturated fatty acids,

%TE % of total energy

2 Differences between men and women were analyzed by independent t test and presented as mean 4 SD or median (interquartile range); p < 0.05 was considered

significant

b Sample sizes differed as follows: Physical activity level n =327 (M:126/F:201) and steps/day n=309 (M:120/F:189)

between cardiometabolic disease risk markers with
body composition measurements and dietary macro-
nutrients in the whole group and in men and women
separately (Spearman’s Rho (r])=0-0.3 considered a
weak correlation, r,=0.3-0.7 moderate and r;=0.7-1.0
strong). Stepwise multiple linear regression analysis was
performed using P-in of 0.05 and P-out of 0.01 to estab-
lish the independent associations between LDL-C and
abdominal VAT mass with the anthropometric meas-
ures, cardiometabolic disease risk markers and dietary
macronutrients.

For further analysis, the study cohort with dietary data
was stratified according to dietary SFA intake expressed
as %TE. Subjects in Q1 were selected to be within die-
tary recommendations for SFA (<10%TE). General lin-
ear model (ANCOVA) was performed to investigate the
impact of increasing intakes of dietary SFAs on subject
characteristics, adjusting for age and sex. Post-hoc analy-
ses with a Bonferroni correction were used to compare
differences between the SFA%TE quartile groups. Results
are presented as estimated marginal means+ SE for nor-
mally distributed and as median (interquartile range)
for non-normally distributed variables in Table 5 and
p <0.05 was considered significant.

Results

Study participants

A total of 438 healthy subjects were recruited, 29 of
them dropped out between the screening and the main
visit and 409 subjects (219 were women and 190 men)
completed the study. The flow of participants in the
study is shown in Fig. 1. The cohort had a mean age of
42416 years and median BMI of 23.5 (IQR 21.5-25.9)
kg/m? The main characteristics of the BODYCON

| Invited to participate (n=489) |
I |
l 1

| Screened (n=440) |

Dropouts: n=49

| Excluded due to low BMI:

l n=2

Eligible to participate (n=438)

! Dropouts: n=29

| Completed the study (n=409)

Fig. 1 Flow chart of participants from the BODYCON study
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study participants are shown in Table 1. Men (47%) and
women (53%) were approximately equally distributed
and matched for age in the study population. Compared
with women, men had greater BMI, body weight, WC,
WHR, WHtR, SBP, and DBP (p<0.01 each). Women
had significantly higher body fat, android fat percentage,
gynoid fat percentage and fat mass (p <0.03), whilst men
had a higher lean body mass, abdominal VAT mass, and
android:gynoid (A/G) percentage fat ratio (p <0.01 each).
Moreover, men had higher fasting serum TAG, glucose,
GGT and UA concentrations and TC: HDL-C ratio
(p<0.01 for all), while women had higher HDL-C, NEFA
and adiponectin concentrations (p <0.01) (Table 1).

The dietary intakes (n=391) and physical activity
(n=327) levels of the study participants are shown in
Table 2. Within the cohort, 2 subjects were identified as
under-reporters and 3 as over-reporters, with 13 further
subjects excluded due to completion of < 3 days of dietary
intake (n=1) or did not provide a diet diary (n=12). For
the mean dietary intakes, men reported greater energy
intakes (p<0.01), but only trans-fat (%TE) intake was
higher in men in terms of dietary macronutrients com-
pared to women (p=0.05), while women reported higher
total sugar (%TE) and n-6 PUFA (%TE) intakes compared
to men (p <0.04). Regarding physical activity levels, 82
subjects were excluded according to inclusion criteria
for the physical activity analysis. Compared with men,
women had higher daily step counts and spent a greater
percentage of time during the day performing light physi-
cal activity (»p<0.02). On average, men expended sig-
nificantly more energy per day (approximately 100 kcal/
day) performing physical activity compared with women
(p<0.01). The percentage of time spent performing mod-
erate to vigorous physical activity daily was not different
between the sexes (p =0.34) (Table 2).

