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The cerebral cortex, a delay coupled oscillator network: Computations
in high dimensional dynamic space

Wolf Singer"!

"Max Planck Institute for Brain Research (MPI), Ernst Striingmann Institute (ESI) for Neuroscience in
Cooperation with Max Planck Society, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main,
Germany

*Email: w.singer@brain.mpg.de

The supra-granular layers of the cerebral cortex can be considered as a delay coupled recurrent network whose
nodes are feature selective and have a propensity to oscillate. Such networks exhibit high dimensional non-linear
dynamics that can be exploited for computations. Results obtained with parallel recordings of neuronal responses
in cat and monkey visual cortex suggest that the cerebral cortex exploits this high dimensional dynamic space for
the flexible encoding of relations among features (feature binding), for the acquisition and storage of information
about statistical contingencies of features in the environment (priors), for the ultra-fast matching of priors with
sensory evidence (predictive coding) and the classification of stimulus specific activity vectors by segregation in
high dimensional space. In addition, the network dynamics allow for the generation of stimulus specific response
sequences (temporal codes) and the superposition of information provided by sequentially presented stimuli.
These computations complement those realized in multilayer feed forward architectures and allow for the
coexistence of rate and temporal codes. It is proposed that differences between the performance of natural and
artificial systems, e.g., the deep learning networks, are mainly due to the fact that recurrent processing permits
exploitation of the temporal dimension for computation. For review, see [1].
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Correlations, scaling, and dimensionality
William Bialek *!
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We confront high dimensional data in thinking about the inputs to our sensory systems, the activity of neural
populations, and the behavioral outputs of organisms. It is tempting to simplify be searching for lower
dimensional structure, but what are the alternatives?

As an example, the scale invariant structure of natural images means that one can achieve a thousand-fold
reduction of dimensionality with only a two-fold loss of variance, but this would miss important aspects of the
natural image ensemble. Renormalization group ideas from statistical physics offer other paths to simplification,
reducing the dimensionality of models rather than the data itself. We have tried this approach to analyzing the
collective activity of 1000+ neurons in the hippocampus, revealing scaling behaviors that are reproducible across
animals, sometimes to the second decimal place. For animal behavior, we have tried simplifying by compressing
behavioral states while maintaining information about future states, and the simplest models that can capture the
resulting correlations involved scale invariant interactions over multiple time scales. We are just scratching the
surface, but these results suggest that high dimensional data on brains and behavior can be organized in
surprising ways.



Advances in computational psychiatry: Understanding cognitive control
as a network process
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The human brain is a complex organ characterized by heterogeneous patterns of interconnections. Non-invasive
imaging techniques now allow for these patterns to be carefully and comprehensively mapped in individual
humans, paving the way for a better understanding of how wiring supports cognitive processes. While a large
body of work now focuses on descriptive statistics to characterize these wiring patterns, a critical open question
lies in how the organization of these networks constrains the potential repertoire of brain dynamics. Here I
describe an approach for understanding how perturbations to brain dynamics propagate through complex wiring
patterns, driving the brain into new states of activity. Drawing on a range of disciplinary tools — from graph
theory to network control theory and optimization — I identify control points in brain networks and characterize
trajectories of brain activity states following perturbation to those points. Finally, I describe how these
computational tools and approaches can be used to better understand the brain's intrinsic control mechanisms and
their alterations in psychiatric conditions.



Significant spatio-temporal spike patterns in macaque monkey motor
cortex
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The cell assembly hypothesis [1] postulates that neurons coordinate their activity through the formation and
repetitive co-activation of groups. While the classical theory of neural coding revolves around the concept that
information is encoded in firing rates, we assume that assembly activity is expressed by the occurrence of
precisely timed spatio-temporal patterns (STPs) of spikes emitted by neurons that are members of the assembly,
e.g., a synfire chain. We first report on a method that is capable to detect significant STPs in massively parallel
spike trains (SPADE [2-4]), and then present pattern results from the analysis of Utah array recording from pre-
/motor cortex of monkey. SPADE first identifies repeating STPs using Frequent Itemset Mining [5], and then
evaluates the detected patterns for significance through comparison to patterns found in surrogate data. Various
surrogate techniques can be used to evaluate significance, and their correct choice is crucial to ensure that by-
chance patterns are not classified as significant [6]. The final step of the method is the removal of false positive
patterns being a by-product of true patterns with background activity. Here, we evaluate how different six types
of surrogate techniques affect the results of SPADE, in terms of the general statistics of the generated surrogates,
and in terms of the amount of false positives. We conclude that spike-train shifting [7] is the preferable choice
for our type of data, which typically show a CV < 1 and have a dead time after the spikes of 1.6/1.2ms induced
by the spike sorter (Plexon). Uniform dithering, in contrast, leads to a high false positive rate. In a next step, we
evaluate if cell assemblies are active in relation to motor behavior [2]. Therefore, we analyze 20 experimental
sessions, each of about 15min recording, consisting of parallel spike data recorded by a 10x10 electrode Utah
array in the pre-/motor cortex of two macaque monkeys performing a reach-to-grasp task [8,9]. The monkeys
have four possible behavioral conditions of grasping and pulling an object consisting of combinations of two
possible grip types (precision or side grip) and two different amounts of force required to pull the object (low or
high). We segment each session into 6 periods of 500ms duration and analyze them independently for the
occurrence of STPs. Each significant STP is identified by its neuron composition, its number and times of
occurrences and the delays between spikes. We find that significant STPs indeed occur in all phases of the
behavior. Their size ranges between 2 and 6 neurons, and their maximal spatial extent is 60ms. The STPs are
specific to the behavioral context, i.e., within the different trial epochs and across conditions (different grip and
force type combinations). This suggests that different assemblies are active in the context of different behavior.
Within a recording session, we typically find one neuron that is involved in all STPs of a session. The neurons
involved in STPs within a session are not clustered on the cortex, but may be far apart (up to 3.6mm). We further
plan to investigate the spatial arrangement of the patterns on the Utah array, to determine whether there are
preferred spatial directions of pattern spike sequences, as found in [2] for synchronous patterns. Finally, we plan
to investigate whether the grip type can be better decoded on the basis of the type of STPs or by using the firing
rates of the neurons.
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Cortical oscillations support sampling-based computations in spiking
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Humans and animals are confronted with incomplete information in a world marked by uncertainty. Their brains
have thus faced evolutionary pressure to develop representations of this uncertainty that enable appropriate
responses and decisions. This requires considering different interpretations of available sensory input or multiple
solutions to an encountered problem. In a neural network, the different coherent interpretations correspond to
different attractor states that usually lie far apart in the network's state space. Switching between multiple
attractors is thus very difficult, and this mixing problem is particularly challenging for high-dimensional,
complex distributions.

We show that cortical oscillations, a ubiquitous phenomenon in the brain [1], can help overcome this problem.
We consider biologically plausible, mechanistic models of neural sampling in spiking networks [2,3]. These
networks use the cortical background as a means of attaining stochasticity, with the background intensity
determining the sensitivity of neuronal transfer functions. Increasing background levels decrease neuronal
sensitivity, which renders the probability landscape sampled by the network more uniform. Formally, this creates
a correspondence between background firing rates and ensemble temperatures, allowing the interpretation of
oscillatory background as a form of simulated tempering [4,5].

We exemplify the functional implications of cortical oscillations using two different computational tasks that
simultaneously highlight advantages of sampling-based inference. In a hierarchical model of visual processing,
the network is tasked with retrieving a diverse set of images from memory (Fig. 1A). Such networks are faced
with an exploration-exploitation dilemma: they need to travel wide distances between attractor states in order to
sample from all image categories, while still persisting in local attractors for long enough to produce clean
outputs. Cortical oscillations, in contrast to static-intensity background, periodically flatten the network's
probability landscape, allowing the network to escape attractors and produce a diverse set of crisp images (Fig.
1B). We further consider a multisensory stimulus disambiguation task, where the different modalities receive
conflicting input (Fig. 1C). To solve this task, a network needs to form consistent opinions across all modalities
and quickly visit all valid interpretations of the stimulus. Cortical oscillations help structure network activity into
sampling episodes, during which valid interpretations are highly probable and in between which switches
become likely (Fig. 1D).

Our work thus provides a rigorous framework for the suggested functional role of cortical oscillations as a
tempering mechanism. It shows that cortical background acts as an ensemble temperature and rhythmic changes
can modulate exploration without compromising sampling quality. This identifies a new computational role of
cortical oscillations and connects them to various phenomena in the brain, such as sampling-based probabilistic
inference, memory replay, multisensory cue combination and place cell flickering.
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Figure 1. A Hierarchical model of visual processing. B With static background noise, the network is either stuck
in individual attractors or produces blurry images. In contrast, cortical oscillations promote diverse and crisp
images. C Multisensory ensemble tasked with stimulus disambiguation under conflicting input. D Oscillatory
background helps find consistent, valid interpretations.
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Cerebellar Purkinje cells (PCs) are some of the most impressive neurons in the central nervous system due to
their unique dendritic morphology. The most remarkable feature of PC dendrites is their extensive branching,
which allows them to integrate large amount of information. While PCs constitute the unique output of the
cerebellar cortex, they receive two types of excitatory synaptic input: a single climbing fiber, that forms
hundreds of synapses with the PC, or more than 100,000 parallel fibers (PFs) that run orthogonally to the PC
dendritic tree [1]. In order to understand cerebellar function, it is important to unveil the mechanisms through
which PCs encode the input information and transmit output signals for the downstream neurons. Unlike the
calcium spikes that are trigged by climbing fibers, the dendritic spikes triggered by the parallel fibers are quite
unexplored. Recent literature [2] has unveiled their essential role on cerebellar function. Via in vivo two-photon
imaging of cerebellar PFs, the authors were able to determine that clustered parallel fiber input can drive
dendritic spikes, postsynaptic calcium signaling and synaptic plasticity in the downstream Purkinje cells.

We propose a model that is able to explore the bimodal computation in a PC, i.e. tonic firing at low input range
and burst-pause dynamics at high input range, and the biophysical mechanism of dendritic spikes. As done in
previous work [3], we grouped PC spiny dendrites into 22 branches along the main dendrite and we distributed a
set number of PFs on each of the branches. Previous research using a model with uniform channel densities in
the dendrite [4] has shown that only 4 out of the 22 branches exhibit a bimodal linear step-plateau response with
increasing PF synapses number, while the others were showing a linear response. Here, we show that by altering
particular ionic current densities in each of the branches, we can covert the response from linear into step-plateau
for all of the branches. We determine the different PF thresholds for each of the branches and we discuss how
their values correlate to the surface area and volume of each branch. In the case of each branch, we address
dendritic spike propagation to the neighboring branches.
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points to predictive processing in sign language
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Objectively differentiating patient mental states based on electrical activity, as opposed to overt behavior, is a
fundamental neuroscience problem with medical applications, such as identifying patients in locked-in state vs.
coma. Electroencephalography (EEG), which detects millisecond-level changes in brain activity across a range
of frequencies, allows for assessment of external stimulus processing by the brain in a non-invasive manner. We
applied machine learning methods to 26-channel EEG data of 24 fluent Deaf signers watching videos of sign
language sentences (comprehension condition), and the same videos reversed in time (non-comprehension
condition), to objectively separate vision-based high-level cognition states. While spectrotemporal parameters of
the stimuli were identical in comprehension vs. non-comprehension conditions, the neural responses of
participants varied based on their ability to linguistically decode visual data. We aimed to determine which
subset of parameters (specific scalp regions or frequency ranges) would be necessary and sufficient for high
classification accuracy of comprehension state.

Optical flow, characterizing distribution of velocities of objects in an image, was calculated for each pixel of
stimulus videos using MATLAB Vision toolbox. Coherence between optical flow in the stimulus and EEG
neural response (per video, per participant) was then computed using canonical component analysis with
NoiseTools toolbox. Peak correlations were extracted for each frequency for each electrode, participant, and
video. A set of standard ML algorithms were applied to the entire dataset (26 channels, frequencies from .2 Hz to
12.4 Hz, binned in 1 Hz increments), with consistent out-of-sample 100% accuracy for frequencies in .2-1Hz
range for all regions, and above 80% accuracy for frequencies <4 Hz. Sparse Optimal Scoring (SOS) was then
applied to the EEG data to reduce the dimensionality of the features and improve model interpretability. SOS
with elastic-net penalty resulted in out-of-sample classification accuracy of 98.89%. The sparsity pattern in the
model indicated that frequencies between 0.2-4 Hz were primarily used in the classification, suggesting that
underlying data may be group sparse. Further, SOS with group lasso penalty was applied to regional subsets of
electrodes (anterior, posterior, left, right). All trials achieved greater than 97% out-of-sample classification
accuracy. The sparsity patterns from the trials using 1 Hz bins over individual regions consistently indicated
frequencies between 0.2-1 Hz were primarily used in the classification, with anterior and left regions performing
the best with 98.89% and 99.17% classification accuracy, respectively. While the sparsity pattern may not be the
unique optimal model for a given trial, the high classification accuracy indicates that these models have
accurately identified common neural responses to visual linguistic stimuli. Cortical tracking of spectro-temporal
change in the visual signal of sign language appears to rely on lower frequencies proportional to the N400/P600
time-domain evoked response potentials, indicating that visual language comprehension is grounded in
predictive processing mechanisms.
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A myriad of pathological changes associated with epilepsy, ranging from the loss of specific cell types [1],
improper expression of individual ion channels [2], and synaptic sprouting [3], can all be recast as decreases in
cell and circuit heterogeneity. We recently demonstrated that biophysical diversity is a key characteristic of
human cortical pyramidal cells in non-epileptogenic tissue [4]. We thus hypothesize that epileptogenesis can be
recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to
transitions into seizure [5].

By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from
epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant
reduction in neural heterogeneity accompanies epilepsy. We implement these heterogeneity levels in excitatory-
inhibitory (E-I) spiking network models motivated by previous modeling of synchronous cortical activity [6].
Networks with pathological, low levels of neural heterogeneity display unique dynamics typified by a sudden
transition into a hyper-active and synchronous state paralleling ictogenesis (see Fig. 1, panel B). Mean-field
analysis reveals that these networks also have a distinct mathematical structure distinguished by multi-stability
and a saddle-node bifurcation accompanying the seizure-like transition. Furthermore, the mathematically
characterized linearizing effect of heterogeneity on input-output response functions [7] explains the counter-
intuitive experimentally observed reduction in single-cell excitability of the population of neurons from
epileptogenic tissue.

This joint experimental, computational, and mathematical study showcases that decreased neuronal
heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in
neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in
the mathematically characterized effects of heterogeneity. Viewed jointly, these interdisciplinary results provide
convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure, and potentially a
new lens through which to view epilepsy that could reveal new targets for clinical treatment of the most common
serious neurological disorder in the world.
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Figure 1. E-I networks subjected to linearly increasing excitatory drive with high excitatory/high inhibitory
heterogeneity A and low/low heterogeneity B. Top row: Mean +/- standard deviation of excitatory synchrony
(red/blue) and excitatory (black) and inhibitory (grey) firing rate. Bottom rows: bifurcation analysis.
Purple=unstable oscillator, black=stable oscillator, green=saddle, and yellow=sink.



Computation through spiking dynamics of an E-I network with
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One of the goals of neuroscience is to understand the computational principles that describe the formation of
behaviorally relevant signals in the brain, as well as how these computations are realized within the constraints
of biological networks. Currently, most functional models of neural activity are based on firing rates, while the
most relevant signals for inter-neuron communication are spikes. Recently, the framework of predictive coding
[1] has suggested a theory on how neural networks might compute behaviorally relevant signals with spikes. So
far, the network with predictive coding has been derived from a single objective function, resulting in a network
of one cell type. The model with one cell type, however, does not comply with Dale’s law. Moreover, unless
spiking is artificially restricted to one spike per time step [1], or the regularization terms in the objective function
are fine-tuned [2], or else Poissonian spike generation is imposed on the top of derived network equations [3],
the activity strongly synchronizes and evolves towards states of runaway excitation [2,3].

Here, we extend the theory of predictive coding and develop functional spiking E-I networks that incorporate
several important biophysical properties of cortical ensembles. We impose the E-I architecture and derive a
general solution for E-I networks that obey Dale's law, accounts for slow recurrent and local currents with
realistic time scales, and have plausible connectivity patterns that can be learned with Hebbian learning. The
network does not require fine-tuning of parameters to avoid runaway excitation, shows asynchronous irregular
spiking (Fig. 1) and balances excitatory and inhibitory currents by construction.

We show that the best network solutions occur in inhibition-dominated regimes and in regimes with adaptation.
Best solutions are characterized by a moderate temporal E-I balance [4] and by loose E-I balance [5]. Best
solutions introduce a new scaling with the network size. Such scaling does not require changes of connectivity
weights, but instead requires changes in the top-down current. By changing the top-down current globally, we
model a continuum of dynamical regimes that have been observed in the cortex. A local change of the top-down
current to a group of selected neurons instead reproduces dynamical effects of top-down attention, such as an
increase in firing rates and decrease in noise correlations in neurons selective for the attended stimulus feature.
Developing a biologically plausible theory of functional networks is extremely important, since it allows to
formulate testable predictions of theoretical models, bridging the gap between theoretical and experimental
neuroscience.
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The relationship between neuronal activity and the external world changes over time, even for habitual
behaviors. This phenomena, termed “representational drift”, seems to be at odds with long-term stable neural
representations. Previous studies have shown that gradual drift in neuronal tuning (i.e., average firing rates
conditioned on behavioral variables) could be tracked using weak error feedback. In this work, we show how
stable representations could be achieved without external error feedback. We present a model for
representational drift that captures features of neural population codes observed experimentally: tunings are
typically stable, but occasionally undergo larger reconfigurations. We then discuss “self healing neural codes”,
which combine error-correction with plasticity. Self-healing codes can track drift without outside error feedback.
The learning rule required is biologically plausible, and amounts to a form of homeostatic Hebbian plasticity.
When combined with network interactions that allow neurons to share information, such homeostatic plasticity
could allow a population of stable cells to maintain an accurate readout of an unstable population code (Fig. 1).
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Figure 1. a Neural populations can show fixed latent dynamics but "drifting" neuronal tunings. Is a stable

readout of an unstable code possible without external error feedback? b Drift degrades a readout with fixed
weights. ¢ Homeostatically preserving firing statistics and Hebbian plasticity confer stability. d Recurrent
dynamics reflect internal models, tracking long-term drift via error correction.
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How do single-neuron and network properties combine to create biological function and computation? The
interaction between properties of individual neurons and their pattern of connections can translate into a vast
array of dynamics at the network level. However, it remains difficult to probe precisely how individual neuron
and network-level properties contribute to dynamics and biological function. In this work, we study the
interaction of single-neuron and network-level properties in the hypothalamic stress circuit to understand how
neuron properties result in stress-dependent switches in hormonal output.

Despite extensive research, surprisingly, little is known about how hypothalamic circuits encode the states of
homeostasis and mount stress response upon threats [1]. The Inoue Lab (Robarts Research Institute, Western
University, Canada) has recently established an in vivo single-unit extracellular recording paradigm in a group of
hypothalamic neurons that regulate hormonal stress responses in mice. These neurons show a stress-dependent
spiking profile characterized by (1) brief (2-5 spikes) of high-frequency (>100 Hz) bursting followed by a long,
predominantly silent period (500ms-1s), constraining the overall firing rate at low levels (~3 Hz) or (2) single
and more continuous spiking with variable spike frequency. Under stress, these neurons fire exclusively in the
single-spike mode and reach a relatively high firing rate (20 Hz). However, when characterized in slices ex vivo,
these same neurons rarely show these brief bursts and predominantly show single-spike patterns [2]. This
difference between in vivo and ex vivo firing patterns indicates that intact network activity underlies the firing
patterns responsible for homeostatic regulation in vivo.

Using data from whole-cell patch-clamp in intracellular recordings in vitro, we first developed an adaptive
exponential integrate-and-fire (AdEx) model to capture the subthreshold membrane potential and spiking
dynamics following standard current injection protocols. We next implemented our single neuron models into a
network of excitatory and inhibitory populations. Using this model, we replicated the stress-dependent firing
patterns seen in vivo. The computational model revealed a discrete combination of intrinsic and network factors
that drive the transition between the two firing modes. Finally, we returned to ex vivo whole-cell patch-clamp
and injected the synaptic inputs to a model cell in the computational network model. Remarkably, this model-
guided current injection reliably replicated the two distinct firing modes found in vivo.

Our work presents a novel computational model of a hypothalamic homeostasis circuit and new results in
validating network models in experiments. More generally, we demonstrate the power of simplified single
neuron models that allow us to move back-and-forth between in silico and ex vivo experiments and generate new
predictions in tight collaboration between modelling and experiment in computational neuroscience.
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Cortical circuits generate patterned activities that reflect intrinsic brain dynamics that lay the foundation for any,
including stimuli-evoked, cognition and behavior. However, the spatiotemporal organization properties and
principles of this intrinsic activity have only been partially elucidated due to previous poor resolution of
experimental data and limited analysis methods. Here we investigated continuous wave patterns on data from
high spatiotemporal resolution optical voltage imaging of the upper cortical layers in anesthetized mice. Waves
of population activities propagate in heterogeneous directions to coordinate neuronal activities between different
brain regions. The complex wave patterns show characteristics of both stereotypy and variety. The location and
type of wave patterns determine the dynamical evolution when different waves interact with each other. Local
wave patterns of source, sink or saddle emerge at preferred spatial locations. Specifically, ‘source’ patterns are
predominantly found in cortical regions with low multimodal hierarchy such as the primary somatosensory
cortex. Our findings reveal principles that govern the spatiotemporal dynamics of spontaneous cortical activities
and associate them with the structural architecture across the cortex. More details can be referred in our recent
published paper [1].
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Dopamine is a critical neuromodulator involved in modulating the long-term synaptic plasticity of hippocampal
Schaffer collateral-CA1 pyramidal neuron (SC-CA1) synapses, which modulates the plasticity of SC-CA1
synapses in a dose-dependent manner. Over the last four decades, limited experimental results from hippocampal
slice experiments have shown that the timing of the activation of dopamine D1/D5 receptors relative to a
high/low-frequency stimulation (HFS/LFS) in SC-CA1 synapses regulates the modulation of HFS/LFS-induced
long-term potentiation/depression (LTP/LTD) in these synapses. However, the existing literature lacks a
complete picture of how various concentrations of D1/D5 agonists and the relative timing between the activation
of D1/DS receptors and LTP/LTD induction by HFS/LFS, affect the spatiotemporal modulation of SC-CA1
synaptic dynamics.

The exploration of the effect of various concentrations of different dopamine agonists with different frequency-
dependent stimulation protocols, such as HFS or LFS to induce LTP or LTD, respectively, is a combinatorically
challenging problem. The number of experiments required to fill in these gaps of knowledge are prohibitively
expensive and time-consuming. To address this challenge, we have developed a computational modeling
approach to integrate the spatiotemporal impact of D1/D5 agonists on the HFS/LFS-induced early and late
LTP/LTD at the electrophysiological level. Our modeling hypothesis is that the chain of biochemical signaling
initiated by HFS/LFS and D1/D5 receptors agonists compete for a limited available biochemical resources to
induce and/or modulate late-LTP/LTD in the hippocampal SC-CA1 synapses. Our model combines the
biochemical effects with the electrical effects at the electrophysiological level. We have estimated the model
parameters from the published electrophysiological data, available from diverse hippocampal CA1 slice
experiments, in a Bayesian framework.

Here, we demonstrate the capability of our model in making quantitative predictions of the available data from in
vitro slice experiments on the temporal dose-dependent modulation of the HFS/LFS induced LTP/LTD in SC-
CA1 synapses by various D1/D5 agonists (see Fig 1). Moreover, we highlight the importance of the relative
timing between the release of the D1/D5 agonists at various concentrations and the HFS/LFS protocol in
modulating LTP/LTD of the SC-CA1 synapse.
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Figure 1. Quantitative comparison between the model predicted and experimentally observed modulation of
HFS-induced LTP in hippocampal SC-CAlsynapse by D1/D5 agonist SKF 38393.
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Aging involves a variety of neurobiological changes, although their effect on brain function remains poorly
understood due to limited experimental capabilities in humans. The growing availability of human neuronal and
circuit data provides an opportunity to uncover age-dependent changes at finer scales of brain networks and
constrain detailed computational models to study the related effects on brain function. Here we analyzed sag
voltage in human layer 5 pyramidal neurons and found a significant increase in old vs. young. We then generated
models of young and old pyramidal neurons capturing the experimental changes and simulated them in layer 5
microcircuits. We found that old microcircuits had lower baseline and response rates than young microcircuits,
but an overall enhanced signal-to-noise ratio due to a larger effect on baseline firing rates. Accordingly, the
reduced noise in microcircuit output with age enabled a higher accuracy of stimulus discrimination. These age
effects were principally due to changes in dendritic conductance mechanisms underlying the measured changes
in sag properties. Our results report an age-dependent increase in human pyramidal neuron sag current, which
reduced cortical firing noise and improved sensory processing in simulated microcircuits, and thus could serve as
a target for modulation to ameliorate age-associated cognitive decline.
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Astrocytes have been shown to have important roles in several phenomena in the brain, such as synapse
development, functionality, and plasticity [1], but the underlying biochemical and biophysical mechanisms are
not understood. The mechanisms involved seem to depend, for example, on the developmental stage of an
animal and the brain area in question. Recent experimental studies have also shown that fine astrocyte processes
are increasingly active and motile during synaptic activation, particularly during long-term plasticity changes
[2,3]. Such an activity and motility may occur when a fine astrocyte process retracts from a synapse during
learning or in injury, making possible for the synaptically released glutamate to spill over from the synaptic cleft
to the extrasynaptic space. In the present study, we used our previously developed in silico layer 4 to layer 2/3
tripartite synapse model in somatosensory cortex during postnatal development [4] to explore and predict the
amount of glutamate spillover required to induce spike-timing-dependent long-term depression (t-LTD), both
with and without fine astrocyte process activation. The model includes presynaptic, postsynaptic, and astrocytic
mechanisms and links them to the time window of t-LTD induction which is sensitive to temporal difference
between the postsynaptic and presynaptic activity [5,6]. We showed that endocannabinoid-based feedback signal
from the postsynaptic to presynaptic neuron via the fine astrocyte process is able to induce and maintain long-
lasting decrease in synaptic transmission during postnatal development. Our results also showed that the strength
of t-LTD can be modulated by the amount of glutamate spillover (Fig. 1). Developing sensory circuits are known
to undergo synapse elimination which is essential for the formation of mature neuronal circuits. Astrocytic
modulation of synaptic depression, including the active and motile fine astrocyte processes, may therefore be one
important step in preparing neuronal circuits for mature cortical sensory processing.
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Figure 1. Larger glutamate spillover produced stronger t-LTD. A Excitatory postsynaptic potentials (EPSPs) are
shown before (black) and after t-LTD induction (other colors than black) of all spillover percentages for both
models, the original model with the astrocyte and the model without the astrocyte. B The change of EPSPs seen
in A is shown as a function of spillover percentages for both models.
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Intensive computational and theoretical work has led to the development of mutliple mathematical models for
bursting in respiratory neurons in the pre-Botzinger Complex (pre-BotC) of the mammalian brainstem.
Nonetheless, these previous models have not captured the preinspiratory ramping aspects of these neurons'
activity patterns, in which relatively slow tonic spiking gradually progresses to faster spiking and a full-blown
burst, with a corresponding gradual development of an underlying plateau potential. In this work, we show that
the incorporation of the dynamics of the extracellular potassium ion concentration into an existing model for pre-
BotC neuron bursting, along with some parameter updates, suffices to induce this ramping behavior. Using fast-
slow decomposition, we show that this activity can be considered as a form of parabolic bursting, but with burst
termination at a homoclinic bifurcation rather than as a SNIC bifurcation (fig. 1). We also investigate the
parameter-dependence of these solutions and show that the proposed model yields a greater dynamic range of
burst frequencies, durations, and duty cycles than those produced by other models in the literature.
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Figure 1. A The trajectory of the neuron (gradient) drifts towards higher EK values, facilitating gradual increase
in frequency throughout burst, causing unique ramping geometry. This bursting behavior is terminated by
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The olfactory organs of insects are their antenna, on which olfactory receptor neurons (ORNs) are housed in an
evaginated sensilla. Several ORNSs are grouped together in the same sensillum, between 2 and 4 in Drosophila,
but up to 20 for instance in the sensilla of the honeybee. Unlike most other neurons, in particular in vertebrates,
the ORNSs in the sensilla are not isolated from each other by myelin and they are known to interact (inhibit) with
each other non-synaptically (see Fig. 1a). Moreover, the pairings of ORNs expressing specific olfactory receptor
types are stereotypical, suggesting that interactions may be functional or selected for rather than being
accidental.

In this work we present the results of an in-depth modelling study that elucidates possible functions of non-
synaptic interactions (NSI) of ORNs in sensilla. A number of hypotheses for the potential roles of NSI have been
suggested in the literature [1,2]. To investigate the viability of these ideas we have built a computational model
of the first two stages of information processing in the Drosophila olfactory system - the ORNs on the antennae
and the glomeruli in the antennal lobe, in which projection neurons (PNs) and local neurons (LNs) interact to
form the olfactory code transmitted to higher brains centres. Our model is the first to consider NSIs between
ORN s in the context of the downstream processing in the AL. We constrained our model by reproducing the
responses of ORNSs to typical odor stimuli as reported in the literature [3,4]. With the data-driven model we the
tested the following hypotheses: 1) NSIs could improve the concentration ratio identification of a mixture of
odorants by increasing the dynamic range over which it can be perceived (see Fig. 1b). 2) NSIs could help
insects to distinguish mixtures of odorants emanating from a single source against those emanating from two
separate sources, by improving the capacity to encode the correlation between olfactory stimuli (see Fig. 1c). 3)
NSIs could increase the dynamic range of the receptor neurons, by partially removing the ceiling effect that
occurs for high concentrations (see Fig. 1b).

In order to assess the benefits of NSIs for mixture processing (hypotheses 1 and 2) we tested the model network
with NSIs in place against a control network where there was no interaction between “odour channels” of
different receptor types and against a network without NSIs but with lateral inhibition in the AL, a mechanism
proposed to provide the same benefits with respect to hypotheses 1 and 2 as NSIs. We found that NSIs improve
mixture ratio detection and plume structure sensing as hypothesised and they do so more efficiently than the
traditionally considered lateral inhibition mechanism in the antennal lobe. However, we also found that the
dynamic range of ORNSs is not improved by NSIs over the model with non-interacting ORNSs, casting a new light
on carlier results obtained in a mathematical model for steady state activation of ORNs [5].
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Figure 1. a NSI effect, b Hyp. n.1 and 3: Inhibition via NSI can help to increase the dynamic range or it could
help encoding the ratio between odorants. At low concentration, the ratio of two odorants can be encoded by
ORNSs more easily than at high concentration. e-d Hyp. n.2: Odorant mixture emitted from a single source will
be more correlated than for odorants emitted from separate sources (d).
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Perceptual, cognitive, and motor functions are mediated by neural circuits (i.e., the coordinated activity of neural
populations), and not solely by the activity of individual neurons. However, despite their fundamental
importance, we know relatively little about how neural circuits contribute to auditory processing — particularly,
in primate models of hearing — and whether and how this circuitry changes between earlier and deeper cortical
regions. Using established and novel techniques, we analyzed the functional connectivity structure of neural
populations from the core and belt regions of the auditory cortex (AC) in non-human primates. We recorded
neural activity in different regions of the AC in two rhesus monkeys while they listened passively to two
successive repetitions of a dynamic moving ripple (DMR) stimulus.

Our first analysis describes the activity in terms of maximum entropy models with pairwise neuron-to-neuron
interactions. These models are constrained to reproduce the observed firing rates and pairwise correlations, while
making no assumptions about their mechanistic origin. Such models have already been successful at modeling
population activity in the retina and prefrontal cortex. Our approach used an additional information theoretic
criterion that prevents overfitting by selecting the model with the minimal number of interactions that still
reasonably fits the data. We found consistency in the set of selected pairwise interactions between repetitions of
the stimulus (see Fig. 1a). Comparing AC areas, we found that the density of interactions needed to capture the
neuronal activity is significantly larger in the belt than in the core. This means that belt areas display more
prominent correlation patterns than core areas.

Our second analysis focused on detection of groups of neurons with coordinated activity. We compared a known
statistical approach, using dimensionality reduction to detect neuronal assemblies, with a newly developed
method based on maximum entropy models with community-like structure. Crucially, the second approach
accounts for high-order neural activity patterns (i.e. multi-neuronal activity motifs) in the detection of
communities of correlated neurons. The model selection is based on information theoretic criteria balancing
goodness-of-fit and model complexity. We observed that assemblies and communities identified by the two
methods are detected in similar numbers and present similar features (see Figl. b-c). Comparing AC areas, we
found that assembly structures are sparser in belt than in core areas, meaning that assembly activity is driven by
fewer neurons in the belt.

Together, our analyses indicates that in the belt, as opposed to the core, information is encoded by the collective
activity of larger communities, but is driven by a smaller number of highly influential neurons. These findings
suggest that functional connectivity becomes broader and more structured between core and belt regions of the
AC, perhaps relating to functional differences between these regions. Finally, our work uses two new
approaches: 1) an information theoretic method for estimating "extractable information" in noisy activity, and 2)
a method for building community models of coordinated neural activity that incorporate intrinsically higher
order correlations.
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In the basal ganglia (BG) hypothesis for reward-based learning, action selection is gated in the striatum by
context-dependent dopamine-mediated synaptic plasticity. BG learning is dependent on dopamine (DA) release
from the substantia nigra, and different compartments of the striatum receive partition-specific nigro-striatal
projections. Nigro-striatal DA release encodes different information in different striatal compartments, and thus
supports different modes of learning. In the dorso-medial striatum (DMS), nigro-striatal DA release encodes
reward prediction error (RPE); and in the dorso-lateral striatum (DLS), these projections encode salience.