Association between body composition, cardiometabolic
disease risk markers and dietary macronutrients
Correlations between body composition measure-
ments, CVD risk markers and dietary macronutrients
in the whole group are shown in Table 3 and Additional
file 1: Table 1 and according to sex in Additional file 1:
Tables S2 and S3. In the whole group body fat mass
was found to have weak positive correlations with SBP
and DBP, while abdominal VAT mass and A/G fat ratio
had moderate positive correlations with both SBP and
DBP (p<0.01). In addition, inverse moderate correla-
tions were evident between HDL-C and several adi-
posity measurements, including abdominal VAT mass
(p<0.01). In contrast, moderate positive correlations
were found between TAG, non-HDL-C, TC: HDL-C
ratio and LDL-C: HDL-C ratio with abdominal VAT
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mass, android fat mass, android fat percentage and A/G
fat ratio (p<0.01 for each). There were also weak posi-
tive correlations between LDL-C with SFA (%TE) and
trans-fat (%TE) (p<0.01 for each). Weak correlations
were found between dietary macronutrients and cardi-
ometabolic disease risk markers, with SFA (%TE) intake
positively associated with TC, LDL-C, non-HDL-C and
NEFA (p <0.05), whereas carbohydrate (%TE) intake
was negatively correlated with LDL-C (p<0.01).

For abdominal VAT mass, moderate positive correla-
tions were found with insulin, HOMA-IR, glucose, CRP
and uric acid, while there were weak, negative correla-
tions with adiponectin and 25-hydroxyvitamin D lev-
els (p <0.05). Regarding the association between diet
and body composition, we observed weak correlations.
n-6 PUFA (%TE) intake was negatively correlated with
abdominal VAT mass, while trans-fat (%TE) intake was
positively correlated (p <0.01) (Table 3).

After stratifying the group according to sex, a few
sex-specific associations were observed. Body fat mass
and abdominal VAT mass were found to have weak to
moderate positive correlations with both SBP and DBP
in women, while only with DBP in men (p<0.01). In
addition, inverse moderate correlations were evident
between HDL-C and several adiposity measurements,
including abdominal VAT mass in men (p <0.01), while
there were weak inverse correlations between HDL-C
and percentage body fat, fat mass and android fat per-
centage in women (p <0.05). Abdominal VAT mass was
negatively correlated with n-6 PUFA (%TE) in men
(p<0.01), whilst in women there was a weak inverse
correlation with carbohydrate (%TE) intake (p<0.05)
(Additional file 1: S3).

Stepwise multivariate regression analysis
The standardized regression coefficients, adjusted r?
and p values for the stepwise multivariate regression
analysis are shown in Table 4. Only SFA (%TE) intake,
abdominal VAT mass, total fat (%TE) and carbohydrate
(%TE) intakes were found to be independently associ-
ated with fasting LDL-C, explaining 18.3% of the vari-
ability in this established CVD risk marker. Of these
variables, 9% of this variability was explained by SFA
(%TE) intake and 7% by abdominal VAT mass (Table 4).
The TC: HDL-C ratio, DBP, GGT, HOMA-IR, sex,
age, HDL-C and uric acid were independently associ-
ated with abdominal VAT mass and, together, these
variables explained 64% of the variability in abdominal
VAT mass. This analysis showed that TC: HDL-C ratio
alone explained 33% of the variability in the mass of
this fat depot.
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Table 3 Spearman'’s correlation coefficients (r,) for the relationship between DXA body composition measurements, with CVD risk
factors and dietary macronutrients

Body fat, % Fatmass, kg Leanmass, kg VAT, g Android fat, kg Androidfat% Gynoidfat% A/G
Blood pressure, mmHg
Systolic —0.03 0.15%* 0.33** 0.40%* 0.25** 0.14** —0.15%* 0.33**
Diastolic 0.13* 0.29%* 0.21%* 0.44%* 0.37%* 0.31** —0.003 0.39%*
Pulse pressure —0.14** —0.02 0.25%* 0.16** 0.03 —0.05 —0.19%* 0.11%
Biochemistry
TC, mmol/L 0.19%* 0.17%* —0.11* 0.25%* 0.23%* 0.23** 0.13* 0.20%*
TAG, mmol/L 0.21%* 0.35%* 0.18** 0.46** 0.42** 0.38** 0.06 0.43**
HDL-C, mmol/L —0.02 —0.23%* —0.35% —0.35%  —0.29** —0.20** 0.11* —0.34**
LDL-C, mmol/L 0.17%* 0.20%* —0.02 0.32%* 0.27%* 0.25%* 0.09 0.26**
Non-HDL-C, mmol/L ~ 0.22** 0.27%* 0.02 0.41** 0.36** 0.33** 0.10 0.35%*
TC: HDL ratio 0.18** 0.37%* 0.24** 0.55%* 047%* 0.39%* —0.001 0.50**
LDL-C: HDL-C ratio 0.16** 0.33** 0.23** 0.51** 0.43** 0.35%* —0.01 0.46**
NEFA, umol/L 0.20%* 0.12* —0.17%* 0.04 0.10* 0.15%* 0.20** —0.02
Glucose, mmol/L 0.07 0.23** 0.22%* 0.41%* 0.31%* 0.23** —0.05 0.35%*
Insulin, pmol/L 0.35** 0.41** 0.02 0.34** 041** 0.42** 0.24** 0.32**
HOMA-IR 0.34** 042%* 0.06 0.38** 043** 0.42%* 0.21%* 0.34**
CRP, mg/L 0.36** 0.41%* 0.001 0.29** 0.39* 0.41%* 0.27%* 0.27%*
GGT, U/L —0.09 0.11* 0.35%* 0.37** 0.22%* 0.11 —0.22%* 0.36%*
Uric acid, pmol/L —0.16** 0.13% 0.53** 0.43** 0.29%* 0.13% —0.35%* 0.51%*
Adiponectin, ug/mL 0.18** 0.02 —0.25%* —0.14**  —0.05 0.02 0.25** —0.21
Total 25(0OH)D, ng/mL  —0.16** —0.14%* 0.05 —0.12% —0.08 —0.11* —0.15%* —0.14**
Dietary intake
Total fat, %TE 0.02 0.01 —0.03 0.01 0.01 0.01 0.02 0.01
SFA %TE 0.04 0.06 0.01 0.08 0.06 0.04 0.03 0.04
MUFA, %TE 0.01 —0.01 —0.05 —0.02 —0.01 —0.004 0.02 —0.01
PUFA, %TE —0.07 —0.15%* —0.09 —0.13* —0.16%* —0.13% —0.04 —0.14**
n-6 PUFA, %TE —0.08 —0.16** —0.11% —0.17%*  —0.19** —0.15%* —0.02 —0.18**
n-3 PUFA, %TE —0.004 —0.05 —0.08 0.01 —0.04 —0.01 0.02 —0.03
Trans fat, %TE 0.07 0.11* 0.07 0.16%* 0.13%* 0.11* 0.04 0.12*%
Protein, %TE —0.03 —0.003 0.07 —0.04 —0.02 —0.05 —0.03 —0.07
Carbohydrate, %TE 0.02 0.003 —0.05 —0.03 0.001 0.02 0.03 0.01
Fibre (AOAC), g/day —0.22%* —0.14** 0.21** —0.06 —0.13% —0.21** —0.21** —0.07
Total Sugars, %TE 0.03 —0.01 —0.11* —0.14**  —0.04 —0.04 0.07 —0.11*

Data analysed by Spearman’s correlations

AOAC association of analytical chemists, A/G android to gynoid ratio, CRP C-reactive protein, GGT gamma-glutamyl transferase, HDL-C high density lipoprotein
cholesterol, HOMA-IR homeostatic model assessment for insulin resistance, LDL-C low density lipoprotein cholesterol, MUFA monounsaturated fatty acids, NEFA non-
esterified fatty acids, PUFA polyunsaturated fatty acids, SFA saturated fatty acids, TC total cholesterol, TAG triacylglycerol, %TE % of total energy, VAT abdominal visceral
adipose tissue, total 25(0H)D: 25-hydroxyvitamin D

*Significant differences at the 0.05 level

**Significant differences at the 0.01 level

Subject characteristics according to quartiles of dietary
SFA (%TE) intake

There were no significant differences in mean body
weight (p=0.10) or BMI (p=0.20) across quartiles (Q)
of increasing %TE from SFA (Table 5). However, android
lean mass was found to be 7% higher in Q3 compared
with Q1 (p=0.02). Other anthropometric measures were
not different across the quartiles of SFA%TE intake.