In the present study, we developed a computational model of action selection and learning in the BG that
implements two different modes of learning in the striatum. Our model accomplished distinct and concurrent
learning modalities by distinguishing DAergic input to the DMS and DLS. Both compartments shared the same
rules for cortico-striatal plasticity, and both compartments possess a direct and indirect pathway for each
selection option. However, DA encoded different information in each compartment. In the DMS, cortico-striatal
synaptic weights were updated based on RPE to perform goal-directed learning. In the DLS, plasticity in cortico-
striatal synaptic weights implemented stimulus-response associations.

The model was challenged with a series of two-alternative forced choice behavioral tasks. We manipulated
reward feedback to record action selection in the face of reward reversal, reward devaluation, and punishment. In
early trials of the reward devaluation task, cortico-striatal weights in the DMS quickly reflected the negative
contrast in reward value. Persistence of the stimulus-response association in the DLS maintained the agent’s
behavioral response despite the potentiation of the corresponding indirect pathway in the DMS. In punishment
learning, the valence of the reward feedback was negative. Similar to the devaluation task, goal-directed learning
in the DMS quickly activated the corresponding indirect pathway of the DMS. Persistence of the previous
stimulus-response association in the DLS drove perseverative errors in agent performance to select the punished
action in early trials. Behavior driven by stimulus-response associations in the DLS resisted goal-directed
learning in the face of devaluation or punishment, and we interpreted model performance in these scenarios as
the expression of habit.

To investigate the mechanisms that support habit in this working model of the basal ganglia, we implemented the
loss of executive control. In this model, outcomes were represented by populations of prefrontal cortex (PFC)
neurons. Decreased executive control was implemented in the model by decreasing the specificity of PFC
activity to action selection. This was accomplished by introducing weak cross-channel projections; for example
the PFC population associated with outcome #1 made additional weak projections to the direct and indirect
pathway of the DMS associated with outcome #2 (and vice versa). Model performance was quantified using
change point analysis. In simulations with handicapped PFC, agents learned new reward-feedback rules slowly
compared to control simulations. We interpreted these results to demonstrate how the loss of executive control
reduced the ability of goal-directed learning to overcome stimulus-response driven behavior such as the
expression of habit.
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The motor system simplifies the control of movement by flexibly combining fixed spatial and temporal motor
modules that are invariant across actions [1,2]. The identification of these modules is critical to shed light on the
computational principles of biological motor control. However, popular matrix decomposition methods used to
extract these motor modules — such as Non-negative Matrix Factorization and Principal Component Analysis —
can only identify either spatial [1] or temporal [2] motor modules, but not both. This leads to overparameterized
models that rather than providing a plausible account of the mechanism the brain uses to simplify the control of
movement, merely shift the computational burden from the spatial to the temporal domain or vice-versa. For
example, models based on spatial modules [1], simplify the control problem in the spatial domain at the cost of
complicating it in the temporal domain, where they assume the existence of time-varying coefficients that are
specific to each action (Fig 1A).

To meet the challenge of simultaneous identification of spatial and temporal modules, we propose a
decomposition of muscle signals based on the Canonical Polyadic Decomposition (CPD) model [3] — a higher-
order tensor decomposition method. The model factorizes muscle activity during reaching movements into fixed
spatial and temporal modules that are flexibly recruited depending on the reaching direction (Fig 1D). The
recruitment is specified by action coefficients that, unlike in previous models, are both space- and time-invariant.
We show that, compared with classical decomposition models [1,2], CPD identifies qualitatively similar spatial
and temporal modules (Fig 1A-D), explains a comparable amount of data variance, and requires a lower number
of parameters. Furthermore, we show that the geometrical organization of the action coefficients is not random
but describes a smooth manifold that allows the zero-shot generation of muscle patterns for untrained reaching
directions. Taken together, our results suggest that the identified decomposition defines a biologically plausible
hierarchical organization of the control of movement [4] that the brain could leverage to effectively control the
body while saving computational resources.
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Traumatic brain injury remains one of the most common factors leading to acquired epilepsy. Post-traumatic
epilepsy (PTE) continues to be a difficult disorder to treat as there can be a prolonged period of time during
which epileptogenesis can arise following the initial brain insult. Indeed, it has been reported that epilepsy can
develop up to 15 years after the occurrence of the brain trauma. Additionally, the likelihood of developing
epilepsy increases with age at the time of the trauma. Recent in vivo studies have shown that older animals were
more susceptible to the development of epilepsy following cortical undercut as compared to younger animals.
The mechanism that gives rise to PTE remains to be fully understood but may involve mis-regulation of synaptic
weights through homeostatic synaptic scaling. In healthy brains, homeostatic synaptic scaling works as a slow
negative feedback bidirectional mechanism which aims to maintain network stability through the activity-
dependent regulation of post-synaptic AMPA receptor densities. In response to brain trauma, there is a reduction
of network activity within and near the traumatized brain area. This reduction of activity triggers homeostatic up-
regulation of synaptic and intrinsic excitability in an attempt to recover normal levels of network activity. If
trauma is severe, homeostatic scaling may overcompensate and increase synaptic weights such that the network
is primed for transitions to hypersynchronized seizure states. In this new study, we tested the hypothesis that
preventing homeostatic up-scaling of synaptic weights following cortical deafferentation could prevent post-
traumatic epileptogenesis. Using a detailed biophysical model of the neocortex, we found that a sustained
depolarization of the traumatized network was capable of preventing up-scaling of synaptic weights to a
pathological state and thereby preventing occurrence of spontaneous recurrent seizures. In contrast, a sustained
hyperpolarization of the traumatized network resulted in increased homeostatic up-scaling, triggering a severe
pathological state characterized by the occurrence of frequent spontaneous recurrent seizures. Furthermore, our
analysis demonstrates that pathological increases in synaptic strength drives seizure generation by perturbing
extracellular potassium concentration dynamics and initiating a positive feedback loop between extracellular
potassium concentration and neuron firing rates. This feedback loop drives increased excitability and
hypersynchrony eventually leading to spontaneous seizure onset. These findings from the computational model
are in agreement with our in vivo experiments in mice where cortical undercut was followed by activation of
DREADDs (hM3DGq or hM4DGi) to alter baseline network activity around the undercut area. Together, these
results provide evidence for the role of homeostatic synaptic scaling in the development of post-traumatic
epilepsy and may provide new insights into novel treatments or preventative measures for trauma-induced

epilepsy (fig. 1).
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Parkinson's disease is a neurological disorder that leads to progressive dopamine depletion in the basal ganglia.
Experimental evidence suggests that basal ganglia dopamine depletion causes the onset of synchronized
oscillations of neural activity. The main spectral features of these oscillations are an enhanced power in the beta
frequency band (12-30 Hz) and an enhanced phase-amplitude coupling (PAC) between the phase of a beta signal
and the amplitude of a high-frequency gamma signal (50-250 Hz). Many computational models and
experimental studies have suggested that the external pallidum (GPe) is involved in the generation of
parkinsonian beta oscillations via its recurrent coupling with the subthalamic nucleus (STN). However, a recent
study in mice found that optogenetic inhibition of the GPe, but not of the STN, led to strong attenuation of
parkinsonian beta power [1]. Contrary to initial beliefs, the GPe is not a homogeneous nucleus. It contains two
distinct cell types with different electrophysiological properties and projection targets: Prototypical and
arkypallidal cells [2]. Under dopamine depletion, the synaptic coupling strengths between GPe cells are
increased [3]. Therefore, we asked whether the GPe could generate parkinsonian oscillations autonomously or
contribute to increased beta-gamma PAC.

Here, we investigated these hypotheses in a spiking neural network model of recurrently coupled prototypical
and arkypallidal cells. Our model accounts for characteristic macroscopic properties of the GPe, such as the
firing rate distributions of both cell types under normal and stimulation conditions [4]. We examined the effects
of increased synaptic coupling between prototypical and arkypallidal cells via bifurcation analysis based on an
exact mean-field model of the spiking neural network. We found that an increased self-inhibition of prototypical
neurons can lead to the emergence of synchronized oscillations in the gamma frequency range. Furthermore, we
found that increased inhibition of prototypical neurons via arkypallidal projections gives rise to a bi-stable
regime where both neuron types compete over a high-activity state. Both findings cannot explain the emergence
of parkinsonian beta oscillations, however. Instead, we show that oscillatory input to the GPe in the beta
frequency range can lead to beta-gamma PAC in the macroscopic GPe dynamics. Based on these findings, we
propose that the GPe cannot generate parkinsonian beta oscillations autonomously but can contribute to the
emergence of increased beta-gamma PAC in the dopamine depleted basal ganglia.
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Popular methods for fMRI data analysis do not utilise the full potential of fMRI datasets in understanding
individual differences in brain connectivity and function. In [1] it was shown that spatially variable "network
variants" appear to exist for all individuals. Network variants are brain regions belonging to a specific functional
network identified using group-averaged data analyses, e.g., by [2], but in locations that differed from
observations obtained from those analyses. Many areas, particularly in association cortices, partake in multiple
brain networks. Individual differences in network connectivity may reflect brain plasticity arising from
differences in life experience, as well as disease. The cognitive difficulties associated with schizophrenia are
thought to be caused by the abnormalities in the structural, functional, and effective connectivity of the brain
[3,4].

To test the above ideas, we applied methods of topological data analysis (TDA) [5,6] to the COBRE dataset
[7,8], consisting of structural MRI (T1w and DTI) scans of healthy controls (HC) (N = 44) and schizophrenia
patients (SP) (N =44).We applied the weight rank clique filtration (WRCF) [9] to connectivity matrices obtained
from using a probabilistic fibre-tracking algorithm [10] for each individual. Although the biological
interpretation of nodes (brain regions) participating in persistent cycles is not straightforward [5], we observe
that the barcodes obtained for the persistent homology classes show consistency in birth and lifetimes for
spatially analogous cycles (Fig. 1). Additionally, we observe the appearance of many ‘variant’ cycles in clusters
with slight variations between individuals but with considerable overlap as seen in [11]. The most popular cycles
had stronger connections as evidenced by earlier birth times (p<0.001), and activated fewer brain networks than
those stemming from later-born clusters of cycles (p<0.001). We see that many cycles, particularly those with
weaker connections, have more individual variability.

Figure 1C shows that 1-dimensional cycles are shared evenly between the two groups. On the other hand, the
average persistent landscapes for the two groups show more substantial differences for two-dimensional cycles,
with the average persistence landscape for schizophrenia patients exhibiting two peaks instead of one (Fig. 1F).
This suggests that whilst schizophrenia patients may share many similarities to controls in terms of their more
strongly connected brain regions as revealed by lower-dimensional persistent cycles, their large-scale brain
organization, as revealed by higher-dimensional cycles which tend to connect more brain regions, is different
and more diverse.
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In electric signals such as field-potentials measured across regions of the human brain, parietal signals have a
tendency to phase-lead signals in temporal and frontal cortex, while waves of activity propagates along parieto-
temporal pathways. In order to better understand the functional properties of such large-scale pattern of signal
flow, we asked: (i) are inter-regional delays stable or variable over time? (ii) do the patterns of signal
propagation co-vary with endogenous cortical rhythms? (iii) do the patterns of signal flow vary with external
stimulus properties?

We recorded electrocorticographic signals from the lateral cortical surface of 10 human participants as they
listened to a 7-minute auditory narrative. In sliding 2-second windows, we identified inter-regional delays by
computing the cross-correlation of voltage signals between nearby electrode pairs. For each time window, and
for electrodes and electrode-pairs, we identified the time delay of maximal inter-electrode correlation from raw
voltage signals, the power for different bands, and the mean broadband high-frequency power. We designed a
computational model for the inter-regional flows using a Stuart-Landau coupled oscillator model, with structural
topology based on human cortical anatomy. Consistent with prior reports [1,2], we found that the auditory
pathway exhibited a gradient of delays, with posterior temporal regions leading anterior temporal regions on
average. However, the latencies between stages of auditory processing were not stable, but fluctuated over time.
Two distinct electrophysiological states were evident from data: one with longer inter-channel latencies
(“propagating state”), and the other shorter latencies (‘“synchronized state). Latencies were longer during bursts
of alpha power (propagating state) and were shorter during bursts of broadband power (synchronized state),
consistent with models in which alpha oscillations regulate corticocortical interactions [3]. The inter-regional
delays were mostly endogenous, as the correlation between responses under repeated stimulus was weak.
Altogether, the changes in inter-regional latencies are not a random process, and reliably track features of the
endogenous dynamics. The transitions between synchronized and propagating states generalizes beyond the
auditory pathway to the parietal, temporal and sensorimotor cortex. We observed that global latency patterns
change between the synchronized state and the propagating state (fig. 1). When auditory drive was strong the
latencies between many areas were reduced, and when auditory drive was absent the latencies increased. Finally,
we were able to reproduce the inter-regional correlation and delay pattern, by varying the coupling-strength
between oscillators in the Stuart-Landau oscillator model, indicating that the large-scale dynamic shifts may be
regulated by overall shifts in the efficacy of inter-regional influence.

Altogether, the data and models suggest that human cortical dynamics reliably transition between synchronized
states (associated with increases of broadband power) and propagating states (associated with increases of alpha-
band power).
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Stimulation of the human peripheral nervous system can be a powerful treatment for a variety of medical
conditions from epilepsy to rheumatism, and can also provide insight into nervous system processes. Each
peripheral nerve bundle consists of one or multiple fascicles; each fascicle consists of a group of nerve fibers
embedded in a matrix of endoneurium and wrapped by a fatty layer of perineurium. To stimulate these fibers a
variety of bioelectric interfaces have been developed. Among these interfaces, the longitudinal intrafascicular
electrode (LIFE) is designed to target small groups of fibers inside the fascicle using low-amplitude pulses. Their
small size, flexibility, and longitudinal placement minimize their mechanical effects on nearby neural tissues,
making them well-suited for chronic use. To achieve higher functionality with fewer side effects, greater
specificity of the stimulation would be beneficial. This study is part of a US-French collaboration that aims to
improve selectivity of intrafascicular stimulation for bioelectric therapies by coordinating computational studies,
stimulation hardware development, and in vivo animal studies. This simulation study investigates the effects of
anatomical and stimulation parameters on fiber recruitment and selectivity.

Peripheral nerve stimulation with LIFEs consists of short electrical pulses delivered to an electrode or electrodes
placed within the fascicle. Each current pulse generates a spatiotemporal electrical field that affects the
membrane potential of the fibers in the vicinity in a manner that might trigger production of an action potential.
In this study, to simulate the response of the nerve fibers to electrical stimulation, a hybrid workflow has been
developed to simulate: 1) the production/propagation of the electric field, and 2) the effect of the electric field on
fiber activation (recruitment). The first part uses anatomical and histological data to produce a finite-element
model implemented in the MATLAB-COMSOL environment that simulates the electric field induced in a nerve
bundle through stimulation via one or more LIFEs. The second part uses a detailed biophysical model of multi-
segmented axons implemented in a Python-NEURON environment that simulates the response of the nerve
fibers to the electric field.

Using this hybrid workflow, the effects of various factors like fascicular anatomy (tissue conductivity, spatial
distribution of fibers, fiber size, etc.), electrode parameters (size, location, configuration), and stimulation pulse
shape (pulse width, pulse amplitude, pulse type, etc.) on recruitment and selectivity have been characterized, and
the sensitivity of the recruitment patterns to these parameters has been analyzed. In on-going work, we are using
this computational modeling framework to investigate and develop better strategies to enhance selectivity and
increase specificity of the peripheral nerve stimulation.
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The INCF TrainingSuite (fig. 1) is a collection of open access platforms that aims to facilitate self-guided study
in the sub-specialisms of neuroscience (with an emphasis on neuroinformatics). These platforms, presented
below, collectively work as a framework for integrating training materials and making them FAIR (Findable,
Accessible, Interoperable, Reusable).

INCF TrainingSpace (training.incf.org) is an online hub that aims to make neuroscience educational materials
more accessible to the global neuroscience community, developed by the INCF Training and Education
Committee composed of members from the INCF network, HBP, SfN, FENS, IBRO, IEEE, BD2K, CONP, TCC
and iNeuro Initiative. So far, TrainingSpace has more than 23000 users with 113000 pageviews. As a hub,
TrainingSpace provides users with access to:

- Multimedia educational content from courses, conference lectures, and lab exercises from some of the
world’s leading neuroscience institutes and societies

- Study tracks to facilitate self-guided study

- Tutorials on tools and open science resources for neuroscience research

- The Q&A forum NeuroStars (neurostars.org)

All courses and conference lectures in TrainingSpace include a general description, topics covered, links to
prerequisite courses if applicable, and links to software described in or required for the course. In addition to
providing resources for students and researchers, TrainingSpace also provides resources for instructors, such as
laboratory exercises, open science services, and access to publicly available datasets and models. TrainingSpace
currently has four study tracks to facilitate self-guided study: brain medicine, computational neuroscience,
neuroscience, and neuroinformatics. The 2020 Neuromatch Academy materials are available as a TrainingSpace
special collection at https://training.incf.org/collection/neuromatch-academy-2020.

Neurostars (neurostars.org; RRID:SCR_003805) is a Question & Answer (Q&A) forum that serves the INCF
network and the global neuroscience community as a platform for knowledge exchange between neuroscience
researchers at all levels of expertise, software developers, and infrastructure providers. Neurostars has been
adopted by several other large neuroscience initiatives including Neuromatch Academy, Neuro Hackademy, and
the Organization for Computational Neuroscience (OCNS). Several community tools - among them Nipype,
SPM, fMRIprep, Nilearn and Freesurfer - use Neurostars for providing user support. In April 2021, Neurostars
had 17400 users in 25200 sessions; in total the forum has seen more than 132700 users and 328700 sessions.

INCF KnowledgeSpace (https://knowledge-space.org; RRID:SCR_014539) is a community-based encyclopedia
for neuroscience that links brain research concepts to the data, models, and literature that supports them,
demonstrating how SBPs can facilitate linking brain research concepts with data, models and literature from
around the world. It provides user with access to over 1M publicly available datasets as well as links to literature
references and scientific abstracts.

KnowledgeSpace is an open project and welcomes participation and contributions from members of the global
research community. KS is the result of recommendations from a community workshop held by the INCF
Program on Ontologies of Neural Structures in 2012, and was developed by HBP, INCF and NIF.
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Figure 1. The INCF Training Suite consists of TrainingSpace, Neurostars and KnowledgeSpace.
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Dendrites of pyramidal neurons demonstrate a wide range of linear and non-linear active integrative properties.
Extensive work has been done to elucidate underlying biophysical mechanisms, but our understanding of the
computational contributions of active dendrites remains limited. As such the vast majority of artificial neural
networks (ANNSs) ignore the structural complexity of biological neurons and use simplified point neurons. In this
paper we propose that active dendrites can help ANNSs learn continuously, a property prevalent in biological
systems but absent in artificial systems (most ANNs today suffer from catastrophic forgetting, i.e., they are
unable to learn new information without erasing what they previously learned). Our model is inspired by two key
properties: 1) the biophysics of sustained depolarization following dendritic NMDA spikes, and 2) highly sparse
representations. In our model, active dendrites act as a gating mechanism where dendritic segments detect task-
specific contextual patterns and modulate the firing probability of postsynaptic cells. A winner-take-all circuit at
each level gives preference to up-modulated neurons, and activates a highly sparse subset of neurons. These
task-specific subnetworks have minimal overlap with each other, and this in turn minimizes the interference in
error signals. As a result, the network does not forget previous tasks as easily as in standard networks without
active dendrites.

We compare our model to two others. Dendritic gated networks (DGNs) [1] compute a linear transformation per
dendrite followed by gating. DGNs do not learn dendritic weights and model complexity grows with the number
of classes. Context-dependent gating (XdG) [2] turns individual units on/off based on task ID. XdG largely
avoids catastrophic forgetting but the task ID and hardcoded network subsets are always required. We tested our
model in a standard continual learning scenario, permutedMNIST (Fig. 1). Instead of hardcoding task ID, we
employ a prototype method to infer task-specific context signals. Results show that dendritic segments learn to
recognize different context signals and that this in turn leads to the emergence of independent sub-networks per
task. In tests our dendritic networks achieve 94.4% accuracy when learning 10 consecutive permutedMNIST
tasks, and 83.9% accuracy for 50 consecutive tasks. This compares favorably with DGNs and XdG, but without
their previously mentioned limitations. (Note that standard ANN’s fail at this task and only achieve chance
accuracy.) In addition training is simple and requires only standard backpropagation. Further analysis shows that
the sparsity of representations and number of dendrites correlate positively with overall accuracy. Our technique
is complementary to other continual learning strategies, such as EWC/Synaptic Intelligence and experience
replay, and thus can be combined with them. Our results suggest that incorporating the structural properties of
active dendrites and sparse representations can help improve the accuracy of ANNSs in a continual learning
scenario.
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The brain processes sensory input from the environment in order to produce appropriate behavior. This
perceptual decision-making process has been an object of interest in computational neuroscience. Evidence
Accumulation Models are particularly widespread, and all assume that the brain gathers information and reaches
a decision when enough information is collected. Among these, the Diffusion Decision Model (DDM) [1], which
assumes a noisy linear integration of evidence, is by far the most widely accepted thanks to its intuitive
interpretation, its accurate fit to both behavioral [1] and neurophysiological data [2], and its applicability to
multiple paradigms [3].

Current DDM parameters provide a global description of the decision strategies of participants allowing
consequently for little insight on single-trial dynamics, and in particular on the influence of history of previous
stimuli and decisions on the variability of the model parameters. Although the DDM brought great insight on
how the brain handles decision-making, in particular in the lateral intraparietal cortex [2], recent recordings in
the same area have questioned the adequacy of this model [4]. Indeed, while the firing rate of initially
investigated neurons increases seemingly linearly, in more recent data the increase is step-like. To our
knowledge, while some models address the firing diversity [5], single-trial dynamics remain untapped. Our work
addresses both of these issues by introducing a drift term described by a non-linear differential equation (Fig 1.
A, C). This new model of decision-making offers a description of behavioral and neurophysiological recordings
equivalent to previous models as well as a flexibility for single-trial simulations and interpretation. For initial
investigation, we assumed a uniform distribution of initial conditions. It translates the assumption that trials are
independent and that participants have unbiased expectations regarding the next decision to make. After
mathematical investigation, we fit our model to newly acquired data, using PyDDM [6]. Finally, in order to
assess quantitatively the quality of the fit, we compared our results to DDM fitting.

We show that our model accurately fits behavioral data on a wide range of paradigms, providing as good a fit as
the DDM (Fig. 1B, D), while giving insight into single trial dynamics. In addition to that, we show that our
model describes qualitatively better some neurophysiological observations made in the past. This model is
further usable in simulations, for example to test hypotheses on the distribution of initial conditions and on how
they are selected at each trial depending on the history of the task.
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Precise external induction of cortical activity is becoming a key tool for neuroscience research with a particular
clinical application in cortical prosthetic systems. Major effort is being invested into developing methods for
controlling cortical activity in primary visual cortex (V1) to encode visual information [1, 2]. However, existing
computational work is restricted to stimulation in functionally unspecific network models [3] and hence is of
limited use for designing encoding protocols which engage cortical representations in a functionally specific
manner.

Building on top of a biologically realistic spiking model of cat V1, we implemented a model of an
optogenetically driven visual prosthesis [4]. The model captures layers 2/3 and 4. Visual input can be delivered
via a LGN model consisting of spatio-temporal center-surround receptive field filters. Next, we have
implemented a virtual model of a LED array covering the modeled cortex. We calculate the external current into
the neurons with a channelrhodopsin (ChR) conductance model based on their individual illumination level. The
resulting framework allows to test arbitrary stimulation protocols in the context of this optogenetic ‘write-in’
interface.

We used this model to compare the orientation-dependent contrast-invariant cortical response to visual grating
stimuli and the response to optical stimulation via the LED array. Although a single LED illuminates a large
neural population (>100 pm diameter), modulation of the illumination across the LED array according to neural
orientation preference is sufficient for the induction of contrast-invariant orientation-tuning curves in the
stimulated layer 2/3 neurons. Simulated optogenetically evoked cortical dynamics sharpened the driving
illumination pattern due to network effects, thus improving encoding of the orientation specific information in
V1. Currently, we incorporate morphological effects into the stimulation model as ChR-transfected dendritic
arbors may constrain the spatial resolution. This will allow us to estimate the limits of spatial resolution for
optogenetic stimulation considering uniform as well as compartment-specific ChR-distributions.
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Computational models of auditory processing were essential in shaping our modern-day theory of neural sound
encoding and have accelerated the development of personalized treatments for the hearing impaired. Classically,
analytical models of auditory neurons and synapses are derived from experimental transfer functions derived
from neuronal recordings. This has resulted in a variety of models, typically formulated using multi-branch
Hodgkin-Huxley or coupled ODE systems comprising a number of nonlinearities. The more accurate the models
are in capturing the nonlinear and adaptation properties of the biophysical system, the more computationally
expensive they become. While detailed and realistic analytical models are essential to relate biophysical
properties and parameters directly to their functional impact on neuronal processing, their computational load
has limited their uptake in large scale brain simulation systems (e.g., for sound perception) or in methods for
augmented hearing. The latter applications typically resort to faster — but biophysically less accurate — model
units or adopt machine learning to map sound to output features. It is clear that both fast (machine-learning) and
slow (analytical, biophysical) approaches have their benefits, but for neuroscience purposes it is essential that
experimental neuroscientific advances can easily be cast into incrementally improved encoding models that
generalize beyond a single experiment.

Here, we present a hybrid, computational neuroscience and machine-learning approach to develop biophysically
realistic convolutional neural network (CNN) descriptions of auditory neurons and synapses that predict their
classical neuroscientific properties (nonlinearities, adaptation time-constants, frequency characteristics). To this
end, we adopted state-of-the-art analytical model descriptions of auditory neurons/synapses to generate a training
data set of neuronal responses to a speech corpus. Those simulations were used to train a CNN (L1-loss), which
performance was benchmarked on predicting outcomes of six classical auditory neuroscience experiments (using
unseen, non-speech stimuli). We used the benchmarking to optimize the hyperparameters of the initial CNN
architecture (layer numbers, filter length, activation type, context) in a principled way. This yielded CNN model
predictions conform the experimental observations. Because we successfully applied our method to a range of
analytical neuron/synapse models with various degrees of complexity, we could derive a method to select an
appropriate initial CNN architecture based on its receptive field and estimated adaptation time-constant of the to-
be-modelled neuron/synapse. We required 3 to 14 encoder layers to sufficiently capture the neuroscientific
properties of the giant axon, cochlea, inner-hair-cell or auditory-nerve-fiber synapse. Based on these minimally
required model sizes, we conclude that machine-hearing systems that aim to maintain a relation to the underlying
biophysical process need to be modular and have considerable sizes. Nonetheless, our CNN model units have
clear advantages over their analytical counterparts, in that they are differentiable for back-propagation purposes
(e.g., for hearing-aid algorithm design) and can be parallelized for GPU computing of large-scale neuronal
population models (e.g., behavior, evoked responses) to accelerate neuroscience discoveries.
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Dealing with stress is part of our daily lives. The continuous effect of stress can modify our behavior and
promote long-term changes in synapses and neuronal structure. The hypothalamus is the brain area responsible
for maintaining the body’s homeostasis. In a stress situation, the Paraventricular Nucleus of the Hypothalamus
(PVN) is activated. The response works in a cycle where threats stimulate the activity of corticotropin-releasing
hormone neurons (CRH) of the PVN. CRH neurons release corticotropin that goes directly to the pituitary
glands, stimulating the production of adrenocorticotropic hormone (ACTH) that will further trigger the adrenal
glands to liberate cortisol into the bloodstream [1].

In this work, we try to better understand how CRH neurons and synapses change in response to long-term
glucocorticoid (CORT) exposure. The experiment consists of administrating CORT via the drinking water for 7
days. This procedure elevates circulating CORT without introducing the confounds associated with stressing the
animals. After this period, they were sacrificed and current clamp recordings from CRH neurons were performed
in vitro (Fig. 1A). Additionally, miniature excitatory postsynaptic currents (mEPSCs) were recorded to evaluate
synaptic changes induced by stress. Control recordings were collected from animals that did not receive CORT.
The experiments showed that neurons under CORT treatment presented a decrease in their activity rate, but
unexpectedly they presented an increase in their synaptic input currents (Fig. 1B).

Based on these preliminary results of decreased firing rate and increased synaptic amplitude, we hypothesized
that the network undergoes homeostasis. To address this question, we built computational network of model
neurons with intrinsic and synaptic characteristics modeled after CRH neurons and tested the conditions for
homeostasis by comparing the firing rate ratio between CORT and Control networks. To do so, we first proposed
a modified integrate-and-fire neuron model [2] and used an optimization algorithm [3] to fit the neuronal
current-clamp experiments (Fig. 1A). The algorithm searches in the parameter space for the set of model
parameters that best reproduce the real neuron voltage traces from CORT and Control groups. Also, from the
mEPSCs recordings, the synaptic currents were fitted by a double exponential function [4], extracting some
pulse features such as amplitudes, rise, and decay times. The fitted neurons networks simulations showed that
homeostasis can be achieved as the EPSCs frequency increases (Fig. 1C) for different simulation conditions.
Therefore, despite the decreased firing rate presented by isolated CORT neurons, at the network level, the CORT
synaptic currents counterbalance it, keeping the network firing rate at the same level as the Control network.

Our results show that precise adjustments in CRH neurons can exactly counterbalance the synaptic plasticity
induced by stress to maintain homeostasis.
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Figure 1. A (left) an example fitting (blue) of a real neuron voltage trace (black) recorded from a current clamp
experiment (schematic illustrated on A, right). In B left we show the mean firing rate observed for each current
applied at the current clamp reading and on the right the amplitudes distribution of mEPSCs from Control and
CORT samples. In C left we show the raster plot of both networks for different EPSC frequencies, as the EPSC
frequency increases the activity of both networks becomes more similar. In C right the steady-state Peristimulus
Time Histogram (PSTH) ratio of Control network over CORT network, the dashed black line shows where the
homeostasis occurs. The neurons in the networks receive two different currents, as independent synaptic current
EPSC which represents the inputs a neuron receives from all its synapses, these current pulses are generated
according to a Poisson process whose frequency can be controlled. The other one is a constant external current I

that is equal for all neurons.



Emergence and propagation of asynchronous states of spontaneous
cortical activity.

Roman Arango”!, Pedro Mateos-Aparicio?, Maria V. Sanchez-Vives’, Emili Balaguer-Ballester'

'"Bournemouth University, Department of Computing and Informatics, Bournemouth, United Kingdom
2IDIBAPS, Systems Neuroscience, Barcelona, Spain

3Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), ICREA, Systems Neuroscience,
Barcelona, Spain

*Email: rcabrera@bournemouth.ac.uk

Slow oscillations (SO) of neural activity emerge spontaneously in the neocortex during anatomically (e.g.
cortical slices or cortical lesions) or functionally (e.g. anaesthesia, slow-wave sleep) disconnected states. The
SO consist of the alternation (ca. | Hz) of high- (Up) and low-responsive (Down) periods that propagate spatio-
temporally as a travelling wave, thereby revealing properties of the underlying cortical network [1]. Even if the
SO are a stable attractor, the network can be driven into richer dynamical states by neuromodulation, inducing
e.g., the transition from sleep to wakefulness. How such a globally synchronized state gives rise to largely
decorrelated awake states is yet to be elucidated, and in particular, how the emergence of asynchrony is spatially
orchestrated by the local network.

Here we investigated this near-asychronous regime by developing time-series analyses applied to extracellular,
multielectrode-array recordings on acute slices. The slices exhibited robust SO and were then subjected to
neurochemical modulations aimed at eliciting a desynchronized or awake-like state (AS) [2].

We devised a new statistical procedure for decomposing the AS regime into synchronous and asynchronous
periods. Our results show that asynchronous states of uneven durations are interspersed among abrupt surges of
1-2 Hz oscillations [3]. These consist of Up- and Down-like states in a sort of excited SO state sharing much of
its hallmark features, albeit more locally coordinated.

Population firing rates of local neuronal ensembles were captured by an energy-preserving estimation of the
multi-unit activity (MUA). Thus, locally sampled probability densities of MUA reflect the state of the network at
different scales. A statistical-distance—based clustering of the MUA densities displays the emergence, at the most
excited states, of particular spatial patterns that follow the laminar structure of the slice. In stark contrast,
normalised power spectra of AS MUA proved most similar when lying on the same cortical column,
independently of the layer.

Although the synchronous/asynchronous balance varies from one column to the other, the inter-channel co-
occurrence of asynchronous states is spatially correlated, suggesting that the switch from synchrony to
asynchrony acts as a propagating wavefront.