Significant differences in several cardiometabolic dis-
ease risk markers were also evident across increasing
quartiles of SFA (%TE) intake. SBP and pulse pressure
were higher in Q4 compared to Q3 (» <0.01). TC, LDL-C
and non-HDL-C levels were 9%, 12% and 10% higher in
Q4 than Q2, respectively (p <0.05). Regarding dietary
intakes, subjects in Q4 reported higher total fat, MUFA
and trans-fat (%TE) than other quartiles (p<0.01 each)
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Table 4 Stepwise multivariate linear regression analysis exploring the relation between dietary macronutrients, body composition

and biochemical variables with LDL-C and abdominal VAT

Dependent variable Independent variable Standardized coefficient Adjusted r® p value

LDL-C® SFA %TE 0.297 0.085 <001
and Abdominal VAT 0.277 0.160 <0.01
and Carbohydrate %TE —0.157 0.172 0.013
and Fat %TE —0.261 0.183 0.017

Abdominal VAT® TC: HDL-C 0.572 0325 <0.01
and DBP 0314 0415 <001
and GGT 0.253 0475 <0.01
and HOMA-IR 0.240 0518 <001
and Sex (female) —0.237 0.565 <0.01
and Age 0.222 0.606 <0.01
and HDL-C —0.202 0.625 0.001
and Uric acid 0.157 0.636 0.005

GGT gamma-glutamyl transferase, HDL-C high density lipoprotein cholesterol, HOMA-IR homeostatic model assessment for insulin resistance, LDL-C low-density
lipoprotein cholesterol, SFA saturated fatty acid, TC total cholesterol, %TE % of total energy, VAT visceral adipose tissue

Variables included in the analysis: BMI, body fat %, fat mass, abdominal VAT, android fat mass, android fat %, A/G fat ratio, WC, HC, WHR, WHtR, fat %TE, SFA %TE,

trans-fat %TE, CHO %TE

b Variables included in the analysis: age, sex, TC, TAG, HDL-C, LDL-C, non-HDL-C, TC: HDL-C, LDL-C: HDL-C, glucose, 25(OH)D, CRP, GGT, UA, adiponectin, insulin,

HOMA-IR, SBP, DBP, PP, PUFA %TE, n-6 PUFA %TE, trans-fat %TE, total sugars %TE

and lower n-6 PUFA (%TE) intake than Q2 (p<0.01).
Carbohydrate (%TE) and fiber (g/day) intakes were low-
est in Q4 compared to other quartiles (p<0.01 each)
(Table 5).

Discussion
The present study investigated the associations between
dietary SFA intake, cardiometabolic disease risk mark-
ers and body composition to determine whether body fat
distribution contributed to the relationship between SFA
and LDL-C in a group of healthy adults. Although our
study does not establish cause and effect relationships
due to its cross-sectional nature, we observed interesting
and novel associations. In particular, dietary SFA, total
fat and carbohydrate intakes and abdominal VAT mass
were independently associated with LDL-C and found
to explain 18.3% of the variability. However, SFA intake
was not related to abdominal VAT mass. Furthermore,
stratification according to quartiles of dietary SFA intake
did not reveal dose-dependent relationships with LDL-C,
TC, non-HDL-C, blood pressure or android lean mass.
The replacement of dietary SFA with unsaturated
fatty acids (n-6 PUFA and MUFA) is associated with
beneficial effects on the fasting blood lipid profiles [37].
In the PURE cross-sectional study, which included 104
486 men and women aged 30-70 years from 18 coun-
tries, dietary SFA intake was positively related with
LDL-C and replacing 5%TE of dietary SFA with PUFA
and MUFA was associated with lower LDL-C con-
centrations (between 0.02 and 0.18 mmol/L) using a

multivariable nutrient density model [38]. In agree-
ment with previous studies, we also observed an inde-
pendent positive association between LDL-C and
dietary SFA, with dietary SFAs explaining 9% of the
variability in LDL-C response between individuals.
However, after stratifying data by SFA intake, we did
not observe a linear relationship between increasing
SFA intakes and LDL-C, with differences only evident
in TC, LDL-C and non-HDL-C concentrations between
Q2 and Q4. The lack of a dose-dependent relationship
between SFA intake and LDL-C may reflect the use of
age and sex as co-variates in the ANCOVA analysis,
which are both important non-modifiable determi-
nants of LDL-C concentrations [39, 40]. Furthermore,
the association of dietary SFA with CVD risk has been
proposed to be dependent on the food source and the
type of individual SFA rather than the amount of the
SFA. For example, although high in SFA, dairy have
been reported to have neutral or positive effects on
CVD risk markers [41], whereas palmitic acid has been
reported to be more atherogenic than stearic acid [42].
Therefore, determining total dietary SFA intake in the
current study may have influenced the strength of the
relationship with fasting LDL-C due to the differences
in frequency of dairy product and/or individual SFA
consumption within the quartile groups [41]. Inter-
estingly, n-6 PUFA intake was considerably higher in
Q2 compared to Q4, which may have also influenced
blood cholesterol levels. Furthermore, high intakes of
plant-based MUFA are associated with lower LDL-C
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Table 5 Participant’s characteristics according to quartiles of dietary saturated fatty acid (%TE) intake
Characteristics? Q1(n=78) Q2 (n=101) Q3 (n=109) Q4 (n=103) p value'
(1.9-10.0%TE) (10.1-11.9%TE) (12.0-14.8%TE) (14.9-38.7%TE)
Weight, kg 684413 69.5+1.2 725411 699412 0.10
BMI, kg/m? 23.0 (20.8-254) 232 (214-255) 24.1 (22.0-27.0) 236 (21.5-25.7) 0.20
WC, cm 825+1.1 835410 854410 833£10 021
HC, cm 10041 10041 10341 10141 0.06
WHR 0834001 0.8340.01 0834001 0.8340.01 0.99
WHtR 0494001 049001 0.5040.01 0494001 042
Blood pressure, mmHg
SBP 120420 12141 11741° 12342° 001
DBP 7141 7241 7141 7241 083
Pulse pressure 4841 49412 4541P 50412 <001
Body composition measures
Bodly fat, % 284408 283407 291407 276407 0.53
Android fat, % 305414 308+12 316+£12 206412 0.68
Gynoid fat, % 325408 322407 332407 316407 047
A/G fat ratio 0944003 0.9640.02 0.9740.02 0.9440.02 0.79
Fat mass, kg 17.7 (12.3-2523) 17.9 (14.5-25.0) 202 (16.1-254) 190 (14.3-24.0) 0.21
Lean mass, kg 4684038 480407 492407 483407 0.12
Android fat mass, kg 16340.12 15740.10 1.7240.10 1544010 0.58
Android lean mass, kg 3.1940.06° 3304005 34240.05° 3.2840.05% 0.02
Abdominal VAT, g 562456 582450 651448 562449 0.53
Indexes
VA 1.05+0.08 1.0240.07 1.06+0.07 0.9440.07 061
Biochemistry
TC, mmol/L 51740.11% 49140.10° 5.1040.09% 53940.09° 0.01
TAG, mmol/L 0.84 (067-1.18) 0.82 (0.65-1.07) 0.84 (0.66-1.28) 084 (067-1.11) 0.59
HDL-C, mmol/L 1674004 1614004 1614004 1734004 0.05
LDL-C, mmol/L 3.0041.00% 2.87 40,08 3.04£0.08% 323+008° 0.03
Non-HDL, mmol/L 35040.10% 3314009° 3494009 3.6640.09° 0.05
TC: HDL-C 2.95 (2.65-3.71) 2,94 (2.61-3.44) 303 (2.61-3.81) 3.15(2.61-3.83) 061
LDL-C: HDL-C 169 (143-2.23) 171 (142-2.13) 1.82 (141-2.42) 1.90 (1.41-2.40) 0.50
NEFA, prmol/L 390 (327-534) 403 (294-500) 441 (310-560) 456 (340-598) 036
Glucose, mmol/L 4984005 508004 5014004 502004 049
CRP, mg/L 049 (0.25-1.29) 0.59 (0.27-1.37) 0.66 (0.38-1.54) 0.66 (0.29-1.69) 0.79
Uric acid, pmol/L 27047 27546 289+6 28246 0.14
Adiponectin, pg/mL 6.03 (2.50-10.62)° 493 (2.39-7.99)% 409 (1.99-8.12)° 545(3.11-9.87)® 003
Total 25-Hydroxyvitamin D, ng/mL 223413 243412 243411 242412 063
Insulin, pmol/L 26.0 (20.3-37.5) 26.5 (17.3-386) 224 (159-40.1) 28.7 (183-42.7) 061
HOMA-IR 1.00 (0.68-1.44) 1.00 (0.65-1.53) 0.85 (0.58-1.44) 1.15 (0.66-1.63) 0.60
Dietary intake
Energy, kcal/day 1906 £61 2045+54 2055+£51 2092+53 0.13
Energy, MJ/day 7984026 8564022 8604022 8754022 013
Total fat, %TE 282+0.7° 343+06° 36.5+06° 449406 <001
MUFA, %TE 11.04£04° 133+03° 13.8+0.3° 16.1£0.3° <001
PUFA, %TE 5974024 6.394£0.21 6.04=0.20 6.2440.21 0.52
n-6 PUFA, %TE 5644033% 6.4840.29° 55340.28% 50040.28° <001
n-3 PUFA, %TE 08440.07% 0.87 +0.06®° 0.76 £0.06° 0.9840.06° 0.06
PUFA/SFA 0814003 0.58+£0.03" 04640.03° 0.344003¢ <001
MUFA/SFA 1444004 1214003° 1.0440.03¢ 0.8940.03¢ <001
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Characteristics? Q1(n=78) Q2 (n=101) Q3 (n=109) Q4 (n=103) p value'
(1.9-10.0%TE) (10.1-11.9%TE) (12.0-14.8%TE) (14.9-38.7%TE)