Overall, our novel methodology reveals how, on the brink of wakefulness, an excited SO-like activity cohabits
with periods of asynchrony. Their spatio-temporal interplay depends on the cortical network structure: the firing
rate intensity is dictated by the layer [4], the column sustains the oscillation, whereas the alternation between
synchrony and asynchrony propagates across the whole slice.
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Understanding how the brain synchronizes is a fundamental question in neuroscience. The main types of
synchronization found between the brain regions are phase, anti-phase, and shift-phase. In phase
synchronization, neurons of two regions fire at the same time. This type of synchronization has been observed,
for instance, during memory, cognition, and motor coordination. In anti-phase synchronization, the neurons are
synchronized in each region, but they interpolate symmetrically their phases on time. For shift-phase
synchronization, the phase relations are not symmetric. These types of synchronization have been identified in
mammalian brains. Since connectivity can be related to neuronal firing patterns, we investigate how chemical
connections between two networks can be associated with the appearance of these different types of
synchronization. Our results suggest that excitatory and inhibitory connectivities arriving at excitatory and
inhibitory neurons play specific roles in the occurrence of synchronized firing patterns.
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The basal ganglia (BG) are a set of nuclei that process movement information: they refine and adjust simple
movement actions. The BG has two major pathways: the striatum (STR)-indirect neuron pathway and the
subthalamic (STN)-hyperdirect nucleus pathway. The GPe is the connecting nucleus between the two pathways.
The STR inhibits the GPe and the STN excites the GPe which is divided into two types of neurons [1,2], the
prototypical (GPeP) and the arkypallidal (GPeA). This discovery allows for a better understanding of the
functioning of this neural network. We model the STN-GPeA-GPeP-STR (D2) network and study the influence
of the nucleus on each other like in [3] (see Fig. 1 A). The neurons have been modeled as point neurons using the
Hodgkin-Huxley formalism and the synapses as exponential functions. From extensive simulations performed
with the SiReNe software (Neural network simulator, in french: Simulateur deRéseaux deNeurones [4]), we
show that our network is in good agreement with the physiological results of [3]. This simulator is based on a
hybrid method combining time-step and event-driven computations with a Runge-Kutta 2 numerical method at
inner level. GPe is mainly inhibited by GABAergic inputs of the STR and we study the impact of STR
connectivity on GPe. We observe that the GPeP and GPeA react in opposite ways when the STR is activated,
i.e., GPeP is entirely inhibited whereas the GPeA and STN are completely excited, as observed in [3] (see
Fig.1B, C). This work aims at better understanding the synaptic connectivity scheme. This model will allow us to
test hypotheses regarding the pathological rhythmogenesis in Parkinson disease, both at the cellular and
connectivity levels.
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A honeybee in search of food locates nectar producing flowers using floral aromas composed of many volatile
compounds. However, nectar-producing and non-producing floral odors contain many of the same compounds.
Hence, the honeybee faces a challenging task in determining the map between chemical sensing and reward
prediction. This is further complicated by the fact that nectar production may change from season to season and
environment to environment. This requires the olfactory system to be able to learn and relearn the association of
reward with variable blends of volatile compounds. In this new study, we examine the mechanisms underlying
the creation and modification of neural representations of natural odor blends in the early olfactory system —
antennal lobe (AL) — using a combination of computational modeling and Ca2+ imaging of the honeybee AL in
vivo. Based on previous immunological labeling that showed octopamine receptors (modulating reward) co-
localized with GABA receptors [ 1], we modeled plasticity in the inhibitory AL network. Following our previous
modeling work [2], rewarded odors caused GABA facilitation based on presynaptic firing rates, and non-
rewarded odors caused GABA facilitation based on post-synaptic firing. We found that this inhibitory plasticity
was sufficient to create many of the changes seen in vivo. This includes the shifting of odor mixtures due to
reward, the adaptation to many unrewarded odor presentations, and changes in the representations of complex
blends. Importantly, our model learned to discriminate between complex odor blends by expanding coding space
in the dimensions that were maximally discriminatory (Fig. 1A), which have been observed in vivo. Our model
further predicted that the cells representing chemical compounds common to both rewarded and non-rewarded
odors face increased inhibition from both associative and non-associative plasticity. This combined action
diminished the superfluous components, while increasing the discriminatory components of the neural code (Fig.
1C). This prediction was then verified in vivo by examining Ca2+ imaging data (Fig. 1B, D). We found that
glomeruli that were common to many odor blends were suppressed by training and those that were unique to a
single odor blend were enhanced. Analysis of a black-box graphical convolutional neural network revealed a
similar pattern of relationships between odor percepts to that learned in the biophysical model. Our model
demonstrates a learning paradigm where the inhibitory network reshapes coding space to suit the current task
and environment. These findings suggest an efficient computational strategy for perceptual learning in complex
natural odors through modification of the inhibitory network.
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Relational memory, the ability to make and remember associations between objects, remains an essential
component of mammalian reasoning. In relational memory tasks, it has been shown that periods of offline
processing, such as sleep, are critical to improving one’s ability to make indirect associations or transitive
inferences. For example, one may learn to associate two items (A and B) and later learn to associate B with a
new element (item C) during the wake state. After briefly learning these associations, a subject can recall item B
(also called “linking” item) when presented with item A or C, but is less adept at recalling item C when
presented with item A. Behavioral research has shown that the duration of slow-wave sleep (SWS) following
such is significantly correlated with the subject’s ability to recall item C when presented with item A,
highlighting the importance of SWS in developing relational memory. Despite the behavioral evidence, we know
little about the mechanisms of sleep that give rise to improved relational memory as well as the brain network
changes that occur during sleep to support relational memory.

Based on the empirical evidence that sleep improves relational memory, in this new study, we built a Hodgkin-
Huxley-based model of the thalamo-cortical network to understand how SWS can lead to improvements in an
unordered relational memory task. The cortical part of the network was composed of two layers, both including
and excitatory and inhibitory neurons; the first layer represented the perception of an individual object (e.g.
visual cortex) and the second layer represented higher-order processing (e.g. associative cortex). Feedforward
connections from the first layer to the second layer and recurrent connections within the second layer were
plastic and modified through spike-timing dependent plasticity (STDP) rules during training and sleep. Other
connections, e.g. thalamocortical and cortical feedback connections, were fixed in alignment with biophysical
data.

The model was first trained on a paired associate inference task, where four pairs of items (e.g., A+B, B+C,
X+Y, Y+Z) were presented to the network. After this associative training phase, the model was able to recall
direct associations (e.g., A->B, B->C) learned during the waking state. However, the indirect relational
association (e.g., A->C) was not learned or was unreliable. After a period of SWS, the model’s ability to recall
these indirect associations was significantly improved, highlighting the importance of SWS in relational
memory. In agreement with empirical data, we found that the duration of SWS significant correlates with the
improvement in relational memory after sleep. Importantly, we found that replay during sleep increases synaptic
connections between neurons representing the linking (common) item (B) and neurons representing the unlinked
associations (A, or C). This change in synaptic connectivity led to a greater ability to recall the unlinked items
(e.g., C) when its indirect pair (item A) was presented. Our study predicts that sleep can reactivate pathways to
and from the linking item to the unlinked objects in order to form indirect associations. In addition, we predict
that inactivating the neurons that represent the linking item (B) through optogenetics may destroy the subject’s
ability to perform indirect associative recall.
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Magneto- and electro-encephalography (M/EEG) are complementary, non-invasive imaging techniques which
are used to measure macroscopic brain activity. However, how the microscopic activity of ion channels gives
rise to these electromagnetic signals is yet to be fully understood. To address this question, we developed a
multi-scale thalamocortical network model that exhibits the characteristic activity states of NREM sleep: sleep
spindles and slow oscillations. We incorporated the main organizational principles of cortical connectivity in our
network model. First, the connection probability between a pair of cortical cells decayed exponentially with
respect to the diffusion-MRI derived white matter tract distance between the pair. Second, a hierarchical index
was assigned to each functional region that is inversely proportional to region’s average myelination. Third,
inter-areal hierarchically feed-forward and feed-back connections were pruned into distinct laminarly-separated
counter-streams, distinct from local connectivity. The synaptic delays and synaptic strengths were derived from
dMRI distances and laminar patterns. We examined the role of synaptic delays on the propagation of spindles
and slow oscillations, and found that characteristic traveling wave structure is preserved even for relatively high
delays consistent with human brain long-range connectivity delays. We compared the spatiotemporal patterns of
mesoscale cortical correlativity structure in simulated and empirical data. By embedding the simulated cortical
currents in a volume conduction model of the head we produced simulated M/EEG, enabling investigations of
how multi-scale dynamics and detailed connectivity give rise to these complex signals.
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Human and animal brains must continuously encode and assimilate new memories to appropriately guide
behavior in a constantly changing environment. Although advances in computational neuroscience and machine
learning have made significant steps towards a mechanistic understanding of biological learning, the existing
models fall short by suffering from severe retroactive or catastrophic interference - an overwriting of older,
competing memories - when presented with novel information to encode. One possible explanation for this is
that most existing models only attempt to model the learning processes which occur during awake behavior, and
ignore the complexities of the consolidation processes which occur during sleep. Systems Consolidation Theory
posits that the hippocampus rapidly encodes new information during awake behavior. This hippocampal trace is
subsequently assimilated into the cortex and further consolidated during sleep. Specifically, coupling of slow
oscillations (SOs) in the cortex and sharp-wave/ripples (SWRs) in the hippocampus is thought to allow the
hippocampus to replay recent memories and to index corresponding cortical memory traces to be replayed and
learned for long-term storage. To understand the details of this coupling, we developed a biophysically-realistic
thalamocortical network model (Fig. 1A) implementing SWR input and SOs (Fig. 1B). We found that when two
competing memories were trained sequentially during awake, the model suffered from retroactive interference,
forgetting the old memory trace. However, interference could be avoided when the competing new memory was
embedded to the cortical network by SWRs during sleep (Fig. 1C-E). More surprisingly, we observed that
hippocampal indexing qualitatively changes the dynamics of consolidation during sleep by (1) the emergence of
autonomous learning rate decay, and (2) altering the stability landscape of synaptic weight space (Fig. 1F). The
former allows the network to consolidate the new memory in a self-stabilizing manner, while the latter prevents
retroactive interference by restricting consolidation dynamics to a subspace of synaptic weight space - the
solution manifold of the older memory.
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Figure 1. A Schematic of basic circuitry of thalamocortical network model. PY/IN neurons are excitatory and
inhibitory cortical neurons (respectively). TC/RE neurons are excitatory thalamocortical neurons and inhibitory
reticular neurons. HP indicates simulated hippocampal input to PY neurons. Excitatory connections are
demarcated by lines terminating in horizonal bars and inhibitory connections by lines terminating in dots. B
Raster plots showing example activity during slow-wave sleep in the model (top). Bottom plots show cortical
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waveforms and the coupling of slow-waves and spindles in the model. C Heatmap showing activity during a
typical simulation. Y-axis indicates PY neuron index and X-axis is time; color indicates membrane voltage.
Labels on top: T-Testing period, S1-Training of S1 memory during wake, S1* HP Input-period during slow-
wave sleep when hippocampal indexing of S1* memory trace is applied at the down-to-up transition. D Left
shows heatmap example of training pulses during S1 wake training. Right shows example up state with black
boxes demarcating timing of S1* indexing. E Performance on a pattern completion task before training
(baseline), after S1 Training, and After Sleep (red) for both S1 and S1* (left and right respectively). F First 2
PCs of the synaptic weight space of the network. Colored regions indicate regions within PC space that represent
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either memory (gray). Arrows indicate the weight dynamics during sleep without hippocampal indexing (white)
and with indexing (black).
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The number of patients with neurodegenerative disorders is expected to quadruple in the next 50 years, bringing
the cost associated with patient care to approximately $2 trillion in 2030 [1]. The development of disease
modifying therapies is hindered by the high costs of the drug development process, which is in part due to the
long duration of the clinical trials. Total costs for the development of an Alzheimer’s Disease drug are estimated
at $5.6 billion over 13 years [2], with phase 2/3 clinical trials taking up approximately half of that time [3]. One
reason for the need for long clinical trials to test neurodegenerative disorder therapies is the large inter-subject
variability due to heterogeneity in the diseases’ pathobiology and progression [4]. Recruiting individuals who
share common pathophysiological signatures during the trial enrollment stage will reduce the variability in the
response to the treatment leading to shorter trials [5]. Grouping subjects based on multimodal biomedical data is
complicated by the diverse data types due to the variety of spatiotemporal scales at which data is collected. To
this end, we present the Medicine Graph (MG), a web-based neuroinformatics software application designed for
integration of multimodal data and cutting-edge 2D/3D visualizations in a neuroanatomy-based reference system
(Fig. 1). MG is built on an integrated graph database platform which allows its users to ingest, organize, and
correlate data from clinical trials, public databases, and proprietary multi-omics data. A graph representation of
the multimodal data enables the users to explore structure-function relationships across different scales (from
molecular to behavioral), and to model the response of the system to pharmacologic manipulations. Currently,
MG allows users to visualize human anatomical knowledge from various sources (SNOMED, UBERON, and the
Allen Institute) and references their content in MNI space. It also incorporates gene expression data obtained
from brain samples of a representative subject and simulated pharmacokinetic data in the cerebrospinal fluid.
MG provides the framework for curation, visualization, and annotation of graph-based data, enabling the
analysis of relationships between different types of biomedical data to derive novel hypotheses to accelerate drug
development. Furthermore, integration of results from clinical assessments and digital/fluid biomarkers will
enable users to identify patient groups with common biological signatures for testing of personalized treatments.
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Tractography is a widely used technique for studying the relationship between brain structure and function.
However, its accuracy is limited by false positive and false negative connections [1]. Consensus thresholding,
often used to produce representative group connectomes, seeks to reduce these errors by retaining only the links
present in a given percentage of the subjects. In the absence of ground truth, guidelines to choose the threshold
often rely on structural considerations as well as specific assumptions [2]. Here, we propose an alternative
approach, whereby, given a model of neuronal dynamics, the threshold is chosen based on whether the
dynamical behaviour of the group connectome is most representative of the behaviour of the individuals. We use
the Kuramoto model of synchronization and characterise the individual and group networks in terms of their
metastability, which has been shown to be clinically and behaviourally relevant [3]. Using a dataset of forty
structural connectivity matrices constructed by probabilistic tractography (healthy adult cohort), we found that
the threshold for which the metastability profile was most representative of that of the individual networks was
42.5%. As thresholds moved away from this minimum, they no longer fitted the average individual metastability
profile (Fig. 1, left), despite still falling in the range proposed by [2]. We compared our approach to two other
methods: one preserving the connection length distribution [4], the other retaining the most consistent edges
across the cohort [5]. Both connectomes significantly deviated from the best fit (Fig. 1, left). A graph theoretical
analysis using common network metrics suggested that similarity in network structure did not predict similarity
in dynamical behaviour. For example, the distance-dependent network which showed most similarity in terms of
global graph metrics (Fig. 1, right), and close proximity in terms of local graph metrics (Fig. 1, middle) was
furthest way in terms of dynamical behaviour. This suggests that relying purely on structure for choosing the
threshold may overlook network features of importance to neuronal dynamics. Further work is needed to
establish whether these results generalise to different classes of neuronal dynamics. Importantly, however, the
proposed method is agnostic to whether deterministic or probabilistic tractography is used.
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Cerebellum-like structures are found in many brains and share a basic fan-out-fan-in network architecture. How
the specific structural features of these networks affect their ability to learn remains largely unknown. Previous
theoretical studies have suggested that purely random connections between input neurons and encoding neurons
are optimal for associative learning. However, recent experimental studies of the Drosophila melanogaster
mushroom body have identified two principal connectivity patterns that deviate from purely random
connections. To investigate this structure-function relationship, we developed a four-layer network model of the
early Drosophila melanogaster olfactory system with particular attention paid to the structure of the feedforward
excitatory connections from the projection neurons of the antennal lobe to the Kenyon cells of the mushroom
body (Fig. 1A). The first connectivity pattern, biases, deviates from the purely random case (Fig. 1Bi) by
allowing the likelihoods at which individual projection neurons connect to Kenyon cells to substantially deviate
from uniformly random (Fig. 1Bii). The second connectivity pattern, groups, allows projection neurons to
connect preferentially to the same Kenyon cells (Fig. 1Biii). Finally, we consider a network class that exhibit
both biases and grouping (Fig. 1Biv).We compared the representations of olfactory stimuli generated by the KC
layer qualitatively and quantitatively; we also assess the ability of a network to perform associative learning via a
novel, biologically inspired learning rule (Fig. 1C). We find that biases allow the mushroom body to prioritize
the learning of particular, ethologically meaningful odors while incurring a minimal loss in overall associative
learning ability relative to the optimal, purely random case (Fig. 1D). Second, we find that groups facilitate the
mushroom body generalizing learned associations across similar odorswhile maintaining the ability to
discriminate across most odors (Fig. 1E). Altogether, our results demonstrate how different connectivity patterns
shape the representation space of a cerebellum-like network and impact its learning outcomes.
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Figure 1. A Network model of the Drosophila melanogaster mushroom body. B PN-KC connections are either
unstructured (Bi) biased (Bii), grouped (Biii) or both (Biv). C MBONs mediate attraction (+) or repulsion (-).
The network is trained and tested on the same set of odors. Di Odor recall accuracy. Dii B1GO prioritizes
ethologically relevant odors. E Generalization across odor representations.
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Astrocytes are glial cells that make up 50% of brain volume, with each one wrapping around thousands of
synapses. However, the exact role astrocytes have in governing the dynamics of the synapse and neuronal
networks is still being debated. Previous computational modeling work has helped tease out possible
mechanisms driving this interaction at the synapse level, with micro-scale models of calcium dynamics [1,2] and
neurotransmitter diffusion [3]. Little computational work has been done to understand how astrocytes may be
influencing spiking patterns and synchronization of large networks, partly because it is computationally
infeasible to include the intricate details found in this previous work in such a network-scale model.

We overcome this issue by first developing an “effective” astrocyte that can be easily implemented to already
established network frameworks. We do this by showing that the astrocyte proximity to a synapse makes
synaptic transmission faster, weaker, and less reliable. Thus, our “effective” astrocytes can be incorporated by
considering heterogeneous synaptic time constants, which are parametrized only by the degree of astrocyte
proximity at that synapse. This parametrization makes sense in light of experimental evidence showing that the
degree of astrocyte ensheathment varies by brain region and that it is a crucial component in certain disease
states such as some forms of epilepsy [4]. We then apply our framework to a network of 20,000 exponential
integrate-and-fire neurons, similar to the one presented by Rosenbaum et al. [5]. Depending on key parameters,
such as the number of synapses ensheathed, and the strength of this ensheathment, we show that astrocytes have
the ability to push the network to a synchronous state and to enhance and sharpen patterns of spatial correlation
exhibited by the network.
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Emotions are central to human experience and therefore, the use of machine learning to accurately classify
human emotions has been an area of popular research in recent times. Most of the available research is based on
data collected while the subject is kept stationary and exposed to an external stimulus, such as listening to an
audio or watching an audio-visual clip. In this paper, we extend work done by [1], which focuses on studying the
emotions when the subject is involved in doing a more complex physiological activity, such as playing computer
games. We aim to establish a relationship between emotions and lobes of the brain by examining the EEG
signals from those lobes. Additionally, we wish to examine, if deep-learning-based architecture like long-short
term memory (LSTM) and its variants can offer better results for emotion classification on GAMEEMO dataset.
LSTM is believed to perform better on temporal data having long-term dependencies. The GAMEEMO dataset
contains EEG data collected from 28 subjects who played 4 different games, known to elicit a particular kind of
emotion. To analyze the dataset, we have used a 4-layered network including LSTM, Bidirectional LSTM and
Gated Recurrent Unit (GRU) models. The input data from GAMEEMO dataset is fed to the network and it learns
to associate EEG data with the emotion class label. In addition, we also learn to associate the emotion class label
with the lobe of the brain by segregating the EEG electrodes as per their position.

We have achieved an average accuracy of greater than 80% for all the channels with each of the 3 models, which
is significantly better than the earlier work (fig. 1). The spatial analysis of results also suggests that there exists a
strong relationship between Occipital lobe and HANV (High arousal Negative Valence) emotion class and
Parietal lobe and LAPV (Low Arousal Positive Valence) emotion class. We observed that Bidirectional LSTM
outperforms the other two models when it comes to overall average classification accuracy. Out of the three
models, classes HANV and LAPV show much better classification results as compared to HAPV (High Arousal
Positive Valence) and LANV (Low Arousal Negative Valence). HANV class emotions such as anger,
nervousness, horror, etc., and electrical activity in the Occipital lobe seem to have a strong relationship, as this
lobe produced the best results for HANV class. HANV is associated with emotions such as horror (as tagged in
Game G3 in our dataset). One reason for this could be that the stimulation of the occipital lobe is associated with
heightened emotions.
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Brian 2 [1] is a neural simulator for biological spiking neural networks. It is based on a code-generation
approach, which means that it transforms arbitrarily user-specified model equations into efficient compiled code.
This approach makes it an ideal tool to develop and explore new, detailed models of neural activity. Most
parameters of such models do not correspond to physical quantities that can be measured directly and are
therefore not exactly known beforehand. Consequently, a common task for modellers is to adapt the model
parameters so that they reproduce a certain set of experimental data as accurately as possible. Adapting the
parameters has often been an ad-hoc procedure, where the researcher tweaked the parameters until the fit to the
experimental data looked “good enough”. Such a procedure is obviously time-consuming, and will most often
lead to a sub-optimal solution. At the same time, a large number of automatic optimization algorithms exists, and
several software packages provide efficient implementations for them. However, using these approaches together
with simulators like Brian 2 is not yet common in the community. One reason for this is that their efficient use is
not always straightforward and requires considerable effort by the researcher. Switching between approaches and
the packages that implement them also requires adapting the code to a new interface.

Here, we present how the Brian 2 simulator, together with the brian2simulator package, enables researchers to
overcome these difficulties. It provides a unified interface to several state-of-the-art optimization algorithms so
that researchers can determine the best-fitting parameters of their models. The supported approaches include
global optimization methods (provided by the Nevergrad [2] library), as well as local gradient-based methods
(provided by the scipy [3] package). The gradient-based methods can be accelerated by making use of Brian 2's
facilities to symbolically analyse the model equations. This makes it possible to provide an exact calculation of
the gradient, instead of relying on an approximation.

Finally, we demonstrate how to go beyond parameter optimization with a more recent approach, simulation-
based inference [4,5]. This approach provides the researcher with a more complete view of the fit of a model to
experimental data, by estimating the full posterior distribution of the model parameters given the data.
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There is evidence that the brain can compute quickly and reliably with single spikes in certain instances. This
points to an operating regime very different from rate coding: neuronal noise is suppressed and the binary, all-or-
nothing nature of spikes plays an important role. What components might allow neurons to achieve this? In this
work, we explore how neural oscillations can orchestrate rapid and robust binary computation with the aid of
dendrites.

Two ideas are central: saturation and synchrony. Saturation allows neurons and their components (e.g.\ dendritic
compartments, ion channels) that are strongly driven to act effectively as if they are binary units. Coupled with
synchrony, which facilitates the quick integration of related inputs, these binary units can perform rapid spike-
based computations reliably. In our simulations, synchrony comes from population oscillations mediated by
inhibitory interneurons, which define periodic integration and firing windows for the neurons. However,
synchronization comes at a price: the effect of incoming spikes depends heavily on their timing relative to the
oscillations. We find a trade-off in performance: wider integration windows give more robust input summations,
but lead to proportionally more jitter in the timing of the output spikes. Narrower integration windows make for
more precise spike timings, but require the input spikes to arrive nearly simultaneously. This trade-off is hard to
avoid without fine-tuning synaptic delays, which is unphysiological.

We show that this issue can be redressed with the use of active dendrites. Specifically, we develop a simple
model of an active, saturating dendrite which decouples the integration of inputs from the firing time of the
soma, thereby fixing the problem. We show that a network equipped with these dendrites can robustly display
oscillations which coexist with ongoing computations based on single spikes. That is, the generation of
synchrony and the performance of computations can both independently be achieved by the same network.
Taken together, these ideas provide a hypothesis on how some biological circuits in the brain could perform a
binary computation efficiently (with a small number of neurons), quickly (with one spike volley per layer), and
robustly (in the presence of noise).
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Gap junctions are known to connect neurons, glia, retinal cells, as well as cardiac cells. Of these, action
potentials (APs) can actively propagate between neurons and cardiac cells. Previous experiments in cardiac cells
show that increasing the gap junction conductance can initially enhance propagation, while higher gap junction
conductances re-introduce propagation block [1,2]. Similarly, neuronal models show that there is an ideal gap
junction conductance for AP propagation [3,4].

We investigate AP propagation through a chain of cells, modifying the gap junction conductance (g) and the
number of downstream neighbors (k). Using the Fitzhugh-Nagumo model, we are able to predict propagation
through a chain of cells by reducing the model to 1-dimension which focuses on the fast dynamics. By analyzing
the fixed points in this reduced 1-dimensional model (Fig. 1), we can predict when APs will propagate through
the entire chain of cells, partially propagate through the chain, or not propagate at all. Furthermore, we can
predict the spike heights of the propagated APs, as well as a region in the (g,k)-plane where cells no longer fire
independently, but their voltage is tied to the leading cell in the chain. We are also able to use a similar 1-
dimensional reduction to predict propagation in Hodgkin-Huxley and cardiac cells.
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Figure 1. A Each each cell connects one upstream cell (v_u) and k downstream cells (v_d=0). B F(v) is the fast
dynamics of the cell’s currents, G(v,v_u) is the gap junction current. If there is a saddle-node bifurcation as v_u
increases, the cell can fire. C A saddle-node bifurcation occurs when F(v) and G(v,v_u) are tangent. The
resulting bifurcation curve predicts a peak in k for AP propagation.
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Neuronal noise is a characteristic of brain computations that can play a central role in visual phenomena such as
binocular rivalry. In addition, the statistics of neuronal noise may be important in neurological conditions where
noise abnormally affects perception, such as schizophrenia, autism spectrum disorder and developmental
dyslexia. However, there is no systematic approach to include noise in computational models of neuronal circuits
involved in vision.

Binocular rivalry is a visual phenomenon where two images presented simultaneously and independently to the
two eyes alternate in perception irregularly. Computational models of this phenomenon rely on neuronal
networks of the visual cortex with competition between populations responsive to different patterns, and the
switch in perception is proposed to result from random perturbations in neuronal activity.

Here, we compare three biologically plausible stochastic processes by studying how they affect the simulated
dynamics of binocular rivalry. We include white Gaussian noise, usually regarded as the null hypothesis for
noise, Ornstein-Uhlenbeck noise, a model of noise filtered by synapses, and pink noise, a statistical process
found in natural phenomena from earthquakes to heartbeats, and in measures of brain activity such as
magnetoencephalography and local field potentials. We simulate a network with three layers of neurons: a
monocular layer, a binocular layer, and a layer of ocular opponency neurons, which detect interocular conflict.

By simulating the model for a wide range of parameter values, varying image input contrast, noise intensity, and
noise correlation time, we find that temporally uncorrelated white noise does not produce strong rivalry (Fig. 1).
We also estimate the minimum correlation time constant (t~200 ms) for Ornstein-Uhlenbeck noise to be
consistent with experimental values of percept durations, which have been measured to be between 1 and 10
seconds. Although pink noise and Ornstein-Uhlenbeck noise have similar phase diagrams when looking at
rivalry strength (Fig. 1), calculation of the coefficient of variation of percept durations reveals that pink noise
(CVpink = 0.59 + 0.08) is better than Ornstein-Uhlenbeck noise (CVOU= 1.0 £ 0.1) at reproducing experimental
values, between 0.4 and 0.6. Our model also predicts that the strength of rivalry is lower at extreme input
contrasts, close to 0 and 1.

This comparison of commonly used, but rarely characterized, models of synaptic noise may guide future
computational works on binocular rivalry and other perceptual phenomena where noise has a relevant
contribution.
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The hippocampal cells, broadly categorized as spatial cells, have a key role in the storage of experience, which is
essential for learning, navigation and formation of memory. The processes behind this storage are not well
known. We devise a computational model for understanding theta-sequences during linear motion. Theta
sequences are “clear, ordered sequences” observed in the theta wave, with segments reflecting the position, time
during motion in an animal brain [1]. Neurophysiological findings suggest that the hippocampal theta sequences
are found ahead or behind the position in the path trajectory when there is altered velocity [2], and these
sequences have a phase relationship with the background theta rhythm [1]. While studies have shown that the
theta sequences have a phase precession, some findings note the dependence of the theta sequences on velocity,
directionality and activity to depict Spatio-temporal signals and spatial representations of present and future [3-
6].

We present a network model (Fig.1) centrally built with oscillatory neurons as input and has multiple layers. The
first layer is the Path integration (PI) layer that encodes the displacement in the preferred direction (forward or
backward) by encoding a scaling factor of § and the speed. The base frequency of the oscillators is modulated
using speed and beta as modulating factors. The output is fed to layers of stacked auto-encoder that extract the
principal components. Finally, we have a hidden layer that acts as the regressor to predict the velocity.

The neuron output from this layer is analyzed by a) thresholding the firing, b) filtering the neurons based on
sequential firing and c) rearranging the neurons based on position; we thus identify the wave firing pattern
coherent to the theta rhythm in order of the motion. We can replicate the firing pattern observed in the case of
theta sequences in one-dimensional motion [1]. Thus, the output (Fig. 1) helps observe theta sequences based on
the underlying Spatio-temporal cells in the model that extends the applicability of the current oscillator-based
modelling framework to understand navigation and learning.
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Figure 1. A Model architecture. B The Spike Raster Plot of a subset of neurons. C Power spectral density of the
raw neuron output shows the coincidence of all peaks with the maximum around 6 Hz. D The extracted phase
from the Hilbert transform of the output wave and E Raw neuron output from the final layer, the peaks occur in
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Working memory system in the brain combines the temporary storage and manipulation of information in the
service of reasoning and the guidance of decision-making tasks [1,2]. To maintain this, our brain scans the entire
image piecewise by attending to only a small region of the entire big picture and part by part aggregates the
entire information given in the image, with fading memory of the information represented by the parts focused at
very early on and best recollection of the most recently focused regions. Similar to this, we propose a dual
channel multilayered convolutional recurrent neural network architecture to solve the image reconstruction
problem. We model the recurrent connections according to the architecture (Fig. 1), consisting of a network with
both Elman and Jordan layers as recurrent connections. The Elman connections form the self recurrent
connections for each of the convolutional layers present in the architecture [3] while the Jordan connection forms
the recurrent connection from the penultimate layer to the previous layers [4]. We try to reconstruct two kinds of
images, one with brightness diminishing by a constant factor across the image regions encountered in the past
time steps and the other with constant brightness across all the time steps. The inputs across time steps are the
heatmaps signifying the location in the image where the current attention is focused at for the first channel and a
zoomed in version of the attention window for the second channel. The output at each timestep is the aggregated
image from the initial up to the current timestep with diminishing brightness across the regions encountered in
the past, precisely how our brain memory works, in the first case and with constant brightness in the second. We
test the performance of our proposed architectures on the MNIST dataset and the Fashion MNIST dataset. Using
the Elman Jordan recurrent connections we obtain reconstruction test Mean Squared Error losses of 0.0022 on
the MNIST dataset and 0.0032 on the Fashion MNIST dataset after training for 100 epochs for images with
diminishing brightness in the output over the previous timesteps. The reconstruction test Mean Squared Error
losses are 0.0049 on the MNIST dataset and 0.0084 on the Fashion MNIST Dataset for images with constant
brightness after training for 100 epochs. Thus, we are able to achieve good image reconstruction results with a
network architecture with lightweight recurrent connections by extending the Elman Jordan equations to a
convolutional form and utilizing a dual channel architecture.
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Legged animal locomotion such as walking and running is based on periodic limb movements. The neural
circuits underlying various rhythmic motor behaviors can be traced to the central pattern generator (CPG).
Hence, bio-inspired robotics aims to employ CPGs to control limb movement for synchronized locomotion [1].
A CPG can produce coordinated rhythmic output signals without any feedback mechanism while receiving
simple input signals from the higher regions in the brain, ideal to be implemented by a system of coupled limit-
cycle oscillators. Recently, the surge in the development of solid-state nanoelectronic devices has enabled the
implementation and experimental realization of neuromorphic structures designed to reproduce various
computational features observed in the neural system.

A single relaxation oscillator (Fig. 1a) can be realized by placing a two—terminal memristive device composed of
Vanadium Dioxide (VO2) in series with a MOSFET and a capacitor [2]. We consider a network of four such
oscillators connected in a ring topology with capacitive nearest-neighbor bidirectional coupling (Fig. 1a). The
coupling capacitance CC controls the coupling strength, wherein a high (low) CC corresponds to an inhibitory
(excitatory) connection. A previous work demonstrated a three-gait CPG using a similar network wherein the
difference in intrinsic frequencies between the oscillators was used to obtain phase shifts in the frequency-locked
regime [3]. In this simulation-based study, we demonstrate a six-gait neuromorphic CPG by exploring the
dynamics of a ring network by modulating the coupling strengths between oscillators. A range of phase-tunable
spatiotemporal patterns emerge in the network while modulating the coupling elements under different coupling
schemes. We propose three such schemes; when tuned accordingly, the network can produce steady-state phase
patterns that are suitable to closely generate all the primary walking gait patterns observed in quadruped animals
according to Alexander’s classification [4] (Fig. 1b). The generated patterns along with the corresponding
coupling parameters are depicted in Fig. lc.

In conclusion, our results illustrate that coupled nano-oscillators offer a compact and low-power hardware [3]
platform to model a CPG. Additionally, inserting transistors in series with the coupling capacitors makes the
network real-time programmable, where the locomotion speed and gait patterns can be modulated by just
adjusting a small set of bias voltages, paving the way for feedback-driven adaptive gait generation. Ultimately,
such a platform for locomotion control would provide an excellent opportunity to realize bio-inspired
neuromorphic hardware for autonomous robots and other applications.
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To produce timely responses, animals must conquer delays from visual processing pathway by predicting
motion. Previous studies [1] revealed that predictive information of motion is encoded in spiking activities of
retinal ganglion cells (RGCs) early in the visual pathway. In order to study the predictive properties of a retina in
a more systematic manner, stimuli in the form of a stochastic moving bar are used in experiments with retinas
from bull frogs in a multi-electrode system. Trajectories of the bar are produced by Ornstein-Uhlenbeck (OU)
processes with different time correlations (memories) induced by a butter-worth low-pass filter with various cut-
off frequencies.