Trans fat, %TE 0.30(0.23-0.40)° 041 (0.31-0.54)° 0.53 (0.43-0.68)° 0.76 (0.56-0.96)¢ <0.01
Protein, %TE 17.6 (14.7-20.5) 18.1 (15.7-20.9) 16.5(14.5-19.2) 16.5 (14.5-19.8) 044
Carbohydrate, %TE 541+1.1° 4734£09° 46.1+£0.9° 37.740.9° <0.01

Fiber (AOAC), g/day 2734+10° 263409%° 23840.8° 205+0.8° <0.01

Total Sugars, %TE 19.6+£0.7 189+£06 194+0.6 17.1+£06 0.03
Physical activity level
Steps/day 9786 (7583-12,573) 9153 (6883-11,523) 8937 (6876-11,973) 8177 (6715-11,206) 0.25
Energy expended (kcal/day) 296 (164-525) 265 (162-450) 249 (146-385) 231 (144-330) 0.16
Percentage time spent per day

Sedentary 700409 69.7+0.8 69.8+0.8 70.1+08 0.98

Performing light PA 250408 25740.7 256407 254407 0.89

Performing moderate to vigorous PA 46 (2.9-6.8) 42 (3.1-6.4) 40 (2.5-6.6) 40 (2.5-5.6) 0.64

AOAC Association of Official Analytical Chemist, CRP C-reactive protein, DBP diastolic blood pressure, HC hip circumference, HDL-C high density lipoprotein cholesterol,
LDL-C low density lipoprotein cholesterol, MUFA monounsaturated fatty acids, NEFA non-esterified fatty acids, PA physical activity, PUFA polyunsaturated fatty acids,
SFA saturated fatty acids, SBP systolic blood pressure, TC total cholesterol, TAG triacylglycerol, UA uric acid, VAl visceral adiposity index, WC waist circumference, WHR

waist to hip ratio, WHtR waist to height ratio

" Data were analysed by ANCOVA with age and sex as covariates and presented as estimated mariginal means + SE or median (interquartile range); p <0.05

considered significant

2 Sample sizes differ as follows: Blood pressure, Q1 n=77, Q2 n=101, Q3 n=107, Q4 n= 103; body composition measures, Q1 n=72,Q2 n=91,Q3 n=98, Q4 n=94;
VAI, Q1 n=78,Q2 n=99, Q3 n=103, Q4 n=103; biochemistry, Q1 n=78,Q2 n=100, Q3 n=106, Q4 n=103; NEFA, Q1 n=72,Q2 n=89,Q3 n=92,Q4 n=94; CRP,
Q1n=77,Q2n=99,Q3 n=106, Q4 n=103; UA, adiponectin and 25-hydroxyvitamin D, Q1 n=72, Q2 n=90, Q3 n=95, Q4 n=94; insulin and HOMA-IR, Q1 n=52,
Q2n=71,Q3 n=67,Q4 n=69; dietary intake, Q1 n=78,Q2 n=101, Q3 n= 109, Q4 n=103; physical activity, Q1 n=69, Q2 n=_80, Q3 n =84, Q4 n=85; steps/day,

Q1n=66,Q2n=77,Q3n=77,Q4n=281

concentrations [43] and in this cohort those with the
highest SFA intakes also had higher total fat and MUFA
intakes. However, this would not necessarily represent
a higher intake of plant-based MUFA-rich foods and
oils, as animal products are also a rich source of both
SFAs and MUFAs. Similarly, increasing trans-fat intake
across quartiles of dietary SFA might be due to the
major dietary sources of trans-fats being high in dietary
SFA [44]. Participants consuming on average 8%TE
SFA (Ql) also had the highest carbohydrate intake
(54.1%TE), which exceeded the recommended intake of
45-50%TE. It is clear from literature that replacing SFA
with carbohydrate can increase fasting TAG and lower
HDL-C concentrations in some population sub-groups
[45, 46]. Moreover, Hooper et al. [4] reported no effect
of replacing SFA with carbohydrate on CVD events and
mortality in a systematic review and meta-analysis of
6 randomized controlled trials, while Schwab et al. [2]
reported an increased risk of CVD outcomes in a sys-
tematic review of prospective cohort studies. There-
fore, our contradictory results may be due to the higher
carbohydrate intakes in the quartile which met the
SFA dietary recommendation for CVD risk reduction
(Q1). Interestingly, although Q2 consumed more car-
bohydrate than Q4, their fiber consumption was higher
which might have positively influenced blood choles-
terol concentrations [47]. This could suggest that the

positive association of high-fat, low SFA diets on lipid
risk markers might also be dependent on other dietary
macronutrients and overall dietary pattern [48].

The observation that dietary SFA intake was indepen-
dently associated with the fasting LDL-C concentration
may be related to the impact of dietary fatty acids on LDL
particle clearance. Animal and in vitro studies have sug-
gested that dietary SFAs increase LDL-C via a downregu-
lation in the number and expression of the hepatic LDL
receptor (LDL-R) [49-51]. Although the mechanisms are
still not totally understood, animal studies have provided
evidence that dietary fat quality affects the LDL-R at the
molecular level potentially through its effect on mRNA
expression [52]. A possible explanation is that dietary SFAs
lower the esterification of cholesterol in the liver by inhib-
iting the cholesterol esterifying enzyme acyl-CoA: cho-
lesterol acyltransferase (ACAT), leading to increased free
cholesterol accumulation which then suppress the activity
of transcription factors such as sterol regulatory element-
binding proteins and liver X receptor, downregulating
LDL-R gene expression [52—54]. In contrast, a recent study
showed an increase in hepatic expression of ACAT-2 in
mice fed short-term with a high SFA diet and in HepG2
cells treated with 0.5 mmol/l and 1 mmol/l palmitic acid
for 14 h [55]. Furthermore, it has been argued in another
study in hamsters that increased ACAT activity may result
in the formation of larger cholesterol ester enriched very
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low-density lipoprotein (VLDL) particles which may be the
reason for increased LDL-C concentrations. The authors
discussed that the effect of dietary fat composition on cir-
culating cholesterol concentration might be via increased
hepatic lipoprotein secretion rather than clearance [56].
Findings from an in vitro study conducted in HepG2 cells
suggested that enrichment of VLDL particles with apoE
following a meal rich in dietary SFA could lead to greater
competition with LDL for hepatic LDL-R uptake [57].
However, these findings are from cell or animal studies, so
there is a need for further studies in humans to understand
the mechanisms behind the association between dietary
SFAs and LDL-C concentrations.