We then investigated the predictive properties of single RGC by calculating the time shifted (3t) mutual
information (MI(x,r;0t)) between spiking output (r(t)) from a single RGC and the bar trajectories (x(t)).
Intuitively, the peak position of MI(t) is typically negative when considering the processing delay of the retina.
Our measured peak positions of MI(6t) for some RGCs were characterized by both positive and negative peak
position under low-pass OU (LPOU) stimulus. This finding indicates that some RGCs (P-RGCs) are predictive
while the others are non-predictive (NP-RGCs). For LPOU with various cut-off frequencies, the MI peaks from
the P-RGCs are positively correlated with the correlation times of the stimuli while those from the NP-RGCs are
always around a fixed negative number (-50ms).

In order to further understand the mechanism of prediction, we develop a negative group delay model which is
based on Voss’s [2] paper to generate anticipative responses. We extend our model to spatial version and use the
same stimulation condition as we use in experiments. The model indicates that delayed negative feedback is
crucial for producing MI(x,r;0t) similar to those observed in experiments. Besides, we also show feedforward
inhibition can also generate similar prediction dynamics. Thus, we presume horizontal cells’ feedback and
feedforward inhibition may participate in this prediction phenomenon. Besides, our feedback and feedforward
model can also predict constant velocity moving bar [3]. After adding LPOU noises into constant velocity
moving bar, our model even predicts better than gain control model [3]. To sum up, our feedforward and
feedback model can anticipate both stochastic and constant velocity moving bar.
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Many studies have suggested that episodic memory is a generative process, but most computational models
nevertheless adopt a storage view according to which the contents of the memory more or less faithfully reflect
the content of the experience. As a result, the investigation of generative episodic memory uses conceptual
descriptions and remains rather vague. We, therefore, propose a computational model for generative episodic
memory based on one central hypothesis: episodic memory traces store and retrieve selected aspects of an
episode in a compressed format, which are necessarily incomplete. The missing information is filled in during
retrieval based on general semantic information.

The computational model consists of two parts: the visual processing network and the semantic network. First,
the images are passed through an autoencoder (AE) structure. The encoder part models the processing of
episodic experiences into more abstract gist representations. These latent representations can be used by the
decoder to reconstruct the missing details. This structure represents the visual pathway in the neocortex and is
implemented using the Vector Quantized Variational Autoencoder (VQ-VAE). Attention is modeled by selecting
parts of the latent neural representation and storing them as a memory trace. This process is hypothesized to
occur in the hippocampus. To reconstruct the full latent representation from this partial memory trace, we use a
semantic network based on the Pixel-CNN architecture. This network is trained on the full latent neural
representations and learns their structure and statistics. It can then generate new valid neural representations or
complete the missing parts of partial memory trace according to the learned statistics.

Both the VQ-VAE and the Pixel-CNN are state-of-the-art machine learning generative algorithms, which allows
us to use more realistic sensory inputs in contrast to the majority of hippocampal memory models that process
abstract and simple patterns. Experiments have shown that objects that are experienced in a semantically
congruent context are recalled better than objects in an incongruent context, as there is no conflict between
episodic and semantic memory. Also, interactions with objects (i.e., paying attention) increases memory
accuracy. Moreover, it has been shown that, in incongruent cases, objects that are not remembered episodically
correctly are more often remembered semantically correctly than completely wrong. Our computational model
accounts for the aforementioned experimental results.

This shows that the model is successful in capturing the complex statistics from the input. When only parts of the
latent neural representation are attended and stored, and then later recalled, the results are not necessarily
faithful. Still, they are valid and likely reconstructions consistent with the original data. Our modeling results
support our hypothesis on generative episodic memory. The stored gist has far less information content than the
input images; nonetheless, the inputs can be reconstructed from the gist with the help of a semantic network. The
model is also capable of dreaming, i.e., generating unseen but valid episodes. In conclusion, our model suggests
how generative episodic memory could be implemented and provides the basis for further investigations and
comparisons to neural processes.
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Loss of olfaction is a common early symptom of several neurodegenerative diseases, including Alzheimer’s
disease and Parkinson’s disease [1]. Pathological markers of these diseases are found in the olfactory bulb at
early stages of disease progression [2,3], and studies replicating disease-like pathology in animal models have
observed perturbations in oscillatory activity in the olfactory bulb [4,5]. We implement a simple computational
model of olfactory bulb oscillatory activity and explore the effects of damage to the network. Because synaptic
dysfunction is known to play a role in both Alzheimer’s and Parkinson’s disease [6,7], and as it fits the scope of
the model used here, we limit our focus to this aspect of the pathology and model network damage primarily by
weakening synaptic weights. Damage is propagated throughout the network in several schemes: localized,
spreading, and globalized. Moderate levels of globalized and spreading damage result in increased oscillatory
power. Damage reduces inhibition and increases the average activity level of the mitral cell model units, leading
to an increase in network oscillations that critically depends on the nonlinearity of the activation function.
Greater damage results in loss of oscillations, which can be predicted by a linearized analysis of the model
activity. Thus, we explore one potential mechanism behind the increased gamma oscillations found in some
animal models of Alzheimer’s disease [4,5] and highlight the potential for olfactory bulb behavior to play a role
in early diagnosis of disease.
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Sleep's fundamental role for the processing of memory and its consolidation has now received substantial
experimental support. Nevertheless sleep can be hardly considered as an homogeneous state: it consists of
multiple stages that can be broadly classified in the two main categories of REM and non-REM (nREM) sleep.
These two sleep states show widely different physiological characteristics both at the level of local activity and
in terms of global brain dynamics. Importantly, their relative contribution to memory function is largely
unknown and questions about their interaction during off-line processing of newly acquired information have
remained mostly untapped.

In this study, we address these issues by combining a goal-directed learning task with long-term wireless
electrophysiological recordings in the Hippocampus of rats. After the acquisition of a novel episodic-like
memory, place cell activity was continuously tracked for an extended period of time (>10hrs) while animals
rested. We then combined multiple decoding approaches to obtain a time-resolved characterization of the
evolution of a memory representation during sleep following its initial encoding. Over the course of several
hours, we could track a continuous drift in the reactivated activity patterns, as they progressively accumulate
distance from the representation expressed at the end of learning. Intriguingly, the direction of drift is not
constant: a closer inspection in fact reveals opposing effects for REM and nREM phases. While nREM sleep
‘pushes’ the reactivated activity away from the old representation, REM sleep coincides with periods of reversal,
partially resetting the ongoing reconfiguration. REM and nREM reactivations present otherwise only minor
differences: while the reactivation content is largely overlapping in the two phases, activity patterns expressed
during REM present a higher similarity to the awake ones, possibly due to REM slower temporal dynamics.
Further analysis identified the main source of memory representation drift in the differential modulation of firing
rates over the course of sleep, resulting in a significant sparsification of the assemblies responsible for the
encoding of goal locations.

Together these results present a first-time detailed account of the effects of off-line reactivations on the evolution
of hippocampal memory representations. We show how the effect of REM and nREM stages integrate over the
course of sleep in reshaping memory related neural activity, a phenomenon relevant not only in understanding
the nature of neural coding but also in establishing a link between memory transformation and homeostatic
processes.
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Neuronal assemblies are thought to underlie brain-wide cognitive and mnemonic functions, and were first
hypothesized to exist more than 70 years ago by Donald Hebb. He envisioned them as being densely
interconnected subsets of neurons which act in a loosely synchronized manner by consistently activating when
the subject thinks of a particular concept or idea. Neuroscientists have sought assemblies and tried to
characterize them ever since. In the last decade, numerous computational techniques have been developed to
extract patterns of co-activation from multiple neurons recorded simultaneously. This co-activation based
approach can be, however, conceptually different from Hebb’s original view. Especially in brain areas where
neurons show clear firing preferences for one or more environmental variables, strong pairwise correlations do
not necessarily reflect an underlying physical or even functional connectivity; in fact, awake neural correlations
are mostly explained by their co-selectivity for stimuli.

Here, we introduce a method for detecting neural ensembles that is not influenced by common stimulus
selectivity or global synchrony. We do this by employing proper null models of neural activity, which we utilize
to simulate firing and determine the amount of neural activity that exceeds expectations. From those traces we
then extract stimulus-independent co-activation patterns. This procedure enables us to detect densely
functionally or physically interconnected subsets of excitatory neurons, together with their above-chance co-
activation patterns over time.

We validated our method on synthetic data, where we found that the underlying true assemblies were detected
more reliably than existing co-activation based approaches. We then applied the analysis on several datasets of
simultaneously recorded single cells in different brain regions. These included the hippocampus, prefrontal
cortex and entorhinal cortex of rats performing foraging, spatial learning and rule switching tasks. Crucially,
these data allow us to investigate the presence of structured interactions between neural assemblies belonging to
different brain regions. We find that cross-area interactions are time-modulated, emerging in correspondence
with periods of higher cognitive load, such as rule switching or contingency update.

Our evidence for the key role in the acquisition and transfer of information played by distributed neural
ensembles, points to the necessity of effective detection methods. Our approach enables us to disentangle the
different levels of interaction in complex networks, unveiling the relevant neural structures responsible for
information processing and bringing us closer to the original Hebb intuition.
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The afferent connectivity of a neuron depends heavily on the size and structure of its dendritic tree; under
general assumptions the number of potential excitatory synapses a neuron is expected to receive is proportional
to the total length of its dendrites [1,2]. Conversely, the expected local input resistance of a dendritic tree is
approximately inversely proportional to its length, as synaptic currents can more easily dissipate both across the
larger cell membrane and along the dendrites themselves [3,4]. Taken together, these two factors imply that the
influence of a single synaptic contact on the excitability of a neuron is likely to be inversely proportional to the
number of connections that that neuron receives across its entire dendritic tree (Fig. 1A). Thus, dendrites
intrinsically provide an LO-normalisation on synaptic inputs.

Here we study the computational implications of this effect using sparsely-connected artificial neural networks
(Fig. 1B). These networks adapt their connectivity to solve defined computational tasks such as classifying
inputs and have a number of advantages in terms of efficiency over the more common dense networks [5,6]. We
apply the normalisation implied by dendritic structure to such networks: artificial neurons receiving more
contacts require larger dendrites and so each individual contact will both have proportionately less influence and
learn more slowly in response to a given error signal. We analyse various sparsely-connected, feedforward
network architectures and find that the learning performance is significantly increased (Fig. 1C). This
phenomenon also applies in self-organised recurrent networks with spatially extended units (Fig. 1D, E) and
provides an improvement over other widely used normalisations in sparse networks (Fig. 1F). Our result is both
a practical advance in machine learning and a previously unappreciated way in which the structural properties of
neurons may contribute to their computational function.
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Figure 1. A Schematic of the relationship between dendritic length and connectivity; larger dendrites imply
increased afferent connectivity. B Schematic of a sparsely-connected artificial neural network with one hidden
layer. C Improved learning performance of networks with dendritic normalisation (orange) against control
networks (blue). The top row shows training set cross-entropy loss and the bottom row shows test set accuracy.
From left to right the networks have one hidden layer with 100 units and 20% connectivity on MNIST digit data,
the same network on MNIST fashion data, and a convolutional network with 20 5x5 filters and a sparsely
connected layer of 100 units and 20% connectivity on the MNIST fashion dataset. D Distributions of dendritic
lengths, afferent connection numbers, and somatic responses to distributed inputs for excitatory neurons in a self-
organised recurrent network with spatially extended units before (light green) and after (dark green) training. E
Example network with spatially extended units. Excitatory cells are green and inhibitory cells are red. F
Comparison of learning rates for neurons with different numbers and weights of connection under different
normalisation.
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With the aid of optogenetics, two-photon light sheet microscopy allows us to capture the activity of thousands of
neurons in the zebrafish larva. In our study, we focus on the spontaneous activity in the zebrafish optic tectum,
whose neurons can be organized into functional neural assemblies — groups of highly correlated, co-firing
neurons. Previous studies [1-3] have shown that these assemblies display attractor-like dynamics including
reverberation, sparse to full activation, and winner-take-all dynamics.

To study the mechanism underlying the observed dynamics, we use techniques from topological data analysis
introduced in [4] to analyze the intra-assembly correlation matrices. Given a correlation matrix induced by the
neuronal firings of a given assembly, one may construct a filtration of clique complexes and compute Betti
curves which reveal structure that is invariant under applying a monotone nonlinearity to the entries. To briefly
describe the construction, we can view a symmetric matrix as the weighted adjacency matrix of a complete
graph. By adding edges in (reverse) order relative to their weights, we produce a sequence of graphs, and by
filling in cliques, construct a filtration of clique complexes. To each clique complex, we compute the k-th Betti
number, which indicates the number of k-dimensional “holes” of a clique complex, and by recording the k-th
Betti numbers as edges are added, we produce the k-th Betti curve, k.

In Figure 1, the k-th Betti curves (fork > 1) of identified assemblies (c1,e1) are found to be identically zero,
which is indicative of a low rank structure [5]. These low or identically zero Betti curves are visible across all
assemblies. To check that this is not an artifact of the way the correlation matrix was computed, we compare the
Betti curves to those induced by the correlation matrix of a random subset of neurons of the same size (d1,f1).
We see that the Betti curves of the real assemblies are clearly different from those of the random assemblies. In
contrast, we see that the singular values of all four matrices (c2-f2) are both qualitatively similar and indicative
of full rank. Hence, the techniques in [4] allow us to see structure in the correlation matrix which is not readily
visible using spectral techniques from linear algebra. In addition to analyzing the correlations of the entire
recording, we analyze the correlations restricted to when the assemblies are “on” (a large proportion of neurons
are firing intra-assembly) or “off,” and find that when the assembly is on, the low Betti curve signature is
preserved across assemblies. We propose that this low rank structure is a signature of the attractor-like dynamics
observed in the zebrafish optic tectum.

Acknowledgements
This work was supported by NIH RO1 NS120581.

References

1. Romano SA, Pietri T, Pérez-Schuster V, Jouary A, Haudrechy M, et al. Spontaneous neuronal network
dynamics reveal circuit’s functional adaptations for behavior. Neuron. 2015 Mar 4;85(5):1070-85.

2. Pietri T, Romano SA, Pérez-Schuster V, Boulanger-Weill J, Candat V, et al. The emergence of the spatial
structure of tectal spontaneous activity is independent of visual inputs. Cell reports. 2017 May 2;19(5):939-48.
3. Avitan L, Pujic Z, Mélter J, Van De Poll M, Sun B, et al. Spontaneous activity in the zebrafish tectum
reorganizes over development and is influenced by visual experience. Current Biology. 2017 Aug
21;27(16):2407-19.

4. Giusti C, Pastalkova E, Curto C, Itskov V. Clique topology reveals intrinsic geometric structure in neural
correlations. Proceedings of the National Academy of Sciences. 2015 Nov 3;112(44):13455-60.

5. Curto C, Paik J, Rivin I. Betti Curves of Rank One Symmetric Matrices. arXiv preprint arXiv:2103.00761.
2021 Mar 1.



assembly 83

cl di
assembly 83, n = 67 random assembly 83, n = 67
60] Ba 60| Ba
50/ B 501 B
— b — B
40 B 40 Bs
30 30
20 20
10 01 A,
Pl
%U 0.2 04 UbAOB 10 %ﬂ 02 o ﬂ&ADE 10
edge density edge density
c2 rank = 67 d2 rank = 67
175 700
% 150 3 600
=1 3 spo/
= 125 =
g’ 100 g 400
8 8 300
3 e |
o 50 D200
c { e
] @ 100
o 0

6 10 20 30 40 50 60 70

index of SVs

6 10 20 30 40 50 60 70
index of SVs

assembly 122

massemb\y 122, n=69

ran?ﬂcm assembly 122, n = 69

60 By 60/ Bo
sol B sl B
— f — b
o1 B 2 [
304 304
201 201
10 10 .""' Myt
%ﬂ 02 04 05. 08 10 %O 02 04 OSAOB 10
edge density edge density
e2 rank = 69 rank = 69
700
400
%]
g § 600
= = 500
o 300 o
> > 400
LE 8200
B & 200
8’ 100 E’
B "o 100

0
0 10 20 30 40 50 60 70

index of SVs

6 10 40 30 40 50 60 70
index of SVs
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Reliable sensation of cold temperature and its change is necessary for stimulus-relevant behavioral responses.
We combined computational and electrophysiological methods to investigate the neural dynamics of Drosophila
larva cold-sensing CIII primary afferents. These neurons express a suite of thermoTRP channels implicated in
noxious cold sensation [1].

We show that due to variability of responses across individual CIII neurons, as a population, they can encode
both the magnitude of cold temperature and the rate of temperature change. Cold-evoked responses of CIIT
neurons included phasic and tonic components: the peak of firing rate that occurred within 10-20 sec of
stimulation was followed by frequency adaptation reaching steady-state spiking activity. The steady-state
frequency of CIII neurons was temperature-dependent. The estimated temperatures of the half-maximal
activation of individual neurons weredistributed over a wide temperature range. The magnitude of the firing rate
peak significantly correlated with the maximal rate of temperature change.

Based on transcriptomic data from CIII neurons [1] and patch-clamp data on gating characteristics of Drosophila
Na+ and K+ channels [2,3], we developed a computational model that includes a TRP current with temperature-
dependent activation and Ca2+- dependent inactivation. Modeling suggests that the kinetics of TRP current is
responsible for the tonic-phasic response and sensitivity to the rate of temperature change. A rapid inactivation
(~3-20 s) of TRP currents could explain the initial peak of spiking rate at rapid temperature fall and subsequent
frequency adaptation when the temperature reaches a steady level. We identified two basic cold-evoked patterns
of CIII neurons: bursting and spiking. Bursts were more frequently seen within the peak of spiking rate in
response to a fast temperature drop, followed by tonic spiking with frequency adaptation. On the other hand,
when the temperature was decreased slowly, fewer neurons showed bursts of activity, and the bursting activity
did not form a peak of activity.

Using computational model, we described the mechanisms of two basic CIII cold-evoked activities: spiking and
bursting, and phasic and tonic components of their responses, which were defined by dynamics of TRP channels
together and their interaction with the voltage-gated Ca2+ current and Ca2+- activated K+ currents. By applying
an evolutionary algorithm, we obtained parameter sets of the time constant of TRP inactivation, the temperature
of half-maximal activation, the steepnesses of TRP current activation, and inactivation representing key features
of the CIII spiking responses recorded in experimental data. The present results bring new insights into the
potential molecular and biophysical mechanisms underlying neural processing of noxious and innocuous cold
stimuli.
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Life-supporting rhythmic motor functions like heart beating in invertebrates and breathing in vertebrates require
indefatigable generation of a robust rhythm by specialized oscillatory circuits, Central Pattern Generators
(CPGs). Yet, CPGs should be sufficiently flexible to adjust to changes of the environment and behavioral goals.
Neuromodulation modifies the CPG’s rhythm by co-regulating multiple ionic currents, including the Na*/K*
pump current, Iump. In the leech heartbeat CPG, endogenous neuropeptide myomodulin downregulates Iump and
upregulates I to speed up the CPG’s thythm [1]. The interaction of these currents dramatically speeds up the
rhythm of the leech heartbeat CPG when Iump is activated by increased internal Na* concentration, [Na'];,
produced by application of monensin [2]. Comodulation of Iump and I, supports the CPG’s functional activity in
a wider range of the pattern’s cycle period and avoids dysfunctional regimes [3].

We anticipate that the interaction of Ipump and persistent Na* current, Ip, produces a mechanism supporting
functional bursting. Ioump is an outward current activated by [Na"]; and is a major source of Na* efflux. Ip is a
low-voltage activated inward current and is a major source of Na* influx. Both currents are active between and
during bursts. We apply a combination of electrophysiology, computational modeling, and dynamic clamp to
investigate the role of Ipump and Ip in the leech heartbeat CPG interneurons (HNs). Applying dynamic clamp,
introducing additional Ipump and Ip into the dynamics of a living synaptically isolated HN neuron in real-time [4],
we show that their joint upregulation produces transition into a new bursting regime characterized by higher
spiking frequency and more depolarized base potential during the burst. Further upregulation of Iyump speeds up
the HN rhythm by shortening burst duration and interburst interval.

In summary, the dynamic interaction of Na*/K* pump current with persistent Na* current offers a mechanism of
generation and regulation of robust and flexible pattern of bursting activity.
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Growing evidence suggests that specialized oscillatory neuronal circuits controlling locomotion, called
locomotor central pattern generators, are capable of producing a variety of rhythmic patterns in response to
changes in neuromodulator tone [1,2]. Besides the continuous bursting rhythm (period ~ 1 s), isolated neonatal
rodent spinal cord preparations exhibit a complex pattern evoked by dopamine: a very slow episodic bursting
rhythm (period ~ 50 s) in which episodes of fast bursting rhythm are separated by long pauses [1].
Neuromodulation can cause transitions between these rhythms by altering key properties of intrinsic ionic
currents.

Here, we describe how a basic half-center oscillator (HCO) model of a CPG, modified from [3] and assembled
of two mutually inhibitory neurons, could produce both types of patterns. In the model HCO, each model neuron
represents a population of interneurons in the spinal cord. Each neuron is constructed as a single compartment
model with ionic currents introduced using Hodgkin-Huxley formalism as well as a dynamical intracellular Na*
concentration, [Na*];, and a Na*/K*™ pump current, Ipymp. The HCO model successfully simulated many important
characteristics of the experimentally recorded episodic pattern and alterations caused by pharmaceutical agents.
The model’s mechanism underlying episodic activity depends mainly on two intrinsic currents: Ipymp and h-
current, In. Consistent with the effects of ouabain bath application in experiments, the decrease of maximal pump
activity caused a transition from episodic to continuous bursting. When we increased the [Na'l; influx, indirectly
increasing Ipump, episode duration (ED) and episode cycle period (EP) increased while interepisode interval (IEI)
did not change significantly, which is consistent with the bath application of monensin. Increase of the maximal
conductance of Thincreased ED without a significant effect on IEI and at a certain critical value caused a
transition into continuous bursting, which is consistent with experiments using ZD-7288 bath application. We
found that a single model neuron is capable of generating episodic activity and activation and deactivation
oflhgovern the episodic pattern. By applying slow—fast decomposition of the single neuron model, we elucidated
the mechanisms underlying episodic bursting generation. These mechanisms involving the balance of I and Ipump
may be applicable to other biological systems that engage in episodic activity.
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It has been experimentally verified that synchronization and partial synchronization of brain activity play an
important role in the pathogenesis of several neurological diseases, such as Parkinson’s disease, Alzheimer’s
disease and essential tremor [1,2] (among others), as well as in normal functioning brain circuits [3-6] (e.g.,
during memory consolidation). However, the fundamental principles and constraints that govern the intricate
timing and specificity of the time-evolving patterns of partial synchrony are not well understood.

Here we aim to relate the mathematical concept of the chimera state [7,8], where synchrony and asynchrony
coexist, to partial synchronization in the brain. So far, chimera states have been investigated through bottom-up
approaches using simple mathematical models [9,10]. However, these simple models are not directly applicable
to real biological systems (e.g., brain regions), which are extraordinarily complex networks of coupled
dynamical systems. Yet, there has been some initial work relating chimera states to brain-related disorders such
as epileptic seizures, Parkinson’s and schizophrenia [11-14], as well as in the normal operating regime of circuits
like the hippocampus [6].

Here we initiate a novel approach by training the synaptic connections of an artificial recurrent neural network
with techniques in machine learning to display a chimera state. We establish that chimera states can in principle
emerge at the mesoscopic and macroscopic level in brain circuits, and do not require precisely specified
connectivity or network topologies (e.g. rings). These network embedded Chimera states are quite generic with
the connectivity matrices being primarily random, with small perturbations off of randomness. Our results imply
that the emergence of chimeras is quite generic at the meso and macroscale suggesting their general relevance in
neuroscience in both pathological and healthy circuits.
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At Alzheimer’s disease (AD) onset, accumulation of amyloid-$ (AB) correlates with excitotoxicity and alteration
of glutamate uptake. Experiments show that oligomeric AP in mouse cultures modifies the expression of
astrocytic GLT1 transporters, which remove most of the extracellular glutamate, preventing excitotoxicity. In
this regard, we consider how extracellular AP modifies GLT1 expression and how it impacts glutamate time
course in the peri-synaptic space. Accordingly, we develop a mathematical model for glutamate diffusion and
uptake by astrocytic transporters. Since extracellular glutamate and A} both modulate and depend on calcium
homeostasis and firing properties of the tissue, we include these in our model to estimate the conditions for
excitotoxicity. Therefore, we upscale our description to a tissue level, and we consider the dynamics of the
average firing rate, glutamate, AP, and intracellular calcium concentration. Our model predicts that when A
lowers GLT1 concentration below a threshold, the accumulation of extracellular glutamate increases. This
promotes a positive feedback loop that induces further synaptic glutamate release and thereby excitotoxicity.
When including calcium and firing dynamics, changes in astrocytic glutamate uptake and basal firing activity
result in a third and intermediate state: the asymptomatic stage of the disease that could degenerate into
pathology, or reverse into a healthy brain. These results provide theoretical support to the pivotal role of AP in
triggering excitotoxicity by perturbing neuronal activity, glutamate, and calcium homeostasis. Furthermore, we
can foresee the idea of Alzheimer’s as a multistage disease, where transitions are driven by Ap.
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Neuromorphic hardware is based on emulating the natural biological structure of the brain. Since their
computational model is by design similar to standard neural models, we would like to use it as a computational
acceleration for both research projects, and biomedical applications. However, in order to exploit this new
generation of computer chips, rigorous simulation and consequent validation of brain-based experimental data is
imperative. In this work, we investigate the potential of Intel's fifth generation neuromorphic chip ‘Loihi’ [1],
which is based on the idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain. The work is
implemented in context of simulating the Leaky Integrate and Fire (LIF) models [2] based on the mouse primary
visual cortex matched to a rich data set of anatomical, physiological and behavioral constraints. We address
neuromorphic hardware challenges viz., fixed-point arithmetic, bit-size constraints and a distinct algorithmic
time. Simulations on the classical hardware [3] serve as the validation platform for the neuromorphic
implementation. In spite of the hardware implementation constraints, we find that Loihi is highly efficient
producing high-quality replication of the classical simulations. In addition, it scales extremely well in terms of
both time and energy performance as the network size gets larger.
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Dendrites are the sub-compartment of neurons which are important for receiving signals from other neurons and
processing into the neuronal cell body [1-3]. Studying the full electro-diffusion ion dynamics [4-7] will allow us
to understand neuronal structures and function that are still mysterious under the approximate classical electric
membrane model.

The electro-diffusion of ions could only have impact on relatively small volumes, where the ions with charge
fluxes into this space accumulate extremely quickly and that concentration spike should allow the electric
potential gradients to come into play [2,4,7].

In this presentation, we have investigated the electro-diffusion impact on one of the typical small sub-
compartment dendrite. The Nernst-Planck equation has been used for the dynamics of ions, together with
voltage-gated ion channel dynamics, and the voltage equation for dendritic membrane [3,4].

Our model shows that, for a single pulse of injection of alpha current, the one-dimensional dendritic model
shows only 0.13 mV difference due to electro-diffusion. However, for multiple spike stimulations, the membrane
potential of dendrite accumulated the small discrepancy by electro-diffusion and eventually approached a
significant magnitude, depending on the frequency of stimulation. Importantly, the impact can also spread to
neighboring region from 10pm at 20Hz to more than 20um at 100Hz stimulation. In addition, the electro-
diffusion effect is dependent on the diameter of the dendrites, as indicated by the Nernst-Planck Equation.

We have also investigated the synaptic cooperation and competition by injecting two currents within certain
distances; according to the above analysis, the membrane potential by electro-diffusion may only interact and
play a significant function within 10-15um. For injection distance more than 20pm the impact would not
superpose on each other, according to our simulation.
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Neuromorphic hardware simulating Spiking Neural Networks (SNN) is becoming more broadly commercially
available. There are still relatively few neural-based algorithms that can effectively operate in this unfamiliar
development environment. We conjecture that algorithms based on specific sensory modalities can be used
more broadly for general sensory signal processing. In this research project, we have applied one of these
neuromorphicalgorithms, based on the structure of the mammalian olfactory bulb [1], to speech keyword
recognition. Using the implemented SNN resulted in efficient and accurate sound recognitions. In order to adapt
the aforementioned neural algorithm to audio analysis, we performed several sounds-specific preprocessing
steps. First, a gammatone filter was applied to reduce the noise of the short audio sample and convert temporal
sound signal to positional frequency signal. The single odor test algorithm was altered to be used for audio
processing on extracted columns from a gammatone filter spectrogram made from a sound file. The results
showed that over sequential “olfactory” gamma cycles, the algorithm successfully achieved one-shot online
learning (Fig. 1). The graphs showing the frequency measured by each sensor were noticeably distinguishable.
Currently, we are experimenting with multiple audio samples to test the potential identification of speakers.
Implementation on the Loihi neuromorphic hardware chip would lead to an increase in the magnitude of speed
and energy efficiency as compared to general-purpose computers. Thus, one-shot learning has been achieved and
the modified neuromorphic algorithm demonstrates the validity of our cross-modality hypothesis.
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Figure 1. Similarity of testing audio to learned audio.
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Synchronization in the brain underlies information processing across multiple areas. Notably one can observe
spatially structured coherence states where multiple and tunable synchronous brain subnetworks coexist. From the
point of view of nonlinear dynamics, these correspond to clustered synchronization or chimera states (coexistence
of synchronous and asynchronous activity [1]). For example, recent experiments have shown that chimera states
are observed in the brain during epileptic seizures and unihemispheric sleep [2].

Despite the recent interest in chimera states, the ability to robustly and automatically identify such complex spatio-
temporal dynamics of neuronal networks correctly remains a key challenge. Arguably previously proposed
measure measures for chimera state identification (the Kuramoto order parameter [1], strength of incoherence [3],
and the y?-parameter [4]), have significant drawbacks: inability to identify cluster synchronization, instability for
the travelling wave regime, need for hand-tuned parameter selection, empirical selection of the regime boundaries.

We propose a new approach for large-scale studies of chimera states [5] — adaptive coherence measure (ACM).
ACM is based on the modification of y?>-parameter. We suggest to solve the optimization problem: R? = max: )*
({Vi(t — At)} Ny, where At = (Aty, Aty ..., Aty) is a vector of time lags. Couple (R, L) unequivocally determines
a dynamical regime (see Table 1), where L is the number of unique time lags. For a chimera state, we can determine
large synchronous groups of neurons L, and a large population of asynchronous neurons in the network (see, for
example, Fig. 1).

Table 1. Classification of network dynamical regimes on the basis of the adaptive coherence measure (ACM) and
the number of unique time lags L.

Regime ACM dimension of A4t number of clusters
Asynchronous state R?=0 - -
Global synchronization R*=] L=1] L
Cluster synchronization R*=] I<L<<N L
Travelling waves R*=] L=N -
Chimera state 0< R><] - Ligs

Our approach allows automatic disambiguation of synchronized clusters, travelling waves, chimera states, and
asynchronous regimes. In addition, our method can determine the number of clusters in the case of cluster
synchronization.
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Figure 1. Raster plot (A), frequency distribution (B) and instantaneous snapshot (C) for a traveling chimera state

(R*=0.7779) with two synchronous clusters (Ligs=2). The neuronal network is from [5] (Iex = 95 A/cm?, gsyn = 3

mS/sm?, r = 0.78).
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AnalySim is a website that is being developed to help create and share projects that analyze various types of
datasets. AnalySim aims to help with data sharing, data hosting for publications, interactive visualization,
collaborative research, and crowdsourced analysis. It aims to provide special support for datasets with many
changing parameters and recorded measurements, such as those produced by large-scale neuronal simulation
studies. However, Analysim is not limited to this type of data and allows running custom code. Currently, we
demonstrate a proof-of-concept analysis by embedding JavaScript notebooks provided from ObservableHQ.com.
We plan to include Python Jupyter notebooks in the future.

Offering these features on an interactive web platform improves visibility of one’s research and helps the paper
review process by allowing to reproduce others’ analyses. In addition, it fosters collaborative research by
providing access to others' public datasets and analysis, creating opportunities to ask novel questions, guide one's
research, and start new collaborations or join existing teams. Analysim can be said to provide a “social scientific
environment”, which include features such as forking or cloning existing projects to customize them and tagging
or following researchers and projects. In addition, one can filter datasets, duplicate analyses and improve them,
and publish findings via interactive visualizations. In summary, Analysim is a Github-like tool specialized for
scientific problems - especially when they are large and complex as in parameter search.
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To navigate in a dynamic and noisy environment, the brain must create reliable and meaningful representations
from sensory inputs that are often ambiguous, incomplete or corrupt. From these noisy inputs, cortical circuits
extract the relevant features to forge a ground truth against which internally generated signals from inferential
processes can be evaluated. Since information that fails to permeate the cortical hierarchy can not influence
sensory perception and decision-making, it is critical that external stimuli are encoded and propagated through
different processing stages in a manner that minimizes signal degradation.

In this study, we hypothesize that stimulus-specific pathways akin to cortical topographic maps may provide the
structural scaffold for such signal routing. A pervasive structural feature of the mammalian neocortex,
topographic projections can imprint spatiotemporal features of (noisy) sensory inputs onto the cortex by
preserving the relative organization of cells between distinct populations. Here, we investigate whether the
feature-specific pathways within such maps can guide and route stimulus information throughout the system
while retaining representational fidelity.

We demonstrate that, in a large modular circuit of spiking neurons comprising multiple sub-networks,
topographic projections can help the system reduce sensory and intrinsic noise to enable an accurate propagation
of stimulus representations. Moreover, by regulating the effective connectivity and local E/I balance, modular
topographic precision can instantiate a de-facto denoising auto-encoder, whereby the system's internal
representation is gradually improved and signal-to-noise ratio increased as the input signal is transmitted through
the network. Such a denoising function arises beyond a critical transition point in the sharpness of the feed-
forward projections, and is characterized by the emergence of inhibition-dominated regimes where population
responses along stimulated maps are amplified and others are weakened.

In addition, we demonstrate that this is a generalizable and robust structural effect, largely independent of the
underlying architectural specificities. Using mean-field approximations, we gain deeper insight into the
mechanisms responsible for the qualitative changes in the system's behavior and show that these depend only on
the modular topographic connectivity and stimulus intensity. The general dynamical principle revealed by the
theoretical predictions suggest that such a denoising property may be a universal, system-agnostic feature of
topographic maps. Finally, our results indicate that structured projection patterns can enable a wide range of
behaviorally relevant regimes observed under various experimental conditions: maintaining stable
representations of multiple stimuli across cortical circuits; amplifying certain features while suppressing others,
resembling winner-take-all circuits; and endow circuits with metastable dynamics (winnerless competition),
assumed to be fundamental in a variety of tasks.
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A great advance in the digital reconstruction of brain microcircuits came with the model of the primary
somatosensory cortex (S1) of rats developed by the Blue Brain Project in 2015. In this microcircuit, each column
had around 31,000 neurons, 55 layer-specific morphological population, and 207 morpho-electrical neuron sub-
types. The complex network of S1 included around 8 million connections with 37 million synapses. Here, we
implemented a version of the S1 model using NetPyNE, a high-level Python interface to the NEURON simulator
(Fig. 1). First, we downloaded all data available in The Neocortical Microcircuit Collaboration Portal
(https://bbp.epfl.ch/nmc-portal). Secondly, we imported the 1035 reconstructed cells to NetPyNE and tested the
somatic membrane potential under different current clamp amplitudes. Later, using the connectoma of 7
neocortical columns, we obtained the connection probability rules of the 1941 m-type pathways. The connection
probability between two neurons depends on the distance between them, but we note that, in most cases, two
different fits are required to describe these probability rules. The long-range connections are well fitted by an
exponential decay, but for short range (< 100 um) the connections are well represented by using a linear fit rule.
We reconstructed the S1 in NetPyNE distributing the 31346 cells within a cylindrical volume with 2082 um
height and radius of 210 um, where each sub-type was randomly distributed in its specific layer (L1, L2/3, L4,
L5, or L6). Then, we created the network with synaptic transmission parameters for each pathway and added
spontaneous synaptic release as a Poisson stimulus. Finally, we simulated the model and explored the
spontaneous rates for excitatory and inhibitory synapses in order to find biologically constrained values for
neuronal firing rates.
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Figure 1. A An example of voltage traces for 5 neurons in each of the 55 m-types during spontaneous activity in
the microcircuit. B Microcircuit with 10% of neurons plotted. C, D Soma positions of 31346 cells within a
cylindrical volume with 2082 um height and radius of 210 um.
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Pyramidal tract projecting (PT) neurons are involved in the forwarding of motor commands to the lower motor
neurons and sit strategically in the layer 5B of the cortex, a known output route from the cortical circuit [1,2].
These neurons share the location with another class of pyramidal cells, the intratelencephalic projecting (IT)
neurons, which project mainly to basal ganglia structures and are involved with error correction and motor
planning [3]. Besides its projection targets, another key feature that distinguishes the PT neurons from its other
neighboring cells in the layer 5B is the presence of a hyperpolarization-activated cyclic nucleotide-gated cation
(HCN) channel. This channel is thought to play a key role is in the switching from motor planning to execution
under norepinephrine modulation [3].

The activity of the HCN channels is quantified in terms of its ih-current, a hyperpolarization-induced cationic
current [4,5]. The ih-current is active during rest, inducing a depolarizing effect in the cell [S] and a decrease in
neuronal input resistance [6,7]. HCN channels can be blocked by administration of the drug ZD7288 [8],
allowing for a mechanism to test its contribution to the overall cell behavior [3]. Over the years, authors
proposed different mechanisms to explain the dynamics of the HCN channel [3,7,9,10], with ih-current being
coined as the "funny current" [11], for being an inward current whose conductance increases as the
transmembrane potential approaches the hyperpolarized state [5], for its responsiveness to both voltage and
cAMP [5], and for its leak property, being permissive to K+ and Na+ at a 4:1 ratio [5,12,13]. Another peculiarity
of the ih-current is that, despite its presence having a depolarizing effect in the cell, it shows a reversal in the
peak amplitude during stimulation with increasing weights, as demonstrated by George et al. [4].

In this work, we incorporated an implementation of the HCN channel used in a CA1 neuron [10] into a model of
PT corticospinal neurons with 706 compartments (Fig. 1C) [14]. This HCN channel adds a shunting current that
is proportional in amplitude to the ih-current, thought to be mediated by TASK-like channels [10].

Our results show that the presence of the ih-current in the model resulted in reduction of temporal summation
(Fig. 1A), reversal in peak amplitude (Fig. 1B), reduction of corticospinal output (decrease in action potentials)
(Fig. 1D) and change in the profile of input integration (Fig. 1F). The F-I curve is preserved compared with the
original cell model (Fig. 1E). Therefore, our model reconciles the experimental findings from an
electrophysiological characterization of these neurons under the administration of an HCN channel blocker [3]
and the reversal in peak amplitude [4]. This unified model more closely matches the physiological behavior of
PT neurons under norepinephrine modulation, and can provide insights into its underlying biophysical
mechanisms and their role in the gating between motor planning and execution.
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Figure 1. Main features reproduced by the Corticospinal PT cell model. A Absence of temporal summation in
the presence of the ih-current (Con). B Inversion effect of the peak voltage. C Cell model morphology. D
Increase in Corticospinal output with ih-current blocked. E F-I curve of the original model and our
implementation. F Somatic depolarization with spatially distributed inputs.
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Adaptation is a critical feature of sensory response, and is virtually universal in neural systems, including in
individual neurons. In single neurons, adaptation of the amplification, or gain, can occur over time by some
(typically slower) process mediating desensitization, such as an influx of calcium currents. Such gain control is
inherently dynamical, since it involves changes in internal state over time. Past studies have illustrated that gain
control can in some contexts can also be enacted intrinsically, without changes in parameters [1]. The requisite
features are a high-dimensional signal (such as a time trace) and nonlinear response. In this case, gain control is
immediate and effectively parameter-less.

Here, we propose a biophysical mechanism for intrinsic gain control that builds on this idea. Our framework is
motivated by experimental observations of Drosophila olfactory receptor neurons (ORNs) to Gaussian
fluctuating stimuli with nonzero mean [2]. An ORN’s firing response to these fluctuations does not modulate
smoothly over a range of frequencies; instead it switches more discontinuously between low and high ~40

Hz firing rates. In the language of dynamical systems, the neuron persistently crosses a bifurcation between
spiking and quiescence. For small fluctuations, this system could only encode 1 bit of information — spiking or
resting. However, we show that the conversion from spike events to a rate code can effectively utilize past
information — from the signal history — to encode substantially more than 1 bit of information. This system is
gain invariant: the dose response curves between signal and firing response overlap perfectly when the stimulus
is scaled by the amplitude of the signal fluctuation. Thus, bifurcation crossing effectively amplifies small
fluctuations, permitting rate codes that would otherwise be imperceptible. We call this mechanism bifurcation-
induced gain control, and illustrate that it is obeyed inherently by many classes of spiking neurons with different
topologies at their bifurcating point.

Perfect gain control erases information about context: system responses are identical across different stimulus
statistics (or contexts), so the context itself becomes ambiguous. Contextual information can be relayed at longer
timescales, as in H1 neurons in fly vision [3]. We show that bifurcation-induced gain control encodes context via
fast response asymmetries not reliant on timescale separation. Finally, we use experimental observations in
ORN s [2] to propose a simple extension of bifurcation-induced gain control that simultaneously adapts to both
the mean and variance of the signal. Our results show that the natural machinery of neuron spiking permits
robust adaptation with high coding efficacy in changing environments.
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Recent work is yielding large amounts of connectivity data in a diversity of neural systems and spatial scales.
However, it is largely an open problem how local connectivity features shape global activity dynamics and
influence network changes during learning. In this work, we relate partial symmetry and antisymmetry in
connectivity to the dynamics and trainability of recurrent neural networks (RNNs). Partial symmetry and
antisymmetry correspond respectively to correlated and anticorrelated connection strengths between pairs of
units. We calculate the full Lyapunov spectrum, which describes how dynamics transform the set of points
around a network state over time. From the Lyapunov spectrum, we obtain the maximum Lyapunov exponent,
which quantifies chaos, i.e., the exponential separation rate of nearby initial states due to recurrent dynamics. We
also obtain an estimate of the attractor dimensionality known as the Kaplan-Yorke dimension, and also calculate
the entropy rate, which quantifies the increase in uncertainty due to chaotic separation of nearby initial states.
For weak coupling networks, partial symmetry increases the attractor dimension and entropy rate, explained by
increasing magnitudes of the real parts of the Jacobian’s eigenvalues. For strong coupling networks, attractor
dimension and entropy rate decrease with symmetry and increase with antisymmetry. This arises from the effect
of partial symmetry on the variance of unit activities. As symmetry increases, most units are in saturation and the
average gain of the transfer function is small. This leads to a sparse Jacobian of the dynamics, meaning that
small differences in the network state grow in fewer directions of phase space. We additionally compare results
of Kaplan-Yorke dimension to more conventional estimates of the dimensionality determined by principal
components analysis (PCA). The PCA dimensionality trend is similar to that of the Kaplan-Yorke dimension.
To study functional implications of partial symmetry, we investigate how initial symmetry affects a network’s
trainability on the task of generating oscillatory readout without any input. We find that more antisymmetric
networks trained with backpropagation through time have higher success rates and shorter training convergence
times. Our work on RNN motifs may provide insights on how features of local connectivity among constituent
units shape global features of dynamics and learning in biological networks.
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Although modern artificial agents are extremely accurate in operating on single instances after a long exposure
of stationary learning trials, they fail to work in the context of non-deterministic environments as in a human
real-case scenario. Such sources of uncertainty and variability (e.g., unpredictable cues, unexpected constraints,
and new objects in a task) may affect dramatically the performance of an artificial agent.

Meta-learning applied to reinforcement learning may thrive the design of control algorithms where an outer
learning system progressively adjust the operation of an inner learning system, yielding the behavior of the
artificial agent more flexible and efficient. The internal adjustment of the hidden learning system leads to
practical benefits such as the reducing of the explicit hand-tuning of the parameters and the generalization error.
Starting from the neural architecture developed by Khamassi and colleagues for agent-environment interaction
such as action selection, we developed a brain-inspired meta-learning framework for inhibition cognitive control
that includes distributed learning systems in the human brain, e.g., cortical areas such as prefrontal cortex and
subcortical regions such as basal ganglia. We embedded in the model meta-learning mechanisms based on the
neuromodulation theory proposed by Doya. This theory posits a central role for dynamics of the four major
neurotransmitters (e.g., acetylcholine, serotonin, dopamine, and noradrenaline) and their mutual interdependence
in shaping the behavior of the hyperparameters that underlies meta-learning processes. We explicitly included
meta-control in the artificial agent, formalizing hyperparameters optimization rules: (i) dopamine receptors D1,
modulating the noradrenergic system (i.e., exploration/exploitation rate) with an inverse linear function that
relates dopamine to the entropy of the probability distribution of the actions, (i) dopamine receptors D2, tuning
the striatum neuron’s excitability, and (iii) serotonin, regulating the overall dopamine release and the reward
temporal scale.

The artificial agent was tested in two different conflictual tasks (No-Go and Stop-Signal Paradigms) that involve
different types of action inhibition. In No-Go Paradigm we tested the ability to withdraw a not-yet-initiated
action from responding (i.e., action restraint) using a hold signal before the initiation of the movement. In Stop-
Signal Paradigm we investigated the ability to cancel an initiated response (i.e., action cancellation) triggering an
unpredictable hold signal after a range of delays from the action onset. After a short learning phase, the artificial
agent adjusted successfully its hyperparameters (e.g., driving the system towards exploitation regimes) in
response to the appearance of the hold signal in both tasks, i.e., proper use of the action inhibition command. The
qualitative increase of performance was corroborated by a significance increase of the right inhibition, global
accuracy, and a reduction of the stop-signal reaction time, i.e., the latency of the cancellation process,moving
from the training to the test phase.We propose that the use of brain-inspired mechanisms to implement meta-
learning processes may be a feasible approach for robotic applications, leading to an improvement of the
performance even in unpredictable human real-case scenario.
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Dendritic spines are the morphological basis of excitatory synapses in the cortex and their size and shape
correlates with functional synaptic properties. Recent experiments show that spines exhibit large shape
fluctuations that are not related to activity-dependent plasticity but nonetheless might influence memory storage
at their synapses. Thus, it is important to investigate the determinants and functional use of these spontaneous
shape fluctuations.

In a recent series of studies [1,2], we propose a mathematical model for the dynamics of the spine shape based
on the scaffolding protein actin — a protein that polymerizes into dynamic filaments which undergo continuous
treadmilling. Experiments show that synapses usually have a few foci, where actin polymerization activity and,
thus, also treadmilling speed is large. Hence, we model the spine shape to be governed by a local imbalance
between the expansive force from the actin treadmilling at these foci and the membrane tension. The actin
treadmilling, as well as filament branching and capping are described by Monte-Carlo models for each focus that
interact via the membrane. Hereby, the polymerization activity in each focus has a limited lifetime similar as
observed in experiments. As a consequence, the model shows asymmetric spine shape fluctuations because the
momentarily existing set of polymerization foci pushes the membrane along certain directions until they are
replaced and other directions are affected.

We analyze in detail how the shape and the temporal characteristics of our model-spines depend on the different
biophysical parameters involved in actin polymerization. For this, we also introduce descriptors for asymmetric
spine shapes and use them to demonstrate that shape fluctuations in our model are comparable to experimental
data. Thus, our model provides a platform to study the relation between molecular and morphological properties
of the spine with a high degree of biophysical detail and realism.

We therefore used the model to extrapolate into longer temporal intervals and discovered the presence of 1/f
noise. As a reason for this, we find that actin dynamics underlying shape fluctuations self-organizes into a
critical state. This critical state facilitates spine enlargement, for example after LTP, as compared to a non-
critical model. Thus, ongoing spine shape fluctuations may be a consequence of a self-organization that enables
a spine to quickly reconfigure itself when necessary.
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Memories are known to reactivate during sleep. A recent modelling study [1] could reproduce this phenomenon
based on self-reactivations of heavily inter-connected cell assemblies and showcased its beneficial consequences
for memories. However, to be maintained, the memories needed frequent reactivations such that the weights
between the cells representing the memory remain at a high level. Otherwise, the memories were forgotten.

In this work, we extend the model such that memories are maintained independently of reactivations.
Furthermore, we suggest that long-term memories are mainly represented by their connectivity, i.e. the number
of structural connections between neurons, and are less dependent on the actual weight of these connections.
We test this with simulations and (mean-field) analyses in recurrent networks, in which connections are subject
to (1) structural plasticity, which creates and removes connections via stochastic processes, (2) synaptic
plasticity adapting the synaptic weights according to neural activity and (3) a biologically inspired spontaneous
dynamics of the synaptic weight.

We find that when a memory has not been reactivated for an extended period, the spontaneous weight dynamic
comes into effect and decreases the internal synaptic weights of the memory. In this case, the memory can have
three different states depending on its structural connectivity: At relatively high degrees of connectivity, the
memory can reactivate itself. At slightly lower degrees of connectivity, the memory can only be reactivated by
external stimuli but may self-reactivate in a short time span afterwards. But at even lower degrees of
connectivity, the memory cannot be reactivated by external stimuli at all. However, even if a memory cannot be
reactivated by external stimuli anymore, the structural connections of the memory still exist for extended
periods. These connections can then be used to relearn the pre-existing memory very fast, which provides a
possible explanation for Ebbinghaus’ savings effect.

In contrast, when a memory has just been learned, the internal synaptic weights are strong, and the memory only
needs intermediate connectivity to self-reactivate. However, these self-reactivations are heavily dependent on the
high strength of the synaptic weights. In comparison, older memories have increased their connectivity after
multiple self-reactivations and are less dependent on the strength of the synaptic weights. Thus, interference with
these reactivations (i.e., sleep deprivation), existing synapses, or synaptogenesis will impact new memories more
severely than older ones, which may explain the gradedness of retrograde amnesia.
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The ability to flexibly learn the structure of one’s surroundings (structure learning) is crucial for adaptive
behaviour. Use of an inaccurate model of the environment can lead to incorrect inferences, and thus maladaptive
actions. Despite this, relatively little is understood about how structure learning occurs in human cognition. As a
first step towards addressing this, we built on existing approaches to create an online clustering algorithm, and
used it to simulate behaviour on a novel structure learning task, where optimal performance required estimating
the number and properties of discrete clusters of continuously variable stimuli. More specifically, the stimuli we
used were mushrooms, the look of which varied only on one dimension (size). The task required the agent to
determine whether each mushroom was edible (good) or poisonous (bad) based on that one stimulus feature.
Crucially, there were different species of good and bad mushrooms (clusters), which the agent was left in the
dark about. Each mushroom’s size was sampled from a species-specific Gaussian distribution, and the overall
distribution (a mixture of Gaussians) of good and bad mushrooms was designed so that a unimodal Gaussian
approximation of the two categories would result in very high overlapping and thus bad performance.

In this simulation-based work we compare a set of different models and show how an agent that learns online the
statistical structure of the stimuli (i.e., the number of clusters) outperforms one that just approximates the two
categories as single Gaussian clusters, grouping all good mushrooms into one single species and all bad
mushrooms into another. We also introduce a model that incorporates a working memory component, and show
how retrospective inference (i.e., updating one’s beliefs about past stimuli as opposed to only updating beliefs
about the current one) benefits structure learning. We finally discuss trial-by trial measures that can be derived
from our model, which provide testable predictions for future empirical studies.
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Temperature fluctuations can affect neurological processes at a variety of levels, with the overall output that
higher temperatures generally increase neuronal activity. Here we utilize computer simulations of a
mathematical model for a C. elegans sensory neuron to investigate the dynamical properties of temperature
sensation in the worm. Thermoreception is known to originate in the bilateral symmetric pair of amphid neurons
with finger-like ciliated endings (AFD) of C. elegans, to which we target our modeling efforts. We build upon a
previously developed deterministic model for salt-sensing in the chemosensitive ASER neuron of C. elegans by
implementing temperature-dependent Arhennius factors. Multiple experimental results involving time series data
of intracellular AFD calcium ion concentration in response to ambient temperature changes are reproduced using
this model. Among other things, we find that our model neuron requires synchronous temperature and chemical
stimuli to exhibit dynamics qualitatively similar to those of a real AFD neuron.
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Degeneracy refers to a structure-function mapping in which a system can recruit from multiple structures to
achieve functional plasticity. Systematic differentiation of these structures might provide insights into how
cognitive or motor functions recover following neurological damage. Since each structure is sufficient, but not
necessary, for a particular function; profound functional deficit is manifest when all degenerate structures are
damaged. In contrast, redundancy — the inefficient use of a structure’s degrees of freedom to perform a particular
function — should be regarded as a distinct but related concept. Here, we provide a computational account of
degeneracy and redundancy, in terms of variational Bayes, for understanding potential recovery pathways
following damage. We use a (generic) generative model and approximate inference based on variational free
energy. We introduce a formal and intuitive trade-off between degeneracy and redundancy by associating
degeneracy with the entropy of beliefs about the causes of sensations and redundancy with the complexity cost
incurred by belief updating. We validate this formulation through the successful application of our approach —
using structural learning and in-silico lesions — in the context of a word repetition paradigm: a canonical task in
the neuropsychology of language. This is a relevant paradigm, since a computational assessment of degeneracy,
could explain which combinations of structural damage are necessary to disrupt functional outcomes; i.e. ability
to repeat words. Our simulations highlight: i) redundant structures — via structural duplications — have higher
complexity cost but do not adversely impact function, ii) increasingly degenerate mappings between causes and
outcomes — via in-silico lesions — have higher entropy, and iii) profound functional deficits are exhibited only
when all possible sub-systems are damaged. Our formalism provides a framework to evaluate levels of
degeneracy (and potential recovery pathways), following neurological damage.
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Under the Bayesian brain hypothesis, behavioural variations can be attributed to altered priors over the
generative model (hyper-)parameters. This provides a particular explanation as to why individuals may exhibit
inconsistent behavioural preferences when faced with similar observations. For example, greedy preferences are
a consequence of confident (or precise) beliefs over particular outcomes. Conversely, individuals with uniform
(or imprecise) priors exhibit increased variability in their choices, and (potentially) impulsive behaviour. Here,
we offer an alternative account for explaining these behavioural variations using Rényi divergences, and their
associated Rényi variational bounds. The Rényi bounds are analogous to the variational free energy (or evidence
lower bound) and can be derived using the same assumptions. Importantly, these bounds provide a formal way to
establish behavioural differences through the alpha parameter, given particular priors. This is accomplished by
alpha changes that alter the bound (on a continuous scale), induce different posterior estimates, and consequent
variations in behaviour. Thus, it looks as if individuals have different priors, and have reached different
conclusions. Explicitly, alpha tending towards 0 optimisation would lead to mass-covering variational estimates
that induce increased variability in choice behaviour. Furthermore, alpha tending towards infinity optimisation
would lead to mass-seeking variational posteriors, and greedy preferences. We exemplify this formulation
through simulations of the multi-armed bandit task (Fig. 1). We note that these alpha parameterisations are
relevant, i.e., shape preferences, when the true posterior is not in the same family of distributions as the assumed
(simpler) approximate density — common for complex real-world scenarios. Consequently, this departure from
vanilla variational inference provides a useful explanation for differences in behavioural preferences of
biological (or artificial) agents — under the assumption that the brain performs variational Bayesian inference.
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Figure 1. MAB results and estimated posteriors.
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Electrical and molecular activity play important roles in adapting the spatial environment and responses of
neurons, glia, and neuronal circuits over short and long-time scales. Numerous studies have shown how neurons
and the networks function, interact and adapt their responses from both electrical and molecular perspectives [1-
3]. The emerging view is that the molecular environment in the space between neurons and glia actively
influences brain activity on multiple scales. Experiments are elaborating how this environment’s plexus of
macromolecules, known as the extracellular matrix (ECM) that includes a specialization called the Peri-Neuronal
Nets (PNN) and its strategic occupation of regions in and around synapses [4,5], impacts neuronal activity and
function. Mounting evidence shows that the expression of certain ECM/PNN molecules play important roles in
learning and memory, synaptic remodelling and significantly, in the recall of fear memory [6,7]. Currently, there
have been very few investigations of neural-ECM interactions from a computational perspective. Those studies
have focused on understanding the role of how the ECM influences neural signalling [7,8], however
computational/theoretical investigations on how neural-ECM interactions impact network activity, behaviour and
information processing has yet to be fully explored.

We developed a biologically inspired framework and an accompanying mathematical model that captures the
bidirectional nature of the neuronal-ECM signalling of various ECM/PNN molecules. Our model can be applied
to study the neuronal-ECM signalling in brain tissue and their collective influence on both single neuron
responses and network activity. We present some simple examples to illustrate how neuronal-ECM interactions
impact the behaviour of basic spiking neural circuits.
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Dynamic facial expression recognition is an essential skill of primate communication. While the neural
mechanisms to recognize static facial expressions has been extensively investigated, they remain largely unclear
for dynamic facial expressions. We studied physiologically plausible neural encoding mechanisms, exploiting
highly controlled and realistic stimulus sets generated by computer graphics, which are also used in
electrophysiological experiments. The generation of these stimuli combined high-quality human and monkey
head models with motion capture in humans and monkey [1]. Combining physiologically plausible neural
models for the recognition of dynamic bodies [2], static faces [3] and architecture from computer vision [4], we
devised two models (Fig. 1) for the recognition of dynamic facial expressions. The first model exploits an
example-based approach. It encodes dynamic expressions as temporal sequences of snapshots, exploiting a
sequence-selective recurrent neural network. The second model exploits norm-referenced encoding. Expressions
are encoded as points in a continuous face-space by face neurons that are tuned to direction and size of the
difference vectors between the actual stimulus frame and a neutral expression in face space. The output of these
face neurons then is processed by differentiating neurons, resulting in selective responses to dynamic faces.

Both models were tested with movies of human and monkey avatars that showed human and monkey expression,
and morphs between them. This ensured a highly accurate control of the form and dynamic style features of the
stimuli [1]. Both models recognize reliably the tested dynamic facial expressions of humans and monkeys, but
make different predictions when tested with stimuli generated by morphing. The norm-referenced model shows a
highly gradual, almost linear dependence of the neuron activity with the expressivity of the stimuli. Contrasting
with this result, the example-based model does not generalize well to stimuli with modified expressions strength.
Also, the responses of the neurons at the output level of the norm-based model show striking similarities with the
responses of neurons recently recorded in the Superior temporal Sulcus of macaque monkeys. Very simple
physiologically plausible mechanism can account for the recognition of dynamic face. Norm-based and example-
based encoding make quite different predictions of the behavior at the single-cell level, especially for stimuli
generated by expression morphing.
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Modern neuroscience relies on a combination of experimental and theoretical approaches to understand the
brain. Sharing the outputs of research, both in terms of experimental datasets and software to analyse and model
them, is now a crucial part of good scientific practice. Standardised formats for exchange of these outputs have
emerged, which significantly aid reuse and reproducibility, both for data (NeuroData Without Borders, NWB,
https://www.nwb.org) and computational models (NeuroML [1]). However, data and model sharing have
traditionally happened independently via different repositories/databases. This makes “closing the loop” - using
experimental data for data-driven modelling and/or theoretical analysis, and applying insights from
modelling/theoretical investigations to dictate/design new experiments - a non-trivial undertaking. There is a
growing need to develop tools and resources that allow working with both experimental data and theoretical
models in one convenient, integrated environment.

The Open Source Brain platform (OSB, https://www.opensourcebrain.org) was developed as an online resource
for sharing, viewing, analyzing, and simulating neuroscience models, using NeuroML as the underlying
language for expressing the models in a standardised format [2]. With more than 1200 registered users, and over
50 participating labs from around the world, OSB serves as an important community resource for computational
neuroscientists.

Here, we present the next version of the OSB platform (OSBv2, https://www.v2.opensourcebrain.org), a browser
based, integrated research environment for both experimental data analysis and theoretical/modelling research.
OSBvV2 uses NWB as the recommended data sharing format, and we have developed the NWB Explorer
application where users can visualise and analyse experimental data using a powerful graphical interface. This
represents a critical extension to the scope of OSB as a portal for data exploration and analysis. OSBv2 also
integrates the newly developed graphical frontend to the NetPyNE package (http://www.netpyne.org), greatly
facilitating the simulation and analysis of network models using NEURON. These OSBv2 applications are
tightly coupled with Python Jupyter notebook technologies. Users can save and share “workspaces” generated
from these applications, and open them in a JupyterLab environment, giving access to a range of other common
neuroscience simulators and analysis tools that form the greater Python neuroscientific ecosystem.

OSBvV2 represents the next generation of collaborative, integrated research platforms for neuroscience that
leverage modern web based infrastructure and software technologies to make both tools and scientific resources
easily accessible to the whole neuroscience community. Providing this single, integrated environment for data
analysis and modelling will help close the gap between experimental observations and insights obtained through
computational modelling.
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Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as
catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new learning is
interleaved with periods of sleep for memory consolidation. In this study, we used spiking network to study
mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to
learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on multiple tasks.
New task training moved the synaptic weight configuration away from the manifold representing old tasks
leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological
sleep, mitigated catastrophic forgetting by pushing the synaptic weight configuration towards the intersection of
the solution manifolds representing multiple tasks. The study reveals a possible strategy of synaptic weights
dynamics the brain applies during sleep to prevent forgetting and optimize learning.
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Functional magnetic resonance imaging (fMRI) research, in addition to improving our scientific understanding
of the normative and pathological brain dynamics, seeks to develop clinical applications where diagnosis,
treatment, and/or interventions are subject-specific. To that end, Functional Connectomes (FCs), estimated by
cross correlating the regional BOLD activity across brain regions as measured by fMRI, have emerged as a
suitable phenotype. FCs are usually summarized in the form of a symmetric correlation matrix and represent the
whole-brain functional connectivity profile of an individual performing a specific fMRI condition (e.g., resting-
state or working-memory). FCs have been shown to possess a recurrent and reproducible individual [1]. Amount
of such fingerprints in an FC dataset can be used to estimate the reliability of the FC-phenotype. Traditional
methods of estimating these fingerprints (e.g., Pearson’s correlation coefficient between the vectorized FCs)
have had limited success in terms of phenotypic reliability [1]. This was improved upon by Venkatesh et al. by
using Geodesic distance to compare FCs more accurately by utilizing the generally overlooked fact that FCs are
non-Euclidean objects and the distances between them are better measured along a geodesic of the Symmetric
Positive Definite (SPD) manifold [2]. We have recently improved on this by combining Geodesic distance with
an optimal amount of main-diagonal regularization that is added to the FCs [3]. This approach, though provides
accurate distance estimates between FCs, does not allow edgewise analyses of the FCs. This limitation can be
addressed by projecting FCs from the SPD manifold onto an optimal tangent space of symmetric matrices, which
is Euclidean and hence allows the use of Euclidean algebra and calculus (Fig. 1). Tangent space projections of
FCs (tangent-FCs) require a reference point on the manifold which is qualitatively good representative of the
dataset. Many different types of references have been proposed in the literature (e.g., Euclidean, Harmonic, log-
Euclidean, Riemannian, Kullback). In this work, we found that when FCs are regularized by an optimal amount
that maximizes phenotypic reliability of FCs using Geodesic distance [3], then (1) tangent-FCs have significantly
higher phenotypic reliability than the original-FCs, (2) all reference matrices perform similarly with Riemannian
performing slightly better, (3) reliability increases with increasing granularity of the parcellation, and (4)
tangent-FCs can achieve higher reliability with a fraction of the total scanning length than the reliability of
original-FCs with the maximum scanning length. These results hold for each of the eight fMRI conditions
included in the HCP dataset. In contrast, if a fixed amount of regularization (e.g., T = 1) is used, tangent space
projections of FCs can lead to extremely low phenotypic reliability. In addition, the reliability of resultant
tangent FCs become highly dependent on the choice of the reference matrix. In summary, these results indicate
that a combination of optimal main diagonal regularization and tangent space projection of FCs leads to
significant improvement in phenotypic reliability of FCs.
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Cellular automata (CA) are an effective approach to modelling spiking neurons that provide a computationally
simpler “state machine” description of the neurons’ operation than differential equation-based models, such as
integrate-and-fire neurons. Adapting the CA neural model of Claverol et al. [1], we are developing neural network
models of oscillations with phasic learning and memory function based on mammalian hippocampus.

The first stage of this work is to reproduce, in a CA network, the theta oscillation behaviour of the septal pacemaker
circuit modelled, using a continuous neural population activity approach, by Denham and Borisyuk [2]. The septal
pacemaker circuit considers 4 major populations to ascertain the propagation of theta frequency oscillations from
the medial septum to the hippocampal CA1 region namely, the excitatory CA1 pyramidal cells (E), and inhibitory
CB-containing hippocampo-septal cells (IP), other interneurons in CA1 (I), and inhibitory medial septal cells (S).
The E cells excite the IP cells which then inhibit the S cells. The S cells inhibit the IP cells, which in turn inhibit
the E cells. The model has 2 major external excitatory inputs namely, from the hippocampal CA3 to CA1 E cells
and I cells, and from the posterior hypothalamus and supramammillary nucleus (PS) to the S cells.

We have about 100 neurons in each of the populations with the number of efferents between populations being 2-
10 synapses. The time constants of the continuous model translate into explicit delays in our cellular model.
Refractory periods are between 10 to 30 ms. The synaptic delay and active synaptic duration, the weights of each
projection, and the thresholds for generating an action potential are varied to reproduce the theta functionality of
the continuous model. External driving inputs are random spike trains of constant mean frequency.

We obtained oscillations in frequencies between 4-7Hz range by setting the synaptic delay of E cells and the
synaptic duration of the I cells, both of which lie in the range 10-20ms. As soon as the E cells fire, with a small
delay the IP cells fire, which inhibit the active S cells, which in turn inhibit the active I cells, finally inhibiting the
active E cells. Determined by the duration of inhibition of E cells, the cycle continues periodically thus producing
oscillatory behaviour. Populations that are in-sync with each other are the E and IP populations, and the I and S
populations, in both the models. Too much or too little external input results in a fixed steady state in the continuous
model. In the CA model, this steady state is characterised by random, non-oscillatory firing of the

Populations.

The next step is to extend the hippocampo-septal circuit to model the CA1 and CA3 regions of the hippocampus
using the CA, with more cell populations that regulate theta and theta-coupled gamma frequency oscillations. We
will then model the integrated circuit of the CA1 and CA3 regions with the feedforward and feedback synaptic
pathways between them. We will compare the CA model with the continuous population activity model of these
circuits that we have already developed [3] (Fig. 1). The ultimate goal of the CA model is to simulate learning and
recall in an oscillatory model.

References

1. Claverol ET, Brown AD, Chad JE. A large-scale simulation of the piriform cortex by a cell automaton-based
network model. IEEE transactions on biomedical engineering. 2002 Nov 7;49(9):921-35.

2. Denham MJ, Borisyuk RM. A model of theta rhythm production in the septal-hippocampal system and its
modulation by ascending brain stem pathways. Hippocampus. 2000;10(6):698-716.

3. Shiva AS, Graham BP. Population model of oscillatory dynamics in hippocampal CA1 and CA3 regions in
29th Annual Computational Neuroscience Meeting: CNS*2020. BMC Neuroscience. 2020;21,54.