Higher intakes of dietary SFAs have been suggested to
be associated with abdominal fat accumulation, increas-
ing CVD risk [23]. In contrast to some studies [23, 25,
58-60], we found no relationship between body fat dis-
tribution including abdominal VAT mass and SFA intake
in this study. However, our findings are consistent with
Greenfield et al. [61] who reported a lack of association
between adiposity and dietary fat composition in their
cross-sectional study in 334 female twins. This discrep-
ancy between studies might be due to the difference in
participant characteristics, study design or methods used
for dietary and body composition assessments. Surpris-
ingly, android lean mass was highest in Q3. This finding
might be associated with their low carbohydrate, high
SFA diet, which has previously been reported to increase
lean mass, but this has only been observed in diets with
high protein intakes (20-30%TE) [62-64]. Therefore,
although abdominal VAT mass explained 7% of vari-
ability in LDL-C, it was not found to be different across
dietary SFA quartiles. These findings suggest that dietary
SFAs and abdominal VAT may impact on LDL-C via dif-
ferent mechanisms.

Body fat distribution, especially abdominal VAT accu-
mulation, has been associated with CVD risk independ-
ent of BMI, while gynoid fat is thought to be protective
against metabolic diseases [65, 66]. In the current study,
fasting blood lipids (TC, TAG and LDL-C) which are
established CVD risk markers, were positively associated
with body fat distribution measures, including abdominal
VAT mass, which confirms previous studies [67]. Fur-
thermore, we found the TC: HDL-C ratio to explain the
largest proportion of variability in abdominal VAT mass
between individuals, which highlights the importance of
body fat distribution in relation to CVD risk.

One proposed link between abdominal VAT and CVD
is chronic and systemic inflammation, which may occur
due to impaired adipocyte differentiation [68]. People
with VAT accumulation have been shown to have hyper-
trophic dysfunctional adipocytes which release pro-
inflammatory factors. Due to the location of abdominal
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VAT, these pro-inflammatory factors can enter the liver
via the portal vein and increase glucose production lead-
ing to insulin resistance, which plays a role in the devel-
opment of CVD [69]. In agreement, our study showed
independent associations between CRP and HOMA-IR
with abdominal VAT mass, supporting previous studies
showing that increased abdominal VAT leads to devel-
opment of pro-inflammatory state and insulin resist-
ance [70]. Moreover, adipocyte hypertrophy is related
to decreased adiponectin levels which has been associ-
ated with increased CVD incidence [71, 72]. In line with
this, in our study, adiponectin levels were negatively cor-
related with abdominal VAT mass and were higher in
women, who were shown to have lower abdominal VAT
mass compared to men. Therefore, our findings lend sup-
port to the previously reported potential mechanisms for
abdominal VAT mass and CVD risk.

Strengths of this study include the large sample size,
the use of DXA scans to accurately measure body fat
distribution and the use of detailed dietary and physical
activity assessment. Moreover, compared to the results
from the current National Diet and Nutrition Survey, the
dietary intake of our cohort compared closely with this
representative UK population [73]. Several limitations
need consideration. First, our study cannot investigate
cause and effect relationship due to its observational,
cross-sectional design. Furthermore, dietary intake was
self-reported using a 4-day weighed food diary, therefore
measurement errors are inevitable. A further limitation is
that participants can under and overestimate their food
intake. We have tried to address this limitation by remov-
ing the under (n=2) and over (n=3) reporters from the
dataset for dietary analysis. In addition, as it is not always
possible to exactly match the food from volunteer’s diet
diary with the food composition databases available, this
may have influenced the dietary analysis data. Moreover,
as limited data are available for n-3 and n-6 PUFA on the
current UK food composition databases, these dietary
data should be interpreted with caution. Furthermore,
dietary SFA was assessed as a single nutrient instead of
the food matrix (e.g., dairy and red meat), type (e.g., pal-
mitic and stearic acid) or source (e.g., animal or plant
sources) of SFA, which may modify its effect on disease
risk markers. Lastly, our study attracted individuals with
a predominately normal BMI and higher physical activity
level than the average UK population, therefore, it may be
difficult to translate our results to the general population.

In conclusion, the findings from this cross-sectional
study indicate that both dietary SFA (%TE) and abdomi-
nal VAT mass were important determinants of the fasting
LDL-C concentration. However, the lack of dose dependent
relationships between quartiles of dietary SFA intake with
abdominal VAT mass and LDL-C suggests that different
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mechanisms of action may exist for their impact on LDL.
Therefore, further studies are needed to determine the
impact of the types and sources of dietary SFA, and their
relationship to abdominal obesity and CVD risk.
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