Continuous model of the septal pacemaker circuit

0.3

(t)

0.2 1

I_CA1P

,0.1 4
0.0 4

0.4

0.2

I_CALI(t)

0.0 4

0.0 0.2 0.4 0.6 0.8 1.0
time, t(s)

Cellular automata simulation of septal pacemaker circuit

£ 0.5

<

o0 IAMMMMMMMMMMM»M
El_ |
) z

. [ s ni e nn b ihsahoadal a5 \\; - ) . -

N oo

14 <
)
a
o 2 i
0 T Frequency

0 200 400 600 800 1000
time, t(ms)

CA3
o =

|_CALP(t)

/ (/
(

\ \
\

]

| /

| (
|
|
|

1_CALI(t)

o

°
|

s
\
\
|
|
|
|

Figure 1. Comparison of activity dynamics of continuous and cellular automata modelling approaches.



Local homeostatic regulation of the spectral radius of echo-state
networks

Fabian Schubert"!, Claudius Gros?

!Goethe University Frankfurt, Institute for Theoretical Physics, Frankfurt am Main, Germany
2Goethe University Frankfurt, Frankfurt am Main, Germany

*Email: fschubert@itp.uni-frankfurt.de

Recurrent cortical networks provide reservoirs of states that are thought to play a crucial role in sequential
information processing in the brain. However, classical reservoir computing requires manual adjustments of
global network parameters, particularly of the spectral radius of the recurrent synaptic weight matrix. It is hence
not clear if the spectral radius is accessible to biological neural networks. Using random matrix theory, we show
that the spectral radius is related to local properties of the neuronal dynamics whenever the overall dynamical
state is only weakly correlated. This result allows us to introduce a local homeostatic synaptic scaling
mechanism, termed flow control, that implicitly drives the spectral radius toward the desired value. The spectral
radius is autonomously adapted while the network receives and processes inputs under working conditions. We
demonstrate the effectiveness of this mechanism under different external input protocols. Moreover, we evaluate
the network performance after adaptation by training the network to perform a time-delayed XOR operation on
binary sequences. As our main result, we found that flow control reliably regulates the spectral radius for
different types of input statistics. Precise tuning is however negatively affected when interneural correlations are
substantial. Furthermore, we found a consistent task performance over a wide range of input strengths/variances.
Given the effectiveness and remarkably simple mathematical form of flow control, we conclude that self-
consistent local control of the spectral radius via an implicit adaptation scheme is an interesting and biologically
plausible alternative to conventional methods using set point homeostatic feedback controls of neural firing.
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In order to detect significant spatio-temporal spike patterns (STPs) at ms-precision, we developed the SPADE
method [1-3]. SPADE enables the detection and evaluation of spatio-temporal patterns (STPs), i.e., spike
patterns across neurons and with temporal delays. For the significance assessment of STPs, surrogates are
generated to implement the null hypothesis. Here we demonstrate the requirements for appropriate surrogates.
SPADE first discretizes the spike trains into bins of a few ms width. The discretization also includes clipping,
i.e., if a bin is occupied by 1 or more spikes, its content is set to 1. The binarized spike trains are then mined for
STPs with Frequent Itemset Mining, counting identical patterns. For the assessment of these patterns'
significance, surrogate spike trains are used. The surrogate data are mined as the original data resulting in a p-
value spectrum for the significance evaluation [3].

Surrogate data are modifications of the original data where potential time-correlations are destroyed and thus
implement the null hypothesis of independence. For that purpose, the surrogate data need to keep the statistical
features of the original data as similar as possible to avoid false positives. A classical choice for a surrogate is
uniform dithering (UD), which independently displaces each individual spike according to a uniform
distribution. We show that UD makes the spike trains more Poisson-like and does not preserve a potential dead
time after the spikes. As a consequence, more spikes are clipped away as compared to the original data. Thus,
UD surrogate data reduce the expectation for the patterns.

To overcome this problem, we evaluate different surrogate techniques. The first is a modification of UD that
preserves the dead time. Further, we employ (joint-) ISI dithering, preserving the (joint-) ISI distribution [4].
Another surrogate is based on shuffling bins of already discretized spike data within a small window. Lastly, we
evaluate trial shifting that shifts the whole spike trains against the others, trial by trial, according to a uniform
distribution.

To evaluate the effect of the different surrogate methods on significance assessment, we first analyze the
surrogate modifications on different types of stochastic spike models, such as Poisson spike trains, Gamma spike
trains but also Poisson spike trains with dead time [5]. We find that all surrogates but UD are robust to clipping.
Trial shifting is the technique that preserves best the statistical features of the spike trains. Further, we analyze
artificial data sets for the occurrence of false-positive patterns. These data sets were generated with non-
stationary firing rates and interval statistics taken from an experimental data set but are otherwise independent.
We find many false positives for UD but all other surrogates show a consistently low number of false-positive
patterns. Based on these results, we conclude with a recommendation on which surrogate method to use.
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The Hebbian hypothesis [1] states that neurons organize in assemblies of co-active neurons acting as information
processing units. We hypothesize that assembly activity is expressed by the occurrence of precise spatio-
temporal patterns (STPs) of spikes - with precise temporal delays between the spikes - emitted by neurons that
presumably are members of an assembly.

We developed a method, called SPADE [2-4], that detects significant STPs in massively parallel spike trains.
SPADE involves three steps: it first identifies repeating STPs using Frequent Itemset Mining [5]; second, it
evaluates the detected patterns for significance through surrogates (trial-shifting); third, it removes the false
positive patterns that are a by-product of true patterns and the background activity.

Here, we aim to evaluate if cell assemblies are active in relation to motor behavior [2]. Therefore, we analyzed
N=20 experimental sessions consisting of about 100 parallel spike trains recorded by a 100-electrode Utah array
in the pre-/motor cortex of two macaque monkeys performing a reach-to-grasp task [6,7]. In this task, the
monkey, after an instructed preparatory period, had to pull and hold an object by using either a side or a
precision grip, and using either high or low force (four behavioral conditions). We segmented trials into 500ms
periods and concatenated them to analyze separately for the occurrence of STPs. Each significant STP is
identified by its neuron composition, its number and times of occurrences and the delays between spikes of the
pattern. The temporal resolution of the detected patterns is fixed to Sms.

We find that STPs occur in all phases of the behavior. In particular, we find about 6 patterns per session, where
only 3 to 13 individual neurons are involved in STPs. Pattern can repeat from 280 to 10 times, depending on the
size, which varies from 2 to 6 neurons. Within a session, patterns strongly depend on the behavioral context, and
we do not find identical patterns in the different epochs. Thus, patterns are specific to a behavioral condition,
suggesting that different assemblies are activated for each specific behavioral context. Patterns that occur in a
single session typically overlap in the participating neurons, and a few individual neurons appear as hubs, i.e.,
are involved in several patterns. We also find that pattern neurons are not located within a small region, but
distributed across the entire cortical surface covered by the Utah array.

Our results are consistent with the model of the synfire chain (SFC) [8]. A theoretical study showed that patterns
emerging from SFC activity can be found in parallel spike train data recorded with a 100-electrode Utah array,
i.e., despite the strong subsampling.
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The International Continence Society has defined urinary incontinence (UI) as a condition in which involuntary
loss of urine is objectively demonstrable and is a social or hygiene problem [1]. Among different types of Ul,
stress urinary incontinence (SUI) is one, which is a common syndrome in women that is typically associated
with advanced age, obesity, diabetes mellitus, and fertility [1].The smooth muscles from the urinary bladder and
urethra display spontaneous contractility patterns, which are associated with UI and SUIL.The urethral smooth
muscle (USM) cell contributes to SUI by generating spontaneous electrical activities in the terms of membrane
depolarization and action potentials (SAP). Therefore, a complete understanding of the USM cell’s sAP
biophysics will help in identifying novel pharmacological targets for the SUL This study presents the first
biophysically based model of USM AP which integrates all the key ionic currents underlying the electrogenic
processes in the urethra.

The classical Hodgkin-Huxley (HH) approach is implemented to build all ion channels after borrowing data from
various published electrophysiological studies. There is an array of ion channels discovered in USM cell
electrophysiology to regulate the cell’s excitability. The ion channels in the USM cell model are Ca2+ activated
Cl-channel, voltage-gated Ca2+ channel, voltage-gated K+ channel, Ca2+ activated K+ channel, ATP-dependent
K+ channel, and leakage currents. The sAPs were induced in the whole-cell model by applying an external
stimulus current as brief rectangular pulses or synaptic input.The USM cell model simulation is performed in
“NEURON”software environment [2].

The USM cell model successively responded to both current and synaptic input stimuli by showing all-or-none
AP firing properties. A current input is a step input pulse with different amplitudes and durations. A synaptic
input is also mimicked by the alpha function to evoke AP in our model. The voltage threshold for triggering an
AP is=—35 mV. Figure 1 presents the simulated AP after inducing a synaptic input to mimic the experimental
AP in [3]. The resting membrane potential, AP peak, after hyperpolarization and duration are — 40 mV, 47 mV,
— 53 mV, and 38 ms respectively.

In the present state, this model is at an elementary stage. Integration of other active channels, Na+- Ca2+
exchanger, Ca2+ ATPase pump and sarcoplasmic reticulum Ca2+ releasing mechanism will improve this model
towards a more comprehensive stage. In addition, the expansion of this single-cell model to syncytium or
network level will help to establish a better physiologically realistic computational model for investigating the
SUL
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Figure 1. The simulated AP in the USM model.
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Hippocampal theta oscillations are a prominent 4-10 Hz rhythm in the hippocampal field potential of all
mammals studied to date. They have been linked to spatial and episodic memory formation. After decades of
research, the origins of the hippocampal theta rhythm remain elusive. In particular, it is not clear what is the role
of each of the regions essential for in vivo hippocampal theta generation — the septum, hippocampus and
entorhinal cortex (EC).

Recent experimental studies performed by Gu and Yakel indicate that the EC may be the generator of theta
rhythm in the hippocampal formation - not only is the EC leading the theta rhythm, but all hippocampal sub-
regions are synchronized, suggesting that they respond to a common rhythmic extrinsic input coming from the
EC with theta-range activity. However, it is important to note that the EC does not function as an independent
rhythm generator and it requires hippocampal inputs in the theta range to maintain the theta rhythm [1].

In this work, we propose a circuit model of the EC to study the intrinsic properties of the EC that allow for
external excitatory inputs to drive the system into an oscillatory regime.We use Izhikevich’s two-dimensional
QIF neuron model [2] to describe the three major classes of neurons observed in the EC: stellate cells (S),
pyramidal cells (E), and fast-spiking interneurons (I). We then take advantage of a thermodynamic approach
combined with a reduction method to get a simplified, exact description of the three neural populations. In order
to study the contributions of the neural populations in the generation of theta, we use a machine learning
approach [3] to infer the space of connectivity parameters that give rise to theta rhythmic activity in the EC
network model. We found that theta generation is strongly constrained by the connections between the S and E-
cells. In fact, a subnetwork of S and E-cells is capable of robustly generate synchronized theta oscillations.
While the E-cells provide the excitatory drive, the S-cells play a key role in keeping the oscillations in the theta
range.

The entorhinal cortex (EC) has a unique role as it is positioned as a gateway between neocortical areas and the
hippocampal system. A clearer understanding of the intrinsic circuit properties of the EC and its temporal
dynamics will clarify the information communication processes between the hippocampus and other neocortical
areas as well as the role of theta oscillations
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Electrical synapses couple inhibitory neurons across the brain, serving a variety of functions within neural
circuits that are modifiable by activity. Much focus has been on synchrony and oscillatory activities that are
promoted by electrical synapses between cells. Recently, several specific mechanisms of plasticity have been
demonstrated at electrical synapses.In feedforward and feedback inhibitory circuits, these synapses can play
complex roles towards information processing. Despite recent advances, many basic aspects of electrical synapse
signaling, including asymmetry or effects on spike times, remain underappreciated. Using multi-compartmental
models of neurons coupled through dendritic electrical synapses, we investigated how intrinsic factors contribute
to observed synaptic asymmetry and how those result in modulation of spike times in coupled cells. We show
that electrical synapse location along a dendrite, input resistance, internal dendritic resistance, or directional
conduction of the electrical synapse itself each alter the asymmetry, as measured by coupling between cell
somas. Strikingly, apparent asymmetry resulted from symmetrically conducting electrical synapses that coupled
different subcellular locations of the two cells. Asymmetry resulting from synapse location difference was
amplified by differences in synapse strength, input resistance or dendritic resistance. Additionally, we show that
several combinations of factors that contribute to asymmetry can also produce identical coupling ratio
measurements, indicating that observations of asymmetry may mask truly asymmetrical coupling. Furthermore,
we show that asymmetry alters spike times and latency in coupled cells, depending on direction of conduction or
dendritic location of the electrical synapse. Together, these simulations illustrate that causes of asymmetry are
multifactorial, may not be apparent in measurements of electrical coupling, and produce a variety of outcomes of
spike times in coupled cells. Our findings highlight aspects of electrical synapses that should be considered in
experimental investigations of coupling, and when constructing networks containing electrical synapses.
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People with photosensitive epilepsy (PSE) are prone to epileptic seizures evoked by visual stimuli, typically
flickering lights. PSE is particularly relevant as a model to understand epilepsy. For example, it is used within
clinical trials to test the efficacy of anti-seizure medication [1]. Thus, a better understanding of the
pathophysiology of PSE may have an impact not only on people with PSE but more generally on the diagnosis
and treatments of epilepsy.

Several studies have found evidence for both occipital and more widespread cortical hyperexcitability in people
with PSE [2]. In this study, we aimed to find whether we could identify a widespread increased ictogenic
propensity and/or occipital increased ictogenic propensity from interictal EEG in people with PSE relative to
individuals with epilepsy but without PSE. To evaluate network-wide and local ictogenic propensity, we used the
concepts of brain network ictogenicity (BNI) and node ictogenicity (NI), respectively. BNI is a measure of how
likely a functional brain network is of generating seizures in computer simulations [3]. These simulations consist
of placing a mathematical model of epilepsy into the functional network and compute the resulting brain
dynamics. Brain networks that have a higher likelihood of supporting seizures are expected to produce more
seizure-like activity in the simulations [3]. NI is assessed by removing regions from the functional network and
evaluating the resulting altered BNI [3]. Brain regions whose removal produce a higher reduction of BNI are
considered more ictogenic.

We considered two groups of individuals with idiopathic generalised epilepsy, 26 individuals that had a
photoparoxysmal response (PPR) during intermittent photic stimulation (IPS) (the PPR group), and 24
individuals that did not have PPR (the non-PPR group). We tested two hypotheses: (i) the PPR group has a
higher BNI than the non-PPR group; and (ii) the PPR group has a higher occipital NI than the non-PPR group.
By applying our computational framework, we observed that the BNI is not significantly different between the
two groups. This result suggests that our cohort with PSE did not have a higher widespread ictogenic propensity
than other individuals with epilepsy but without PSE. In contrast, we found that the PPR group had a statistically
significantly higher occipital NI than the non-PPR group. This result suggests that the occipital region is
particularly prone to induce seizure activity in people with PSE, and that this susceptibility can be probed from
resting interictal EEG. More generally, our results show that computational analysis of interictal EEG may be
used to diagnose PSE without the need of photic stimulation.
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In modeling neurons, it is generally assumed that the diffusion current in the cable model is too small to be worth
taking into account. A cable model and a modified cable model having a diffusion current has been solved by
using a finite volume method to test the layer 5 neuron of a rat in different amplitudes of a stimulus current. The
effect of the diffusion current was shown to have a significant impact on the potential results in some values of
the stimulus current and showed differences in generating a spike of action potential between including the
diffusion current and excluding it. Also, the results showed that the sodium concentration predicted by the two
modified cable models had different response during a spike of action potential. The present work reveals that
the diffusion term in the modified cable equation may critically determine the action potential generation in the
dynamic equation of membrane potential. This is a new concept in research to show the importance of the
Nernst-Planck equation being stated, where electro-migration and diffusion fluxes are combined together.
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Glial cells called astrocytes play many important roles in the brain. In many brain areas, astrocytes can partially
wrap around synapses to form “tripartite synapses” (presynaptic neuron - astrocyte - postsynaptic neuron). This
wrapping allows the astrocyte to modulate the synaptic signal between nearby neurons in a number of ways. In
this work, we explore one such pathway of astrocyte-neuron interaction. Namely, we study how the astrocyte’s
calcium activity can affect the excitability of the postsynaptic neuron by altering the extracellular concentrations
of different ion species. We present a model of the astrocyte (see Fig. 1) that includes biologically-constrained
key transmembrane potassium, calcium, sodium and glutamate fluxes: Na+/Ca2+ exchanger (NCX), Na+/K+
pump (NKA), inward-rectifying potassium channels (Kir4.1), and glutamate transporter (GLT). Each component
is carefully adapted from the literature to match the available data. All components are then combined and
interfaced with existing astrocyte calcium response models [1,2] to study the influence of this astrocyte-neuron
interaction pathway on the excitability of nearby neurons. We find that by regulating the volume of and the ion
concentrations in the extracellular space around the synapse, astrocytes can effectively weaken the signal transfer
between neurons but also prevent run-away excitation in some pathological conditions.
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Figure 1. Extended tripartite synapse. Boxed in red are the components of the Handy-Taheri IP3-Calcium model
[1,2]. New components in extended model are Na+/Ca2+ exchanger (NCX), Na+/K+ pump (NKA), inward-
rectifying potassium channels (Kir4.1), glutamate transporter (GLT), sodium-leak current (L-N), and neuronal-
released glutamate (Glut).
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Major depressive disorder (depression) involves different mechanisms and brain scales. Altered cortical
inhibition is associated with treatment-resistant depression, and recent studies indicate that reduced dendritic
inhibition by somatostatin-expressing (SST) interneurons are a key component of the pathology. Modeling
studies suggest that changes in SST-mediated inhibition increase cortical baseline activity and noise, and may
thus account for deficits in cortical processing in depression. Electroencephalography (EEG) offers an important
source of biomarkers for depression to improve diagnosis and inform personalized treatments. However, whether
the effects of reduced SST inhibition on microcircuit activity have signatures detectible in EEG remains
unknown. We used detailed models of human cortical layer 2/3 microcircuits with normal or reduced SST
inhibition to simulate resting-state activity together with the associated EEG signals in health and depression.
We show that the healthy microcircuit models had emergent properties that reproduced key features of resting-
state EEG, including a theta-alpha band peak (4 — 12 Hz) and 1/f decomposition of the power spectral density
(PSD). We compared the simulated EEG in healthy and depression microcircuits and found an increase in theta
band power (4 — 8 Hz) along with a broadband increase. We then characterized the spike preference of EEG
phase for the different neuron types in the microcircuit and found a distinct preference to the peak of the theta-
alpha oscillations. In addition, we characterized the spatial decay of the EEG signatures across the brain surface
by integrating the microcircuit signal in a realistic head model. Our study thus used detailed computational
models to identify EEG biomarkers of reduced SST inhibition in cortical microcircuits in depression, which may
serve to improve the diagnosis and stratification of depression subtypes, and in monitoring the effects of
pharmacology that modulates SST inhibition for treating depression.
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Episodic memory (EM) is the recollection of past experiences that occurred at particular times and places.
Semantic memory (SM) refers to general knowledge about words and items, lacking spatiotemporal source
information, possibly resulting from the accumulation of EMs. In fact, EM traces are susceptible to
transformation and loss of information [1], which can be partially attributed to semantization
(decontextualization process). Extensions to the classical Remember/Know behavioral paradigm attribute the
loss of episodicity to repeated exposures of items in different contexts leading to decontextualization [2]. Despite
recent advancements explaining semantization at a behavioral level [2], the underlying neural mechanisms and,
particularly, the role of synaptic plasticity in the associative pathways remain poorly understood.

Here we propose and evaluate a Bayesian-Hebbian hypothesis about synaptic and network mechanisms
underlying EM semantization. We build a model consisting of two cortical spiking neural networks associatively
coupled using a Bayesian-Hebbian learning rule (BCPNN) [3,4] (Fig. 1a), and show how it captures key
phenomenological aspects of the semantization. In particular, we simulate an EM task designed to follow a
seminal experimental study [2] (Fig. 1b), and qualitatively compare the modelling results with the corresponding
behavioral data. We demonstrate that encoding items across multiple contexts leads to item-context decoupling
akin to semantization (Fig. lc, f: items or contexts serve as retrieval cues, respectively). The emerging loss of
episodicity progresses with further exposures of a stimulus in different contexts, resulting in weaker item-context
memory binding (Fig. 1d, g). This gradual trace modification relies on the nature of Bayesian learning, which
normalizes and updates weights over estimated presynaptic (Bayesian-prior) as well as postsynaptic (Bayesian-
posterior) spiking activity, while also modulating intrinsic excitability of pyramidal cells in the model (Fig. 1e,
h). Importantly, the more commonly used spike-timing dependent plasticity (STDP) rule does not lead to item-
context decoupling in the same EM task.

On the whole, there are few computational models of EM-SM interplay, and those that exist typically neglect the
underlying neural mechanisms in favor of predicting behavioral outcomes. Our model bridges these perspectives,
and reproduces important EM phenomena on behavioral time scales (under constrained network connectivity
with plausible postsynaptic potentials, firing rates, etc.), while it also explains semantization based on synaptic
plasticity. To further this understanding, our hypothesis of the EM-SM interplay at a neural level, needs to be
substantiated experimentally.
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Figure 1. Semantization of EMs in a a two-network model. Items and contextual memory objects are
simultaneously cued b in the respective networks (contexts inherit color from the coactivated items in the spike
raster). Repetition of items with various contexts leads to gradual item-context decoupling ¢ due to weakening of
associative weights between the networks (d). ***p <0.001 (Mann—Whitney).
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Currently available treatments of Parkinson’s disease are of limited efficacy. There are symptoms such as
freezing of gait which causes falls and is a significant source of morbidity in patients suffering from Parkinson’s
disease. One possible approach to treat these patients is deep brain stimulation. However, often there is a
remaining freezing of gait during the standard subthalamic nucleus deep brain stimulation. At the same time,
there is experimental evidence of freezing improvement during simultaneous stimulation of the subthalamic
nucleus and substantia nigra pars reticulata. This effect could be due to the connections of the substantia nigra
pars reticulata to the midbrain regions responsible for posture stability and gait initiation such as
pedunculopontine nucleus. A computational model explaining the observed improvement, which also accounts
for the behavioral data could help to unravel the mechanisms behind the symptoms of Parkinson’s disease and
potentially lead to more individualized treatment.

For this reason, we study the cortico-subcortical networks responsible for gait and the effects exerted on these
networks via perturbations such as deep brain stimulation. To assess the differences between the two
aforementioned stimulation modes, we compare the network dynamics during the healthy, the Parkinsonian and
the deep brain stimulated states. Also, we compare the modelling outputs with pupillometry data, which is an
indirect measure of locus coeruleus activity. This is of importance as abnormalities in afferent pathways of locus
coeruleus — one of the outputs of the model, are associated with gait deterioration. Previous computational
models do not account for the effects of interest as they are either lack biological detail or do not include
midbrain regions.

As a first approach, we developed a firing rate network model comprising interconnected populations of
Hodgkin-Huxley neurons representing basal ganglia nuclei and midbrain regions. The switch to the Parkinsonian
state is achieved via the change in striatal conductances representing dopamine depletion — a hallmark of
Parkinson’s disease. Deep brain stimulation is modeled as a current applied to the efferent axons of the neurons
in the target regions. The resulting firing profile in the locus coeruleus is then compared to the pupillometry data.
We present simulations from the proposed computational model that qualitatively account for the firing rate data
and their dynamics in the healthy, Parkinsonian and stimulated states. Moreover, the firing dynamics during the
subthalamic nucleus deep brain stimulation is markedly different from the simultaneous stimulation of
subthalamic nucleus and substantia nigra pars reticulata. Limitations of that firing rate modelling approach are
discussed. Thus, the model accounts for the first time for the difference between two stimulation modes and
suggests a possible mechanism of action behind the deep brain stimulation.
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“No causation without manipulation”. With this motto in mind, lesion inference approaches characterize the
causal contributions of neural elements to brain functions. Historically, lesion inference has helped to localize
specialized units in the brain and it has gained new prominence through the arrival of optogenetic perturbation
techniques that allow probing the causal role of neural elements at an unprecedented level of detail. While lesion
or perturbation inferences are conceptually powerful tools, they face methodological difficulties due to the
brain’s complexity. Particularly, they are often challenged to disentangle the causal role of individual neural
elements, since many functions emerge from coalitions of different elements. Therefore, studies of real-world
data, as in clinical lesion studies, are not suitable for establishing the reliability of lesion approaches, due to
unknown, multivariate, and potentially complex interactions among brain regions. Instead, ground truth studies
of well-characterized artificial systems are required to validate established lesion inference approaches and
reveal computational motifs employed by the brain.

Here, we trained an Artificial Neural Network (ANN) playing a classic arcade game to explore how well
different perturbation strategies canreveal the neural substrate of a behavior. To this goal, we first lesioned every
node and connection using a single-site lesioning scheme, which is the traditional approach in neuroscience and
second employed a multi-site lesioning scheme in order to perturb thousands of unique combinations of units.
We quantified the causal contribution of all elements using a rigorous game-theoretical metric based on the
Shapley value and then calculated the synergistic and redundant interactions of pairs of causal units.

We found that not every perturbation approach necessarily reveals causation, as lesioning elements one at a time
produced biased results. By contrast, multi-site lesion analysis captured essential information that was missed by
single-site lesions. In particular, we identified a motif of functional interaction that manifests as a paradoxical
lesion effect, i.e., disruptions in performance caused by a first lesion that reverts towards normal after a second
lesion. Finally, we compared the network’s behavior with the behavior of the network in which the most critical
element was lesioned, to understand the functional role of the element.

We conclude that even small and seemingly simple ANNs show surprising complexity that needs to be
appreciated in order to derive a causal picture of the system. In the context of rapidly evolving multi-site
perturbation approaches and multivariate brain-mapping and inference methods, we advocate using in silico
experiments and ground-truth models to verify fundamental assumptions about the validity of these approaches.
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Visual information processing plays an important role in human perception and cognition. Measuring the
information flow is an even more challenging task than purely detecting local activations. The selection of
parsimoneous set of relevant regions of interest (ROIs) is key for successful analysis. A common choice is using
blind source separation (ICA, PCA, NNMF). However, due to nonstationarity of the stimulus driven data and
multiple local maxima of the temporal components, interpretable description of spreading of the initial stimulus
is complicated. We thus propose a method that enforces better temporal localization of the activity within the
studied ROIs, and demonstrate an application to source-reconstructed high-density EEG data. Effective
connectivity analysis was used to demonstrate the difference in the detected feedforward and feedback activity

(Fig. 1).

Local activity time courses are divided into components via spatiotemporal dynamics. Activation times are
defined as a time of a maximum of absolute values, and were used to sort signals in time and divide them into
equal groups (N=15). In every group, outliers are removed according to the sources' spatial positions and
remaining locations were spatially clustered using k-means and considered as ROI for further processing. The
method was tested on example EEG data of a healthy subject (male, age 33). A set of pictures was presented on a
computer monitor with 600 trials, each including 200 ms of baseline, 300-ms stimulus, and 600-ms of reaction
time [1]. The EEG was recorded by a high-density 256-channel system with Net Amps 400 series amplifier at
1000 Hz sampling and preprocessed by an automated pipeline: bad channel detection and interpolation, bad
segment rejection, bandpass filtering (0.5-300Hz), ICA-based artifact detection and rejection by a set of features
from SASICA, FASTER, and ADJUST packages in the EEGLAB toolbox [2], and finally average referenced
and bandpass filtered to 1-80 Hz.

The EEG dipole moment time courses were estimated by the eLORETA inverse algorithm [3] on a regular grid
in grey matter. The forward model was generated by the Fieldtrip-Simbio pipeline [4] including a 5-layer
hexahedral head model using individual T1-w MRI image. The electrode positions were based on fiducial points
coregistration with individual head model. Several ROI laying along ventral/dorsal pathways were selected for
preliminary connectivity analysis. A significant difference between feedforward and feedback connectivity was
detected [200:400] ms after stimulus. In future we aim to update the ROI definition so sources could have
no/more than one activation, include more subjects and continue with connectivity analysis.
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Auditory responses are strongly modulated by the recent history of sound. Across the auditory pathway neural
responses are significantly attenuated if the same stimulus was presented less than a few seconds ago. The time
constant at which firing rates in primary auditory cortex (PAC) recover back to baseline is on the order of one
second. Time constants for auditory evoked EEG responses, which reflect synchronized post-synaptic potentials
from all auditory responsive brain regions, can be even longer. This response attenuation has often been linked to
short-term synaptic depression. However, synaptic time constants are typically in the range of a few hundred
milliseconds. It is thus unclear if and how the synaptic time-constants could give rise to the much longer time-
constants of firing rates and EEG.

To address this question, we investigated under which circumstances the recovery time-constant of a neural
network can differ from the recovery time-constant of the underlying synapse. Further, we tested if the long-
lasting attenuation of click-evoked neural responses observed in monkey PAC and EEG, can be accounted for by
much shorter synaptic time-constants. We measured the multi-unit activity (MUA) from the PAC and EEG
signal in rhesus monkeys. The sound stimuli were auditory clicks with random inter-click intervals (ICI, 0.25 to
12 seconds) and different intensities (65 to 85 dB SPL). To develop a forward model to simulate EEG activity,
we used magnetic resonance image (MRI) to obtain head models of the monkeys. We used a firing rate model
with short-term synaptic depression at both the feedforward and recurrent excitatory synapses. We fitted the rate
model to the MUA data recorded in PAC and obtained distributions of network connectivity and synaptic
parameters. To simulate the EEG data, we built a forward model to link single region activity to EEG signals,
which incorporates detailed monkey head models and the geometry of the monkey cortex. With a brain atlas
database of non-human primates, we extracted the accurate locations of different auditory regions, and computed
the contributions of each region to the EEG signals recorded on different sensors. We found that networks with
recurrent depression typically generated longer rate recovery time constants compared to their synaptic time
constants. Networks with feedforward depression can also generate longer rate recovery time constant if their
stimulus response function is supralinear.

These results suggest that the rate recovery time constant is an emergent property of the network and can
increase across the cortical hierarchy. Interestingly, we found that the evoked potentials of EEG signal lasted
much longer than the neural responses in PAC, suggesting contributions from other auditory regions. Moreover,
different EEG components showed different recovery time constants, suggesting that the recovery time constants
change along the auditory pathway. To capture these differences, we extended the recurrent network to model
multiple auditory regions, including core, belt and parabelt regions in auditory cortex. We found that belt and
parabelt regions had longer response latencies, which would contribute more to the later components of the EEG
responses.
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Biological organisms and artificial intelligence need to predict the dynamics of newly encountered input signals
(test data) based only on the knowledge learned from a limited number of past experiences (training data).
However, previous methods either suffer from a large test prediction error or fall into suboptimal solutions. To
address this issue, we developed an unsupervised learning scheme that extracts the most informative components
for predicting future inputs, which is called the predictive principal component analysis (PredPCA) [1]. It has a
simple architecture comprising two parts — one responsible for prediction and one for dimensionality reduction —
and can identify their optimal synaptic weight matrices that minimise the test prediction error through a convex
optimisation. The solution that minimises the test prediction error coincides with the most plausible estimator of
the generative process that generates sensory data, meaning that the outcomes of PredPCA offer a reliable
system identification with guaranteed accuracy. Owing to the asymptotic linearisation theorem [2], while
PredPCA employs a linear neural network, it can reliably identify the true parameters of canonical nonlinear
generative processes when the hidden state dimensionality is high and the input dimensionality is sufficiently
higher than the hidden state dimensionality. Thus, the reliable prediction generalisation and unique system
identification guaranteed by the convex optimisation are the virtues of PredPCA. We demonstrate that PredPCA
can extract hidden features important for predicting subsequent images of previously unseen videos. This scheme
is potentially useful for automated driving and medical diagnosis.

PredPCA potentially contributes to neuroscience in several ways. First, PredPCA is useful for analysing neural
data. Feature extraction using PredPCA offers data prediction with high generalisability, reliability, and
explainability. Second, the brain may use the PredPCA-like learning rule to extract features. According to the
complete class theorem, any neural network that minimises its cost function can be cast as performing variational
Bayesian inference [3,4]. Because PredPCA minimises its cost function, it can be cast as Bayesian inference at
least under a pair of Bayesian cost function and prior beliefs. This sort of representation learning can be cast as
the dynamics of neural activity and plasticity. Thus, PredPCA can be a model of perceptual learning in the brain.
We describe how such a machine learning scheme is closely related to neural and synaptic dynamics of
canonical neural networks. We discuss the possible neuronal and synaptic mechanisms underlying the PredPCA-
like computation in the brain.
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Characterizing the dynamics of recurrent neural networks trained to perform tasks similar to those performed by
animals and humans in laboratory experiments is crucial to understanding which connectivity models best
predict the behavior of different areas of the brain, such as the cortex, and more specifically the prefrontal cortex
[1]. In the last decades, simple models of recurrent neural networks have been successfully used to explaining
different mechanisms such as decision-making, motor control, or working memory [2]. One of the aspects that
are omitted generally in those models is that neurons present differences between excitatory and inhibitory units
(Dale's Law). Building recurrent networks that present this characteristic presents several challenges [3]. In
present work, the different dynamical behaviors obtained when training networks with different proportions of
excitatory and inhibitory units were analyzed considering decision-making tasks. The dynamical behavior, the
performance of training and different constraints were studied. The emergent properties of the system were
studied by comparing them with the results obtained with models that do not distinguish between excitatory and
inhibitory units. We considered the case where the amount of excitatory and inhibitory units is balanced, and
also what happens when this balance is broken.
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Based on human and animal studies, neuronal hyperexcitability has been identified as one of the hallmarks of
Alzheimer’s disease (AD). Accordingly, previous studies in transgenic mice [1] and rats [2] have revealed
increased excitability of hippocampal CA1 pyramidal cells (PCs). However, the cause of this hyperexcitability
has not yet been fully elucidated. It may be a result of dendritic atrophy (and its electrotonic consequences) or
impaired balance between excitation and inhibition or pathological changes in ion channel expression, or a
combination of these mechanisms. Nevertheless, the contribution of these three mechanisms and their interplay
with synaptic loss, which is another hallmark of AD, has remained unclear. Therefore, here we used
anatomically and biophysically realistic computational models of CA1 PCs driven by distributed synaptic inputs,
to test whether dendritic atrophy can account for AD-related hyperexcitability. We have performed
computational comparative analysis of passive and active properties using 3D-reconstructed CA1 PC
morphologies from wild type (WT) and aged APP/PS1 mice. In agreement with previous computational results
[1], we have discovered that, in APP/PS1 mouse morphologies, reduced dendritic length and branching
decreases input resistance of modelled CA1 PCs rendering them electrotonically more compact and more
excitable upon somatic current injections. However, due to synapse loss, the CA1 PCs did not display any
hyperexcitability in simulations with more natural stimulation in the form of distributed synaptic activation. This
is in agreement with our previous findings that dendritic atrophy can contribute to neuronal firing rate
homeostasis by compensating for the loss of synaptic inputs [3]. We conclude that dendritic degeneration cannot
account for the observed hyperexcitability in AD. Our modeling suggests that other changes such as excitation-
inhibition imbalance or/and altered ion channels are needed to induce synaptically-driven hyperactivity of CA1
PCs.
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Biophysically and anatomically realistic modeling of long-term synaptic plasticity requires computationally
demanding simulations. Using a complex model with a complete dendritic tree morphology can be
computationally expensive. Therefore, we focused on the development of a simplified model for CA1 pyramidal
cells that are involved in learning and memory-related processes. We used a strategy that combines reduced
morphology from one model and complex biophysics from another model. Using this approach, we created a
new hybrid model with reduced morphology [1]. The dendritic tree of the model retains the minimal anatomical
properties of the CA1 pyramidal cell including basal dendrites, apical trunk, oblique dendrites, and apical tuft
(Fig. 1). We subjected the model to systematic testing of somatic and dendritic features using HippoUnit, a
recently established standardized test for CA1 pyramidal cell models [2]. Our model reproduces typical somatic
electrophysiological features, depolarization block, attenuation of excitatory postsynaptic potentials, as well as
back-propagation of action potentials. The model dendrites are able to generate dendritic spikes in response to
synchronous synaptic stimulation. To test the capability of the model to simulate synaptic plasticity, we used a
voltage-based implementation of the STDP (spike-timing dependent plasticity) rule endowed with a fast BCM-
like metaplasticity [3,4]. The model stabilized synaptic weights during ongoing spontaneous activity as well as
displayed long-term synaptic plasticity using typical stimulation protocols. Furthermore, we observed
heterosynaptic plasticity at unstimulated synapses, the magnitude of which depended on the level of spontaneous
activity, the stimulation protocol used, and the dendritic compartment where it was observed. We conclude that
the model is biologically accurate and is suitable for taking into account the complex experimentally observed
patterns of homosynaptic and heterosynaptic plasticity induced by different stimulation protocols.
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Figure 1. The morphology of the model (A), representative responses of the model to the positive (B) and
negative (C) somatic current injections and the normalized model Z-scores obtained from HippoUnit tests (D).
The red vertical line represents SD = 2.
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Investigating the functionality of human neurons remains a challenge due to the scarcity and incompleteness of
their 3D anatomical reconstructions. Additionally, accurate human and nonhuman neuronal morphologies are
urgently needed for a better understanding of species differences in brain circuits as well as for realistic
compartmental modeling. Therefore, here we used a morphological modelling approach based on optimal wiring
[1] to repair any parts of a dendritic morphology that were lost during the reconstruction process. Interestingly,
our minimum spanning tree-based algorithm regenerated dendritic branches of Drosophila neurons in a manner
similar to experimental observations using branch ablation techniques [2]. To validate the repair algorithm for
mammalian neurons, we artificially sectioned reconstructed dendrites from mouse and human hippocampal
pyramidal cell morphologies [3], and showed that the regrown dendrites were morphologically similar to the
original ones (Fig. 1). Moreover, we could recover their electrophysiological functionality as shown by
restoration of their firing behavior. Importantly, we show that such repairs can be generalized to other neuron
types including hippocampal granule cells and cerebellar Purkinje cells. Such internal validation of the repair
algorithm based on sectioning and regrowing of available reconstructions allowed us to extrapolate the repair to
incomplete morphologies. We showed this specifically for cases of data from humans where the anatomical
delimitations of the particular brain areas innervated by the neurons in question were known. To make the repair
tool available to the neuroscientific community, we have developed an intuitive and easy-to-use graphical user
interface (GUI [PJ1]) available in the TREES Toolbox (www.treestoolbox.org).
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Figure 1. Example repair of mouse CAl pyramidal neuron with reference neuron on the left and repaired neuron
on the right. Artificially sectioned and repaired dendrites are marked in red with the blue shaded areas being the
growth volume. The Sholl distributions for the cut, repaired and reference morphology are shown at the bottom.
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During focal seizures in epileptic patients, abnormal electrical activity appears in and can spread through the
brain network. A possible remedy is the surgical resection of the suspected epileptogenic zone localized using
the intracranial EEG (iIEEG). Rigorous, computational approaches based on the fusion of the individual
structural connectomes with the iEEG recordings hold promise for improving the localization of the
epileptogenic zone and therefore the surgery outcome. Integration of the functional with structural data can be
performed in a model-based framework. However, this model inversion poses multiple challenges, both
technical and conceptual. In this contribution we provide an overview of our recent efforts [1-2] in this domain
and discuss the challenges and possible approaches.

In particular, we consider the choice of the model and compare the complexity, expressivity, and ease of
inversion of the models based on the Epileptor neural mass [1] with a simplified threshold model [2]. The model
of source activity is linked to the observed iEEG activity via the forward projection model, which can affect the
identifiability of the parameters, and has to be coupled to data preprocessing methods. We continue with the
formulation of the problem in Bayesian framework, and we discuss the choice of the inversion technique, such as
the Markov chain Monte Carlo sampling, or the maximum a posteriori estimation. We highlight the importance
of the parameterization of the model for the efficiency of the inversion. Finally, we discuss the possibilities of
validation of a chosen approach, which too is not straightforward considering the clinical origin of the data and
the limitations associated.
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Epilepsy is one of the most common severe neurological disorder characterized by likelihood for the brain to
enter seizure states. Prompt and efficient treatment often requires a prior knowledge or predictability, when and
where seizures are likely to occur. Developing prediction strategies is extremely challenging due to the patient-
specific causes of seizures, and the difficulty in obtaining data from longitudinal study.

The interictal discharges are often observed transient changes translating as spikes captured through the
stereotactic EEG (sEEQG) implants before the onset of seizure. The spikes are usually distinguishable as
prominent sharp amplitude feature occuring for a short duration of time. The cause of source level activation
pattern and the associated physiological changes is often not known. In this work we attempt to understand the
underlying physiological phenomenon using an extended epileptor model connecting the epileptic state with the
resting state. The aim is to capture the bursting phenomenon at the source level throught the model and
translating up to the sensor level i.e at the SEEG level. A relative comparison gives an insight and understanding
of the coactivation pattern of the brain regions recruited during an occurrance of seizure in an epileptic brain.

The simulations were done using the neuroinformatic platform TVB. Structural connectome constructed using
an in house pipeline for automatic processing of multimodal neuroimaging data based on publicly available
neuroimaging tools, customized for TVB having the Virtual Epileptic Patient (VEP) as the parcellation scheme.
Once the connectome is obtained the bursting phenomenon at the source level is being simulated using the RS-
epileptor model. To capture this bursting phenomenon a robust spike estimator is developed for automatic
detection of fiducial points viz. occurance of the spikes. A modified Tear-kaiser operator or non-negative
frequency weighted operator is used to capture the transient spike pattern and occurrances both at the source and
sEEG sensor level. This is a feasible way of assessing the instantaneous energy of the signal incorporating both
amplitude and frequency feature. Once these features are identified, the next steps of the detection algorithm is
followed by a linear Support Vector Machine (SVM) based two stage spike sorting system which first detects the
spikes and then differentiates it from noise. The IS are characterized by a brief initial phase having a sharp and
strong amplitude occurring as transitional events appearing either isolated or in bursts. To capture the dynamics
of this bursting mechanism the following scheme is being devised: (i) Detecting and characterizing IS on each
simulated SEEG channel and the simulated regions, (ii) Determining the temporal relations between the various
channels and corresponding simulated regions.

Interictal spikes are waveform arising due to the synchronous firing of excitable population of neurons and are
considered abnormal electrical phenomenon when observed at the SEEG level. Interictal discharges have been
predominantly observed in between Hence they become a complementary source of information in the diagnosis
and localization of early onset of the seizure or mathematically speaking, acts as a prior to the VEP estimation
paradigm.
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We are interested in the biophysics of forward and backward propagation of action potentials (APs), as they are
both important for learning. The axon initial segment (AIS) initiates APs in a variety of neurons. Pyramidal cells
contain two types of voltage-gated sodium channel: Nay1.2 (high threshold) and Nay1.6 (low threshold). These
channels are nonuniformly distributed in the AIS. The density of Nay1.2 is greatest near the soma, and Nay1.6
density peaks further down the AIS, away from the soma [1]. While this distribution is observed, its purpose
remains unclear [2]. Counterintuitively, published simulations suggest that concentration of high threshold
channels near the soma lowers the threshold for backpropagation [1]. We find that this is true when stimulating
at the axon. However our results suggest that the observed distribution increases the backpropagation threshold
for somatic stimulation. We discuss the effect of altering AIS length, AIS distance, and specific leak currents.

Acknowledgments
Funded by NSERC (Canada).

References

1. Hu W, Tian C, Li T, Yang M, Hou H, et al. Distinct contributions of Na v 1.6 and Na v 1.2 in action potential
initiation and backpropagation. Nature neuroscience. 2009 Aug;12(8):996-1002.

2. Katz E, Stoler O, Scheller A, Khrapunsky Y, Goebbels S, et al. Role of sodium channel subtype in action
potential generation by neocortical pyramidal neurons. Proceedings of the National Academy of Sciences. 2018
Jul 24;115(30):E7184-92.



Seizure forecasting from long-term EEG and ECG data using Critical
Slowing Principle

Wenjuan Xiong"*!, Ewan Nurse?, Elisabeth Lambert®, Tatiana Kameneva*

!Swinburne University of Technology, Melbourne, Australia

2Seer Medical, Melbourne, Australia

3Swinburne University of Technology, Department of Health and Medical Sciences, Melbourne, Australia
4Swinburne University of Technology, School of Software and Electrical Engineering, Melbourne, Australia

*Email: wxiong@swin.edu.au

Epilepsy is a neurological disorder characterized by recurrent seizures that are transient symptoms of
synchronous neuronal activity in the brain. Epilepsy affects more than 50 million people worldwide [1]. Seizure
forecasting allows patients and caregivers to deliver early interventions and prevent serious injuries.
Electroencephalography (EEG) has been used to forecast seizure onset, with varying success between
participants [2,3]. There is an increasing interest to use electrocardiogram (ECG) to help with seizures
forecasting. The neural and cardiovascular systems may exhibit critical slowing, which is measured by an
increase in variance and autocorrelation of the system, when change from a normal state to an ictal state [4]. The
aim of this study is to use variance and autocorrelation of long-term continuous EEG and ECG data to forecast
seizures.

EEG and ECG data from 16 patients was used for analysis. The average period of recording was 161.9 hours,
with an average 9 electrographic seizures in an individual patient. The variance and autocorrelation of EEG and
ECG signals of one electrode were calculated in 15s window for each time point. The instantaneous phases of
variance and autocorrelation signals were calculated at each time point using Hilbert transform. The relationship
between seizure onset times and phase of variance and autocorrelation signals were investigated in long (6
hours) cycles. The probability distribution for seizure occurrence in each signal was determined. Seasonal
autoregressive integrated moving average (SARIMA) model was used to forecast variance and autocorrelation
signals. Bayesian approach was used to combine probability distributions of seizure occurrences for each time
point. The results of forecasting models using critical slowing features, seizure circadian features, and combined
critical slowing and circadian features were compared using the receiver-operating characteristic curve.

The results demonstrated that the best forecaster was patient-specific and the average area under the curve
(AUC) of the best forecaster across patients was 0.68. In 50% of patients, circadian forecasters had the best
performance. Critical slowing forecaster performed best in 19% of patients. Combined forecaster achieved the
best performance in 31% of patients. The mean forecasting time was 44.2 min. Results indicate that critical
slowing features could be used to forecast seizures. The results of this study may advance the field of seizure
forecasting and ultimately lead to the improved quality of life of people who suffer from epilepsy.
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Advances in brain imaging techniques have enabled us to acquire detailed datasets of neural activity. But while
activity is easy to measure, connectivity is still hard to observe directly and often has to be inferred from activity
data. To do so, large amounts of neural recordings are necessary to reconstruct the connectome which makes this
process costly and time-consuming. Here, we present a new method for inferring connectivity from sparse
activity by using synthetic data to pretrain a model for inferring connection strengths. We demonstrate our
approach on recordings from the rodent barrel cortex, which processes tactile information and consists of many
interconnected anatomically confined cortical columns. The connectome inside a single cortical column has been
studied for decades and their microcircuits and connectivity are well-known. However, the connectivity between
multiple columns, which give rise to the observed detailed dynamics, is not well understood. We use a mean-
field cortical column model that reduces individual neurons to a network of neuron populations [1] for producing
barrel-cortex activity-like data. This approximation leads to a model which qualitatively reproduces the activity
observed in experimental measurements while being numerically inexpensive. To initialize our model and
validate our results, we use experimental data of anaesthetized adult rats, obtained from in-vivo experiments [2].
We then used two different methods and compared them in their ability to infer connectivity - one of which is a
modified version of FORCE learning [3] acting on recursive neural networks. An overview of this approach can
be seen in figure 1. As in the original FORCE approach, learning is performed through changes in connection
strength inside the network, however, connections to read-out units are constant. To provide the recurrent
chaotic dynamic needed by the FORCE approach, a higher number of units is used in the FORCE network than
in the mean-field model. Additionally, the network was further divided into sub-networks with a corresponding
target function generated using the mean-field model. We adjusted the learning rule to improve the
representation of the biological setting. Our modified FORCE respects Dale's law and the output is restricted to
positive values. A technique in this context is successful if experimental datasets can be reproduced and
predicted using the generated connectome. We find that FORCE learning with the additional constraints can
accurately replicate neuron population activity typically encountered in the mean-field model. Also, we observed
convergence in the generated connection matrix over multiple learning procedures with randomly generated
starting conditions. In ongoing work, we compare these results with connection matrices inferred using a deep
learning approach to assess the stability and reproducibility of our modified FORCE learning model.
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connectivity between columns to replicate a set of target functions supplied by experimental data. The
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Hippocampal ripple oscillations have long been implicated in important cognitive functions such as memory
consolidation [1]. Several generating mechanisms have been proposed, some relying on excitation, some on
inhibition as the main pacemaker of ripples. The inhibitory models can be further subdivided into perturbation-
based [2] and bifurcation-based models [3,4]. While all the above model classes can produce oscillations in the
ripple-band (140-220 Hz), only the bifurcation-based inhibitory model has been shown to also reproduce the
experimentally observed intra-ripple frequency accommodation (IFA) — an asymmetry in the instantaneous
network frequency in response to transient, sharp wave-like stimulation [4,5; Fig. 1].

Here we provide a mechanistic explanation for the occurence of IFA in bifurcation-based inhibitory ripple
models, using a theoretical mean-field approach. We start with a simplified spiking network of leaky-integrate-
and-fire units, which are fully connected via delayed inhibitory pulse-coupling. All units receive independent
white noise and the same excitatory drive, which is thought to mimic the input to CA1 coming from the CA3
Schaffer collaterals. It has been shown that for high-enough drive this network undergoes a bifurcation from a
stationary to an oscillatory regime [6]. To address IFA we need to a) approximate the highly non-linear
oscillation dynamics for constant drive beyond the bifurcation and b) understand how the response to transient,
sharp wave-like drive relates to those cyclo-stationary dynamics.

Assuming large enough constant drive, we take the frozen-noise limit and approximate the density of membrane
potentials (i.e., the solution of the associated Fokker-Planck equation) as a Gaussian with time-dependent mean.
In this framework we can analytically approximate the frequency and amplitude of the network oscillation as a
function of excitatory drive. We show that for a wide parameter regime (spanned by noise intensity, coupling
strength, reset potential, synaptic delay) this ansatz provides a good approximation of the cyclo-stationary
dynamics beyond the bifurcation. It captures the transition of the network from a regime of sparse, irregular
synchrony to full synchrony as the excitatory drive increases. This transition comes with a monotonic increase in
the amplitude of the oscillation in the mean membrane potential. We demonstrate that, given transient, sharp
wave-like drive, IFA results from a speed-dependent hysteresis effect in the amplitude of the oscillatory mean
membrane potential. Since this finding is largely independent of specific parameter choices, it establishes IFA as
an inherent feature of the bifurcation-based inhibitory model. Conversely, we find that the perturbation-based
inhibitory model cannot exhibit IFA without additional parameter tuning. The present work thus highlights the
importance of considering transient ripple dynamics, such as IFA, to guide the selection of the true generating
mechanism of ripple oscillations.
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Figure 1. Intra-ripple frequency accommodation (IFA) in simulated inhibitory spiking network: Given transient,
sharp wave-like drive (green, bottom), the population rate (blue) responds with a transient ripple-like oscillation
that has an asymmetric instantaneous frequency (top panel, white line).
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We present our recent effort of the continuous-state formulation of active inference in the brain [1,2], which
attempts to undergird the free energy principle (FEP) in neuroscience [3]. Our goal is to make the FEP a more
rigorous formalism by implementing FE minimization based on the principle of least action [4]. Consequently,
we cast the neural implementation of variational Bayes under the FEP as an effective Hamilton's equation of
motion in continuous time, invoking Bayesian mechanics (BM) in the brain. The ensuing BM prescribes the
dynamics of the brain states and their conjugate momenta in neural phase space; the momentum variable
represents the discrepancy between the environmental dynamics and the brain's internal model about it. We also
present a simple agent-based model of the brain performing integration of the BM to demonstrate our
framework.

The FEP stipulates that all viable organisms perceive and behave in the natural world by calling forth the
probabilistic models in their neural system - the brain - in a manner that ensures their adaptive fitness [3]. We
consider that the brain continually confronts sensory streams and conducts the Bayesian inversion of inferring
external causes using the continuous state representations. We formulate a plausible computational
implementation of the FEP by postulating that the informational FE — an upper bound for surprisal - plays the
role of a Lagrangian in theoretical mechanics [4]. Accordingly, we furnish a variational scheme of the brain’s
updating the internal model and acting on the external world by minimizing the sensory uncertainty, which is a
long-term surprisal over time [2].

The prescribed BM is subject to a time-dependent signal arising from the prediction errors at the sensory level on
the sensorimotor loop, which serves as the motor command. To this extent, the BM bears a resemblance to the
motor-control equations derived from Pontryagin’s maximum principle in optimal control theory [5]. By
numerically integrating the Bayesian equations of motion for the considered parsimonious model, we illustrate
the brain’s transient trajectories in continuous time, performing active perception of the causes of nonstationary
sensory stimuli [1]. The steady-state solution of the BM reveals an attractor about which stationary limit cycles
form, which suggests that the brain undergoes nonequilibrium transit between spontaneous state and aware state
upon sensory perturbations.

References

1. Kim CS. Bayesian mechanics of perceptual inference and motor control in the brain. Biological Cybernetics.
2021 Feb;115(1):87-102.

2. Kim CS. Recognition dynamics in the brain under the free energy principle. Neural computation. 2018
Oct;30(10):2616-59.

3. Friston K. The free-energy principle: a unified brain theory?. Nature reviews neuroscience. 2010
Feb;11(2):127-38.

4. Landau LD, Lifshitz EM. Mechanics: Course of theoretical physics. Volume 1. 3rd edition. Amsterdam:
Elsevier; 1976.

5. Todorov E. Optimal control theory. Bayesian brain: probabilistic approaches to neural coding. 2006:268-98.



Constructing a cortical column model from the local field potentials in
the auditory cortex in awake monkeys

Vincent S. C. Chien!, Yonatan I. Fishman?, Burkhard Maess?, Thomas R. Kndsche™!

"Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks, Leipzig, Germany

2Albert Einstein College of Medicine, Departments of Neurology and Neuroscience, New York, NY, United
States of America

3Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

*Email: knoesche@cbs.mpg.de

How auditory evoked responses (e.g., P1, N1, P2) in EEG/MEG are generated in the cortex is still poorly
understood. One approach is to employ biological neural models to interpret the underlying network
mechanisms. However, existing models targeting this question (e.g., the Human Neocortical Neurosolver [1]) are
not constrained by other recorded neural activities such as the local field potentials (LFPs), which can potentially
lead to biased interpretation. In this study, we attempt to investigate the generation of the evoked responses by
constructing a rate-based cortical column model constrained by LFPs from multi-contact electrode recording.
The electrode recorded the laminar neural activities in response to 60 dB SPL 200 ms duration pure tones at the
best-frequency (BF) sites in the primary auditory cortex (A1) of awake monkeys (a total of 11 sites, each with 16
laminar depths). Since the LFPs are contributed by the activities of various types of excitatory (E) and inhibitory
neurons such as parvalbumin-expressing interneurons (PV), somatostatin-expressing interneurons (SOM), and
vasoactive-intestinal-peptide-expressing neurons (VIP), we include several neural populations in different layers
(E, PV, and SOM in layer 2/3; E in layer 4; E and PV in layer 5/6) in the column model. The model's state
variables include the firing rates, postsynaptic potentials (PSPs), and synaptic efficacy reflecting short-term
plasticity (STP). The model parameters include network connection strengths, synaptic time constants, and STP
rates. We fitted the column model to the laminar profiles of multi-unit activity (MUA) and current source density
(CSD) derived from the recorded LFPs. The fitting procedure was implemented in the VBA toolbox [2] to find
the best parameters using the variational Bayes algorithm. To explore plausible solutions, we randomly selected
starting parameter sets in a reasonable range of the parameter space (2000 samples at each recording site). The
preliminary fitting results suggest that the diverse CSDs at different recording sites can be transformed into the
product of diverse CSD spatial profiles with relatively consistent patterns of firing rates. So far we have
demonstrated the applicability of our column model in estimating population-level neural interaction from LFP
data. The model simulations also suggest that the current sources and current sinks indicated by the CSD result
from multiple transmembrane current flows. Future work will be concerned with the interpretation of fitted
parameters, choice of priors and constraints for computational efficiency of fitting, and fitting across multiple
recording sites.
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Ephaptic coupling effects in parallel nerve fibers have been observed experimentally since the early 1940s [1,2].
These are characterized by the synchronization and slowing down of action potentials, a phenomenon that has
been reproduced in modelling studies based on biophysically realistic models [3,4]. The latter, however,
preclude the theoretical study of ephaptic coupling effects in nerve fibers with a large number of axons. Here, we
present a spike-propagation model (SPM) that sheds excessive biophysical detail in favor of computational
efficiency, without loss of capturing the essential features of propagating action potentials and their ephaptic
Interaction.

The SPM describes an action potential by its position on the axon and its velocity. The velocity is primarily
defined by intrinsic features of the axons, such as diameter and myelination status, but it is also modulated by
changes in the extracellular potential. These changes are due to transmembrane currents that generate an action
potential. Within the SPM framework, this change of extracellular potential is modelled by a coupling function
that is derived from passive axonal properties. In the absence of external perturbations, an action potential
propagates with the velocity intrinsic to the axon. In the presence of external perturbations, the resulting change
in the velocity is appropriately described by a linearized coupling function, which is calibrated with a
biophysical model.

The efficiency of the SPM allows us to systematically study peripheral nerve bundles with a large number of
axons. We find that fiber density and the number of active fibers are critical for the emergence of
synchronization between action potentials and their slowing down. The transition from asynchrony to synchrony
is characterized by a phase transition that occurs at a critical fiber density and activity level. This transition is
counteracted by the heterogeneity of the fiber bundle, specifically by the heterogeneity of fiber diameters. We
study different distributions of fiber diameters and identify corresponding critical values for the transition to
synchrony. In addition, we compare our results with previous results obtained for fiber bundles in the central
nervous system [5], where ephaptic coupling has no synchronizing effect and accelerates signal transmission.
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Many neuroimaging studies examined reward prediction errors (PEs), focusing on dopamine-rich brain regions,
which encode PEs [1]. Systematic approaches combining results across these studies will improve our
understanding. To examine brain regions responding to dimensions of PE across studies, we used coordinate-
based meta-analysis — multi-level kernel density analysis (MKDA; [2]) to analyze data from 263 papers and 464
contrasts representing 6,454 participants, as shown in Figure 1.

Both computational modeling work and experiments on PE have considered whether regions encoding PEs
respond to both unexpected rewards and violations of beliefs in tasks without explicit rewards [3]. To examine
this, we used a conjunction analysis to look for regions computing PEs in reward tasks and perceptual and
cognitive tasks without explicit rewards, finding a core PE circuit including midbrain, insula, and striatum. There
was also specialization for different PE types, such that perceptual PEs recruited visual and parietal areas, and
social PEs more consistently recruited dorsomedial prefrontal cortex (dmPFC) than non-social.

Predictive coding theories suggest that precision, the reliability of statistical estimates, influences the
contribution of PEs to learning [4]. A conjunction analysis of signed and precision-weighted (unsigned) PEs
revealed striatum, parietal lobe, supplementary motor area (SMA), and frontal eye field. Comparing the two,
signed PEs had more consistent activity in midbrain, striatum, medial PFC and cingulate regions, while
precision-weighted PEs had more consistent activity in cerebellum, dorsolateral PFC, dmPFC, SMA, distinct
insula and cingulate regions, and parietal and temporal regions.

Recent theories of PE propose that some circuits encode value, increasing for appetitive and decreasing for
aversive outcomes, while others capture salience, increasing for both valences [5]. We examined salience using a
conjunction of appetitive and aversive valence PEs, which revealed midbrain, striatum, and insula. However, a
meta-contrast analysis found that distinct regions of striatum and midbrain responded more consistently to
aversive PEs than appetitive, consistent with recent evidence [6].

Overall, we show a core circuit in the midbrain, striatum, and insula that responds to PEs across valences and
tasks as well as distinct regions for more specialized computations, such as social and perceptual inferences. This
has important implications for theories of PE.
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Figure 1. a Core PE circuit, all tasks: insula, midbrain, striatum. b Perceptual: visual regions, cognitive: mPFC,
striatum, social > non-social: vmPFC, dmPFC. ¢ Signed PE: mPFC, striatum, Precision-weighted: distinct insula,
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to appetitive showed distinct striatal, midbrain, PFC & insula regions.
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Neurons receive a stream of random excitatory and inhibitory inputs arising from the background network
activity, leading to fluctuations of the neuron's membrane potential [1-3]. Experimentally, it has been observed
that evoked inhibitory input to the neuron may decrease its membrane potential fluctuations, despite the mean
value of the membrane potential remaining unchanged [4]. However, the evoked inhibitory input (paired with an
evoked excitatory input, necessary to keep the mean membrane potential unchanged) leads to an increase in the
total synaptic noise and the synaptic current fluctuations. We provide a theoretical explanation for this
observation and analyze its effect on the neuronal firing variability.

We used single compartmental neuronal models to show that evoked inhibitory input decreases the membrane
potential fluctuations if the signal to noise ratio of the input scales slower than the square of the input intensity, a
condition which is implicitly satisfied for the Poisson shot noise. Moreover, we show that in order to reproduce
this behavior in neural models, reversal potentials and synaptic filtering has to be included in the model of the
synaptic input.

To clarify the effects on spike-firing regularity, we used models with different spike-firing adaptation (SFA)
mechanisms. When SFA was implemented through ionic currents or not at all, higher levels of inhibition led to
lower firing regularity, despite the decreased membrane potential fluctuations. On the other hand, we observed
that evoked inhibition may lead to more regular firing (while keeping the mean firing rate unchanged), if the
neuron exhibits a dynamic spike firing threshold (Fig. 1). See [5] for the published version of the presented
work.
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Figure 1. The increase in inhibitory input (A) leads to an increase in the fluctuations of the synaptic current (B),
but decreases the fluctuations of the membrane potential of a non-spiking membrane (C). The evoked inhibition
decreases the firing regularity in the model with M-current SFA (D), but increases the firing regularity in a
model with dynamic threshold (E).
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Studies revealed that outcomes of complex video game (VG) training can be predicted by individual differences
in demographic and behavioral characteristics [1]. However, there is still no unanimity on the effectiveness,
settings, and benefits of VG training for particular subjects. Therefore, researchers used measures of individual
differences in neuroanatomy to shed light on the inconsistent results. Most of the studies in the domain used
voxel-based morphometry (VBM) method to obtain neuroanatomical measures of grey matter volume [e.g.,
2,3,4]. Surface based morphometry (SBM) measures such as cortical thickness (CT) provide a better
differentiation of tissue boundaries [5], but only one study used it to predict complex VG skill acquisition [6].
Researchers revealed that CT of the lingual gyrus (LG) can be a significant predictor of First Person Shooter VG
learning [6].

In our research we have concentrated on prediction of VG skill learning from CT in a game with different
mechanics, Real Time Strategy. We have selected regions of interest from previous studies which were possible
to investigate using the SBM method such as LG [6], medial frontal gyrus and anterior cingulate cortex [4]. This
study provides important evidence of the usefulness of SBM measures for prediction of complex VG learning.
We hope that our study and future reports will allow researchers to better adjust training regimes for esport
professionals, create personalized rehabilitation programmes and explain theoretical underpinnings of
neuroplasticity after complex VG training.
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A neural circuit is highly recurrent and shows rich internal dynamics. The internal dynamics interplay with
external stimuli to generate their neural representation. How such a representation emerges and is related to
internal dynamics are important questions for understanding neural processing. Random recurrent neural
networks are basic substrates for answering these questions by virtue of their simplicity. However, behaviors in
these models are quite simple and neurons in a biological neural circuit are not randomly connected but
organized into a somewhat structured network. To clarify the relation between internal dynamics, network
structure, and its response, “low rank” networks such as Hopfield networks and reservoir networks with
feedback, are studied. Still, however, it remains unclear how a structured network with multiple memorized
items generates response behaviors.

To investigate this point, we present a structured network model composing of inputs and their representation
patterns with their pseudo-inverse matrix. The response of this network to the input is analytically described for
an arbitrary strength of the input.This is a great advantage point against previous models.By using this model, we
identified three regimes of responses depending on the gain parameter of the activation function and the number
of the used inputs (load factor): continuous response, discrete response, and no response regimes. The
continuous regime appears for the smaller gain parameter and load factor of inputs, wherein the analytically
described response is a stable fixed point for any input strength. As the input strength increases, the response
increases continuously. Secondly, in the discrete response regime for the larger gain and load factor, the
described response becomes unstable and chaotic dynamics emerge. The response discretely surges to the
maximum value at the critical input strength. Finally, for the much larger gain parameter and load factor, the no
response regime appears where the response does not increase sufficiently even for the strong input.

We focused on the computational functions in these regimes: susceptibility against input strength and learning
speed for a new item. The susceptibility takes the highest value in the discrete response regime. At the same
time, the fastest learning is achieved. Thus, the chaotic dynamics in the discrete regime provide the best
computational ability.

Recent experimental studies observed the discrete response as the input strength changes in auditory and odor
cortices. Interestingly, we found that random neural networks and the low rank networks did not provide such a
discrete response, indicating an important role of the pseudo inverse matrix in the discrete response. We also
demonstrated the pseudo inverse matrix can be shaped through a simple learning rule requiring only local (i.e.,
pre- and post-synaptic neural activities) information in the previous study. In total, these results suggest that the
discrete responses observed in the several cortical areas reflect the high computational ability and they are based
on the pseudo inverse matrix.
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Obsessive—compulsive disorder (OCD) is characterized over-reliance on habitual control system [1]. The bias
toward habits is considered to produce unbalanced decision arbitration between goal-directed (model-based,
MB) and habitual (model-free, MF) learning strategies in OCD [2]. Although previous literature has
demonstrated dysfunctional reward prediction error (RPE) signals in fronto-striatal circuitry in OCD [3], little is
known about how neural signals encoding the RPE and state prediction error (SPE) are disrupted in dynamics of
the decision arbitration between MB and MF systems in OCD. We scanned functional magnetic resonance
imaging from thirty patients with OCD and thirty one healthy controls. We used the sequential two-choice
Markov decision task to dissociate MB and MF systems and the reinforcement-learning computational model
developed to estimate arbitration process between two learning strategies [4]. Through the computational
framework of dynamic competition between two models, we estimated RPE and updated the state-action value
using the SARSA algorithm, while we estimated SPE and updated the state-action value using the learning
algorithm employing FORWARD learning and BACKWARD planning [4]. We tested group differences of
neural signals encoding prediction errors between patients and healthy controls and analyzed correlation between
hit rate and prediction errors within patients. Patients with OCD had greater negative RPE than healthy controls
(=-3.08, p=0.003) during MB-favored trials, while SPE was comparable between groups. Hit rate was lower in
patients than healthy controls when MB system was favored (U= 271.0, p= 0.003). Within patients, the greater
negative RPE was associated with lower hit rate (r= 0.89, p< 0.001). We found neural correlates of RPE signal
in the bilateral nucleus accumbens and SPE signal in the bilateral insula. Compared to healthy controls, patients
had hypoactivated regions encoding RPE signal in the right dorsolateral prefrontal cortex (dIPFC; MNI [52, 42,
22], cluster pFDR < 0.001) and the left dIPFC (MNI [-36, 32, 38], cluster pFDR < 0.001). In conclusion, we
demonstrated that unbalanced decision arbitration in OCD was attributed to enhanced negative RPE, but not
SPE, and that hypoactive dIPFC signal in cortico-striatal circuitry underlay the erroneous prediction in reward-
based learning strategy in OCD (fig. 1).
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GABA is a dominant mediator of inhibitory signaling between neurons and plays critical roles in neural network
functions. Experimental studies have reported diverse forms and origins of GABA-mediated inhibition. One of
them is tonic inhibition mediated by extra-synaptic GABA receptors, arising from distinct sources, such as slow
spillover of GABA from synaptic to extra-synaptic regions and GABA release from glial cells [1-3]. Notably,
the developmental process can regulate the underlying mechanisms of tonic inhibition and change which one
dominates during maturation [4]. However, the causes and functional impacts of such a shift have not been
understood well.

In this study, we addressed this question by intracellular recording experiments and computational modeling of
tonic inhibition in principal neurons, called granule cells, in the cerebellar cortex. Experimental data showed a
significant decrease in the spontaneous inhibitory postsynaptic current (sIPSC) and also in the neuronal activity-
dependent component of tonic inhibitory current (TIC) from the adolescent (P21-28) to adult (P56-96) animals.
At the same time, the total TIC remained the same. We built models of the granule cell inhibition for each age
group based on the data. Then, we integrated them into a large-scale network model of the cerebellar granular
layer [5].

Our analysis of the simulated data showed that the global network activity, shaped by the excitatory granule cell-
inhibitory interneuron loop, significantly depends on how much the activity-dependent component contributes to
tonic inhibition. Therefore, the different compositions of tonic inhibition at different developmental stages can
result in the distinct encoding of external inputs by the cerebellar granule cells in the network despite similar
level of overall tonic inhibition in individual cells. We also created different models based on data from animals
with the genetic knockout of the glial Bestrophine 1 channel, which is mainly responsible for the activity-
independent tonic inhibition [2,3]. With network simulations with those models, we investigated the dependence
of the network activity on various parameters such as the synaptic conductance, conductance of the activity-
independent tonic inhibition, etc. Our study can help us understand how development changes in tonic inhibition
impact the cerebellar neural network in relation to age-dependent changes in motor behavior across adolescence.
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The oligodendrocytes, a type of glial cell insulating axons in the central nervous system, are the targets of
immune attacks in demyelinating diseases such as multiple sclerosis. Oligodendrocytes create myelin, a lipid-
rich substance surrounding axons that influences the conduction velocity of electrical impulses by enabling
saltatory conduction. Delays, determined by conduction velocities, should coincide to achieve simultaneous
signalling in the neuron network (synchrony). It is yet unclear the mechanism making oligodendrocytes
recognize the quantity of myelin needed to secure synchrony. In this project, we study the influence of the
geometry of myelinated axons (variable lengths of nodes of Ranvier and myelin sheaths) in conduction delays
between neurons.
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For many years, the idea of a ‘blanket of inhibition’ that modulates excitatory currents on average had been
nearly universally accepted. However, recent experimental and theoretical findings have demonstrated evidence
and benefits of excitatory/inhibitory co-tuning [1]. This, in turn, opens questions about how such co-tuning can
potentially emerge. The experimental observation of STDP in inhibitory synapses [2] along with relevant
theoretical studies [3] suggest that synaptic plasticity mechanisms can generate E/I co-tuning. Still, studies of the
ability of inhibitory plasticity to generate detailed E/I co-tuning have been focused on feedforward networks with
distinct input currents which are virtually free of noise and cross-correlations that may disrupt the tuning process.
However, cortical networks rarely exhibit such architectures and are typically characterized by high levels of
noise and recurrent connectivity. Our study examines the ability of a standard inhibitory plasticity rule [3], which
has been shown to produce E/I co-tuning in feedforward networks, to tune inhibitory connections that match
static tuned excitatory connectivity under realistic levels of noise and recurrent connections in the presynaptic
neurons.

We find that noise and unstructured recurrent connectivity can significantly reduce the ability of inhibitory
synaptic plasticity to produce E/I co-tuning (Fig. 1). We trace this phenomenon to the covariance structure of
inputs which affects the loss function of the inhibitory learning rule. We make a theoretical investigation of a
reduced rate neuron model, and then compare predictions from it with the behaviour of a large complex network
of LIF neurons. We subsequently investigate which types of pre-synaptic connectivity can restore the desired
input statistics for E/I tuning to emerge. We find that clustering of the pre-synaptic connections (increased
connectivity within each input group) can create the appropriate input statistics for E/I tuning to emerge even in
the presence of strong pre-synaptic noise.

Our findings suggest that despite the negative effects that noise and recurrent connectivity can have on the ability
of inhibitory plasticity to tune inhibitory connections, these effects can be effectively mitigated by the topology
of the presynaptic network. Thus, we suggest that a combined effect of connectivity and plasticity allows E/I co-
tuning to emerge in networks with biologically plausible levels of noise and realistic connectivity structures.
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The hippocampal formation is thought to learn spatial maps of environments, and in many models this learning
process consists of forming a sensory association for each location in the environment. This is inefficient, akin to
learning a large lookup table for each environment. Spatial maps can be learned much more efficiently if the
maps instead consist of arrangements of sparse environment parts. In this work, we approach spatial mapping as
a problem of learning graphs of environment parts. Each node in the learned graph, represented by hippocampal
engram cells, is associated with feature information in lateral entorhinal cortex (LEC) and location information
in medial entorhinal cortex (MEC). Each edge in the graph (Fig. 1) represents the relationship between two
parts, and it is associated with coarse displacement information. Thus, the model uses a hybrid approach to
storing spatial information, learning ambiguous grid cell locations of environment parts and also learning coarse
displacements between those parts. The two complement each other, as the grid cells provide fine-grained
resolution that augments the coarse displacements while the coarse displacements disambiguate the grid cells so
that a single module is sufficient for unambiguously representing locations. Using this graph approach,
environments can be learned with just a few associations, and the graph can be formed nearly instantly by
attending to each of the environment parts. This arrangement-of-parts model offers interesting perspectives on
multiple hippocampal phenomena. First, it suggests that each entorhinal module is running an independent
mapping system, rather than requiring the modules to work together to represent unambiguous locations. Second,
it suggests a reason why grid cells seem to track viewed locations, as that information is exactly what should be
associated with nodes in the graph. Third, it offers an explanation for grid cell distortions, suggesting that they
occur because the animal fits idealized parts onto actual environment features, and based on this insight we use
empirical grid cell data to reconstruct the idealized maps that could lead to such distortions. Fourth, this view
explains why hippocampal engram cells are often classified as place cells, suggesting that they actually represent
anode in a graph which the animal can attend to from many locations. Fifth, the core idea of associating
arbitrary information with nodes and edges is not inherently spatial, so this graph-based view of processing in
the hippocampal formation can expand to incorporate non-spatial tasks. Our model shows that hippocampal
modules may dynamically create graphs representing spatial arrangements, and it opens up new ways of
understanding how animals make rapid spatial and non-spatial inferences.
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We consider a biological network of the hippocampal dentate gyrus (DG). The DG is a pre-processor for pattern
separation which facilitates pattern storage and retrieval in the CA3 area of the hippocampus. The main encoding
cells in the DG are the granule cells (GCs) which receive the input from the entorhinal cortex (EC) and send
their output to the CA3. We note that the activation degree of GCs is so low (~ 5 %). This sparsity has been
thought to enhance the pattern separation. We investigate the dynamical origin for winner-take-all (WTA)
competition which leads to sparse activation of the GCs. The whole GCs are grouped into lamellar clusters. In
each GC cluster, there is one inhibitory (I) basket cell (BC) along with excitatory (E) GCs.

There are three kinds of external inputs into the GCs; the direct excitatory EC input, the indirect inhibitory EC
input, mediated by the hilar perforant path-associated (HIPP) cells, and the excitatory input from the hilar mossy
cells (MCs). The firing activities of the GCs are determined via competition between the external E and I inputs.
The time-averaged ratio of the external E to I conductances, RE-I(con)(f), may represents well the degree of such
external E-I input competition. It is thus found that GCs become active when their RE-I(con)(¢) is larger than a
threshold Rth*, and then the mean firing rates of the active GCs are strongly correlated with RE-I(con)(?). In
each GC cluster, the feedback inhibition of the BC may select the winner GCs. GCs with larger RE-I(con)(f) than
the threshold Rth*survive, and they become winners; all the other GCs with smaller RE-I(con)(f) become silent.
In this way, WTA competition occurs via competition between the firing activity of the GCs and the feedback
inhibition from the BC in each GC cluster. In this case, the hilar MCs are found to play a role of enhancing the
WTA competition.
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Neurostimulation is a process of treating neurological diseases by inducing electrical activity at specific brain
regions in order to recover lost functionality. In the context of Brain-Computer Interfaces (BCI), few studies
have used external stimulation to by-pass the signal transmission from one region to another, induce the
formation of new synapses between neurons or bridge two region via an implanted chip. To note few examples,
the damage of nerves connecting the motor cortex to muscle damaged, is accommodated by functional electrical
stimulation (FES) devices which detect motor activity to initiate external electrical pulse to muscle cells [1]. In
another study, implanted chips were used to establish artificial connection between two neuronal areas by
detecting activity in one region and triggering another [2]. Recently, developments have shown that possibility of
replacing a lost circuity with silicon neural network, an embedded VLSI circuitry. These devices bridge the
information flow between regions.

The existing studies often deliver activity (of another region) dependent stimulus to another region and such
stimulation process either deliver stimulus at fixed frequency or the chip is designed to mimic the spiking
patterns of lesioned region. However, delivery of fixed stimulus pattern is not an optimal approach and the chip
designed to mimic certain regional patterns required pre-lesioned data, which is not practical for all applications.
Therefore, this preliminary study proposes to use Reinforcement Learning (RL)to overcome these limitations
and find optimal stimulation patterns at single neuron level. A Leaky-Integrate-Fire (LIF) spiking neuron model
was considered as the environment and Double Deep-Q-Learning (acting as stimulator) was applied to find the
action sequence (i.e., stimulus patterns) such that a desired spiking pattern is produced by the neurons (Fig. 1).
For each of the spike pattern produced, Deep Q Network identifies the optimal input spike stimulation need to be
delivered. The future direction of this study includes to expand the current approach to network level.
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Figure 1. A Overview of system architecture where DQN acts as external stimulator to the LIF neuron. Neuron
properties such as current, voltage, spikes and past information on action and reward constitute the state for RL
and action are either spike or no-spike. B Output current of LIF neurons produced by LIF due to optimal
stimulation from DQN and its comparison to desired pattern.
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Decision making is a fundamental function of animals in their daily tasks. Evidence accumulation is a regarded
paradigm to study the neurological bases for the decision-making process. Evidence accumulation involves
integrating evidence from past stimuli towards or against a choice until a decision is made. Towards this task,
studies have performed visual stimulus-based experiments on rat model using a T-maze experiment [1]. Here, a
series of visual cues, say Left and Right cue of different proportions, are presented to the rat for a few
milliseconds. After the set of stimuli, the rat takes a Left/Right turn at the T junction and receives a reward (e.g.
water). The objective for the rat is to keep track of the Left vs Right stimulus and taking a corresponding turn
(decision), i.e., Left or Right. This experiment is also often used to study working memory as the decision-
making outcome is made at a timescale larger than the individual neuronal timescale. Studies have shown that
the decision outcome is affected as the difference in the number of left vs right cues (D-LR) becomes smaller.

Despite these studies, understanding the processes of working memory in decision making is still largely
unknown. Therefore, a biologically inspired computational model mimicking the behavior could potentially help
unveil these processes. To this end, a rate based recurrent neural network (RNN) model was trained using
Reinforcement Learning (RL) to solve the T-Maze task. Like the existing experiments, the Left vs Right cue was
presented as step input current to the input layer which gets processed in RNN and the final readout layer outputs
the model decision. The RNN was trained for D-LR of 0.8, i.e, either Left or Right cue comprises 80% of the
stimulus stream in each trial. The trained model was tested for a different fraction of D-LR and the model’s
behavior resembled the actual rat experiments, where decision accuracy increases with an increase in D-LR in a
sigmoid fashion (Fig. 1) as in [2]. In addition, an animal model could perform the task continuously on longer-
time scales. Here, the neural activity resets automatically between two consecutive T-maze tasks, where the cue
of the first task does not affect the cues of the following tasks. Such reset behavior is often ignored in modelling
studies. The model we used in the work was also able to reset RNN activity after each task and make new
independent decisions. We trained an agent on two consecutive T-maze tasks (Fig. 1) and tested the performance
on 100 consecutive T-maze tasks. The agent was able to make correct decision for all the 100 tasks.

At the start of a T-maze task, a random cue is chosen as a dominant cue. Each cue is given at random time points
for 850 ms. After a delay of 250 ms, the mean output activity of 100 ms is computed. The output node with a
higher mean will be the action decided by the agent. When the agent chooses a correct action, it is rewarded with
3 and —1 otherwise. The agent is trained for 300 episodes, with a D-LR of 0.8. After which the agent is tested on
2 sequences T-maze task for different D-LR's (0.55 - 1) for 20 episodes. Figure. 1C shows the mean across these
20 episodes. To understand the reproducibility, we trained the agent with 3 different seeds. Figure. 1D shows the
mean of rewards (solid line) and standard deviation (shaded region).
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Sensory processing involves a series of stages progressing from the sensory periphery, where neural assemblies
may have little interconnectivity, to the sensory cortex, where principal cells receive local, lateral inputs, share
inputs with other layers within a column and between columns, and are inundated with top-down input from
other cortical areas and bottom-up sensory input. In each of these stages, neurons encode the sensory information
while experiencing stochasticity from many sources, including channel noise, background synaptic input, and
through their own heterogeneities. This stochasticity of course influences how efficaciously the neural
populations within a processing stage encode a sensory stimulus. The neural assemblies in stages near the
sensory periphery with little recurrence can be represented by feedforward networks, which have been shown to
improve their encoding of even strong signals under stochastic conditions (additive white noise or heterogeneity)
through a phenomenon known as suprathreshold stochastic resonance [1]. We demonstrate through simulations
of the recurrent spiking network illustrated in Fig.1A that the same resonance effect can be displayed by
recurrent networks, which has implications for later cortical processing stages [2]. In this case, however,
suprathreshold stochastic resonance is found with increased levels of network noise, controlled via the synaptic
strength, instead of additive white noise. The results are robust across a large parameter space, in which single-
neuron, network, and signal parameters are varied, a selection of which are shown in Figure 1B-D. Finally,
control experiments are run with a feedforward network (Fig. 1E) in order to confirm that the noise from the
network is responsible for the improved encoding.
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Figure 1. A The model recurrent network. B-D Suprathreshold stochastic resonance is observed as the synaptic
strength is increased for a broad range of intrinsic (B), network (C), and signal (D) parameters. E Control for the
effect of a changing mean and noise intensity from synaptic input.
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Brain function depends on segregation and integration of information processing in brain networks often
separated by long-range anatomical connections. Neuronal oscillations orchestrate such distributed processing
through transient amplitude and phase coupling; however, little is known about local network properties
facilitating these functional connections. Here, we test whether criticality—a dynamical state characterized by
scale-free oscillations—optimizes the capacity of neuronal networks to couple through amplitude or phase, and
transfer information. We coupled in silico networks with varying excitatory and inhibitory connectivity, and
found that phase coupling emerges at criticality, and that amplitude coupling, as well as information transfer, are
maximal when networks are critical. Our data support the idea that criticality is important for local and global
information processing andmay help explain why brain disorders characterized by local alterations in criticality
also exhibit impaired long-range synchrony, even prior to degeneration of physical connections.
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The brains of organisms are capable of performing a dazzling array of computations. The ability to perform these
computations is undergirded by a highly-developed computational capacity. This capacity is often studied within
the framework of information dynamics, where it is decomposed into the fundamental atomic information
processing operations of storage, transfer and modification. The structure and distribution of these operations has
been well studied in mature brains, in particular using the Transfer Entropy (TE) to measure information flow.
At the neural level, TE has previously been used to study information flows in recordings of spikes in slice
cultures, but these studies analysed fully developed neural networks. As such, we lack an understanding of how
such neural information flows arise during the development of neural systems. Here, we present progress
towards filling this gap by studying the emergence of information flows (as measured by TE) in neural
development using an open dataset [1] of recordings from developing cultures of dissociated cortical neurons.
By estimating the TE between nodes (electrodes) on different recording days over a period of about a month, we
are able to analyse how information flows change over neural development.

Crucially, we make use of a newly-developed continuous-time estimator of TE on spike trains [2], which is able
to capture relationships that occur over relatively large time intervals without any loss in temporal precision.
This contrasts with previous studies of TE making use of the traditional discrete-time estimator on spiking data,
which suffers from numerous weaknesses including an inability to measure relationships occurring over fine and
large timescales simultaneously [2].

We find that the amount of information flowing across the cultures increases dramatically throughout
development. This is reflected in substantial increases in the average estimated TE between nodes as well as the
number of source-target pairs for which there is a statistically significant TE value. We further find that the
structure of these flows is locked in early in development: there is a large correlation in the information flowing
between a given source-target pair between early and late days of development. We also find that, during the
critical periods of population bursting, the nodes consistently take on specialised computational roles as either
transmitters, mediators or receivers of information. Moreover, this specialisation corresponds with their position
in the burst propagation: those that burst early are transmitters, late bursters are receivers and middle burster are
mediators. This provides confirmatory evidence for the conjecture that middle bursters occupy the critical
computational role of “brokers of neuronal communication” [3].
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Inter-areal brain communication relies on the ability of coupled brain areas to flexibly exchange information. It
has been argued that fast neural rhythms known as Gamma oscillations could support inter-areal brain
communication provided that there exists sufficient coherence between connected brain areas. This is known as
Communication Through Coherence (CTC) [1-2]. However, the synaptic mechanisms behind inter-areal brain
communication is still unknown. For example, pieces of information coming into and out of a brain area must
occur in different intervals of time. A simple mechanism could be that a brain area is passive when it receives
information from another area and active when it sends to other brain areas [3]. This requires dynamic coupling
between brain areas. However, the “connectome” inferred from imaging techniques is fixed. The fundamental
question is to investigate the mechanisms that allow the flexible information sharing required for the brain to
perform cognitive tasks like perception, attention, and working memory. We consider two coupled brain areas in
the gamma band. Each brain area can be described by the stochastic Wilson-Cowan model of neural rhythms.
Our goal is to identify the critical parameters and the dynamical regimes that allow flexible information sharing
between the two networks. We successively consider the cases where the system of coupled networks lies in the
quasi-cycle (noise-induced rhythm) and noisy limit cycles (noise-perturbed rhythm) regimes, since both of these
regimes have been identified as potential candidates for certain rhythms. We also investigate the cases where the
conduction delay between the networks is considered or not. We use numerical simulations of the delayed
mutual information between the phase signals of each Local field's potentials, as well as a recently developed
theory [4] of amplitude-phase coupling for quasi-cycles.We define flexibility in information sharing by the
number of peaks (local maxima) and the sign of their locations in delayed mutual information curves.Our
preliminary results show that the ability of the system to flexibly share information depends critically on the
dynamical regime of interest and the presence of conduction delay between the connected networks. This
suggests that gamma oscillations could be efficiently used by the brain as support for communication between
areas in spite of the noise-induced or noise-perturbed nature of the rhythm’s origin. In all cases investigated,
including with asymmetry and heterogeneity, we find a continual stochastic exchange of phase leadership
between the areas.
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Neuronal noise as resulting from spontaneous baseline firing is believed to play an important role in cognitive
processes, with theories postulating a contribution to gradual memory trace decay (forgetting). However, the
exact cortical mechanisms underlying this process remain unclear. Specifically, transcranial direct current
stimulation (tDCS) has been shown to promote memory consolidation; furthermore, a moderate degree of neural
noise has also been suggested to positively affect memory consolidation, whereas high degrees of noise are
suspected to negatively interfere with it.

To shed light on the exact cortical mechanisms underlying the differential contributions of low and high neural
noise to memory consolidation (and decay) in the neocortex, we used a deep, spiking, neurobiologically
constrained computational model of primary, secondary and associative areas in frontal and temporal lobes of
the human brain. The network's "primary cortices" were repeatedly confronted with model-correlate of
perception and action patterns, while strengths of all synaptic links were allowed to change by means of
neurobiologically realistic learning mechanisms. This lead to the emergence of stimulus-specific cell assembly
(CA) memory circuits in it, binding together perception and action inputs. To simulate the effects of noise on
such memory traces, after the training two identical copies of the model were subjected to a period of constant
high (or low) intensity noise, respectively, while synapses remained plastic.

Intriguingly, we observed that high noise levels induced rapid decay of previously formed CA memory traces in
the network, whereas low noise levels lead to further CA-circuit consolidation. Preliminary analyses suggested
that this behaviour was a result of the periodic re-activation of the model's memory circuits, which was observed
in the low-noise condition but not in the high-noise one. We conjectured that, while a relatively small amount of
noise allowed ignition (and hence consolidation) of the existing memory circuits to occur, too much prevented it
(due to the network's inhibitory response to exceedingly high noise levels). These observations were confirmed
by statistical analyses of changes in high-frequency oscillatory activity of the network during CA circuit
stimulation.

The present results provide a neuromechanistic account able to bridge the gap between theories of forgetting and
current experimental data on memory consolidation and brain stimulation effects.
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In this project, we set up a novel ring model based on dendritic bistable/hysteretic response function and show
how it can be used to memorize both amplitude and width of the Gaussian input signal without any fine tuning of
parameters. Ring model is commonly assumed as a way the brain encodes continuous periodic information like
location, color and orientation. Classically, ring model can only maintain a fixed delayed bump and all
information about the amplitude and width of input signal is lost. It is unclear how amplitudes and widths can be
encoded, which is significant because they have a potential correspondence to the intensity and certainty of the
memorized item. With additional structures, later ring model developments have realized more flexible
parametrized systems of working memory, but they usually require fine tuning of parameters.

Here, we propose a novel ring model that incorporates bistable dendrites. For each dendrite, instead of a linear or
sigmoid response function, the dendritic output to the soma behaves in a hysteretic way based on the presynaptic
input. Such an input/output function can be realized by, for example, widely distributed NMDAr. The basic
structure follows the classical ring model. However, each of inputs from other neurons to the target neuron is
received through one separated dendrite of that target neuron. Such bistable dendrites work, relatively
independently, as basic units in this system that each has a different selectivity. While intra layer input goes
presumably through NMDA receptors in dendrites, external signal would go directly into the somas through
AMPA receptors with a constant conductance. In the continuous limit, this ring model obeys an integral equation
that shows how input amplitudes determine the bump amplitudes during the delay. Because such an equation is
not solvable analytically beyond a single iteration, we have simulated it based on firing rate.

Simulations show that the delayed activity successfully encodes the intensity level of the input signal. Gaussian
connectivity is analyzed at first. To achieve better performance, power law connectivity is also explored. As in
(Fig. 1, left), a simulation ran on 360 neurons with different inputs centered in the middle. Each color means an
independent run with a certain amplitude. Activities during the delay period show how different amplitudes are
maintained. In addition, this dendritic instability ring model can also encode input width, which may represent
the certainty of the bump(Fig. 1, right). Notably, to achieve amplitude and width encoding, the model only
requires bistable dendrites but not inhibition tuning or additional neural types. We further perturbed each
parameter of the model and the system shows robustness under a wide range of variations so that no fine tuning
is required.

The pre-stable dynamics of this ring model can also serve as a bump integrator for evidence accumulation among
a continuous range of locations. Experimentally, the independency of dendritic units of single neuron has been
observed and some models of NMDAr dynamics support a hysteretic response function. While NMDAr is
widely known to affect working memory performance, a more direct relation between dendritic hysteretic
function and working memory remains to be verified.
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Olfaction is a critical driver of many cognitive and behavioral tasks that can motivate risk-reward survival habits.
It is particularly unique with two naturally occurring modes of stimulation: orthonasal from inhaling and
retronasal from exhaling during feeding. Prior imaging studies have shown the brain responds differently to
ortho versus retro stimulation. However, no work has detailed how the olfactory bulb (OB), where odor
information is processed before relayed to cortex, responds at a cellular level to ortho versus retro stimulation.
Specifically, mitral cell (MC) (and tufted cell) spiking responses have critical implications for odor processing,
but any such differences are largely unknown.

For the first time, we perform in vivo recordings in rats using multi-electrode arrays to measure MC spiking
response to the two modes of olfaction. We find significant differences in evoked firing rates and spiking
covariances (i.e., noise correlations) between ortho and retro stimulus. Retro stimulation elicits larger firing yet
lower correlations than ortho (Fig. 1A). Our data further highlight the different sensory response to the two
modes of olfaction but remain limited in explaining underlying details prompting these differences. For this
reason, we constructed a biophysical OB network model that balances biophysical attributes with computational
efficiency.

Previous work suggests that olfactory receptor neuron (ORN) activity, presynaptic to the OB, may lead to
observed differences in OB activity. Thus, we construct an OB model to account for ORN input differences with
synapses driven by a correlated, inhomogeneous Poisson process (Fig. 1B). The ORN input is defined by three
critical attributes: input rate temporal profiles, amplitudes, and input correlations (Fig. 1C). ORN response to
retro stimulation is thought to be temporally slower and spatially smaller relative to ortho stimulation response,
but the implications of this on OB remain unexplored. With these constraints, we find our model captures trends
observed in our data.

We further analyze how our OB model maps a particular statistic (mean, variance, or covariance) in a simple and
transparent manner by fitting a linear-nonlinear (LN) model to our OB model spike statistics. We show that the
OB filters inputs (in time) differently for retro than ortho, with retro having overall larger filter values. However,
the key attribute(s) of ORN inputs that can result in different ortho and retro statistics consistent with our data
are not obvious. Therefore, we additionally evaluate multiple combinations of the three critical attributes of ORN
input and find the temporal profile plays a critical role in shaping the magnitudes of the linear filters and in
matching our data (Fig. 1D-E). Specifically, the slower input rate (rise and decay) is a key signature of retro
stimulation to capture the trends in our data with retro stimulation, while faster rise and decay is similarly a key
signature of ortho stimulus.

These findings provide a basis for understanding how differences in OB spiking statistics arise with these two
natural modes of olfaction while providing a model framework of how to analyze attributes responsible for
different OB spiking driven by differences in ORN inputs.
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Figure 1. A Larger evoked firing rate for retro (red) than ortho (blue), but smaller spike covariance in data. B
OB model with correlated ORN synaptic input. C Various input rates and correlations (not shown) surveyed to
capture data. D Temporal profile is more critical than other attributes to match ortho/retro data trends. E LN
filters are consistently larger for slower/retro-like temporal profile.
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Neurons in the right atrial ganglionic plexus (RAGP), a dorsally located structure in the right atrium, mediate
control of the sinoatrial node (SAN) via the vagus nerve, with implications for understanding cardiac pathologies
and neuromodulatory control of the heart via vagal stimulation and pharmacotherapeutics.

We identified 405 single neuronal cells of pig RAGP using a transcriptomic map derived from HT-qPCR (High
Throughput quantitative Polymerase Chain Reaction) and RNA-sequencing. To create neuronal simulations, we
mined the transcriptomic data to identify ion-channel coding genes and surveyed available kinetic models for ion
channel protein subtypes coded by those genes. Our single-compartment electrophysiological models,
developed on NEURON and NetPyNE, utilized Hodgkin-Huxley-based ion channel models: sodium channels
(Nav 1.1, Scnla); potassium channels — Kv 1.1 (Kcnabl) and Kv 3.1 (Kcncel); HCN channels (Henl, Hen2,
Hcen3, Hen4); and calcium channels — Cav 2.1 (Cacnala), Cav 2.2 (Cacnalb), Cav 1.2 (Cacnalc), Cav 1.3
(Cacnald), Cav 3.1 (Cacnalg) and Cav 3.3 (Cacnali). Out of the 405 neuronal cells, we found 115 patterns
defined by distinct ion channel combinations. Three of our models demonstrated phasic and tonic firing
patterns, consistent with existing experimental data. We will next determine how many of the distinct binary
transcriptomic classes define populations with distinct neuroexcitability phenotypes.

As experimental RAGP data demonstrate the presence of both cholinergic and catecholaminergic milieus, future
directions include tuning our models to reflect behaviors based on differential inputs. This is relevant ultimately
to understanding control of the SAN via vagal neuromodulation with myriad potential applications to treatment
of cardiac pathologies.
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Mossy cells (MCs) are glutamaergic interneurons in the hilus. They receive synaptic inputs mainly from Granule
cells (GCs), CA3 pyramidal cells and hilar inhibitory interneurons, and project their outputs back to GCs, and
hilar interneurons. They have an intermediate firing rate as compared to GCs and inhibitory interneurons, and
fire action potentials as a response to the animal passing through specific spatial positions. These positions that
elicit firing are called place fields, making MCs place cells of multiple place fields. MCs participate in many
processes involving the storage and retrieval of memories, spatial navigation, fear conditioning, and separation
of patterns [1]. However, its membrane potential dynamics is often overlooked in theoretical and computational
models of memory.

Here, we introduce a minimal bottom-up exponential integrate-and-fire (EIF) model to account for many of the
MCs experimental features. Integrate-and-fire neurons offer a reasonable framework to model complex slow
processes at the expense of replacing the fast action potential dynamics by a threshold parameter [2]. This makes
them somewhat analytically tractable [2,3] and relatively efficient for large-scale computer simulations [4]. We
built a data-driven model with feedback from current and voltage clamp experiments, constraining many of the
EIF parameters and membrane currents.

From simple step current experiments, we identified membrane currents that are essential to correctly reproduce
the experimentally observed current-dependent threshold increase, spike-dependent threshold, long-term
threshold decay, and threshold-dependent reset potential. We also modeled the noisy synaptic input that
constantly drives the MC behavior. An important feature of the EIF is that it describes a simplified rise of the Na
inactivation [3], allowing our model to capture the threshold increase in the MC spike initiation — a feature that
could not be fitted by linear leaky IF. On the other hand, we simplified gating variables to constants that were
fitted to the experiments, keeping the model as simple as possible.

We present some preliminary results about the cell model computational properties by tracing f-I curves. We
also test the filtering properties of the model, and whether MCs could act as a positive feedback to the GC layer,
due to its anatomical position. These features are tested with and without synaptic noise. This work shines some
light on the role of the strong MCs’ threshold adaptation and noise for memory tasks and spatial localization.
This model also serves as a building block for future large-scale, and hopefully more realistic, models of the
Dentate Gyrus and hippocampal networks.
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Small conductance calcium activated potassium (SK) channels are purely activated by intracellular calcium
concentration and play an important role in mediating the firing frequency of spontaneously active detrusor
smooth muscle (DSM) cells. These channels have been found to be associated with bladder instability and their
suppression have shown to induce detrusor overactivity [1]. Thus, they need to be investigated as potential
therapeutic targets for the treatment of bladder pathophysiologies. Here, we propose the application of an SK
channel activator in order to alleviate overactivity in a DSM cell.

The SK channel family includes four isoforms, of which SK3 is predominantly expressed in human DSM. Since
the SK channel density is very low, we propose that SK channel activators will be more effective than their
blockers. A potent SK3 activator, CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol- 1-yl)-6-methyl-pyrimidin-4-yl]-
amine) has been reported [2] to alter the cooperativity by left-shifting the channel’s activation curve (Fig. 1A).
We had previously developed a biophysically constrained Hodgkin-Huxley-based SK channel model and
integrated it with a composite cellular model comprising DSM-specific calcium dynamics and ion channel
models [3]. We simulated the effect of increasing concentrations of CyPPA on a single-cell DSM action
potential. It was observed that CyPPA hyperpolarised the resting membrane potential (rmp) and prolonged the
after-hyperpolarisation (AHP) phase without affecting the peak or width of the action potential (Fig. 1B). A
hyperpolarised rmp reduces the excitability of the cell and a prolonged AHP phase reduces its firing frequency.
These findings, thereby, support the potential applicability of CyPPA to ameliorate overactivity in a cell.

We were unable to simulate the effect of CyPPA on a spontaneously active DSM cell, sinceour DSM-specific
cellular model failed to generate spontaneous action potential activity. Our integrated model needs to be
improved in order to generate biophysically realistic spontaneous firing required to explore the effect of CyPPA
on a DSM cell’s excitability.

Most drugs prescribed for the treatment of bladder dysfunction induce unwanted side-effects since they alter
excitability of vascular smooth muscles. However, pharmacological activation of SK3 channels is of particular
importance since these are not expressed in vascular smooth muscles [1], and thus will not produce unanticipated
side-effects when SK3-specific drugs are administered to a pathological bladder. To this end, our preliminary
findings show promise and can be taken forward for further study.
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Purkinje cells within the cerebellum are known to suppress their tonic firing rates for a well defined time period
in response to the conditional stimulus after classical eye-blink conditioning training. The classical eye-blink
conditioning training protocol consists of stimulation of the Purkinje cells by two stimuli: conditional and
unconditional stimulus separated by a finite time interval called interstimulus interval (ISI). This ISI duration
decides the temporal profile i.e., the onset and the duration of the drop in tonic firing rate of Purkinje cells.
Direct stimulation of parallel fibers and climbing fiber by electrodes which provide conditional and
unconditional stimuli to Purkinje cells respectively was found to be sufficient to reproduce the same
characteristic drop in the firing rate. In addition, the specific metabotropic glutamate-based receptor type 7
(mGluR7 ) was found responsible for the initiation of the response, suggesting that there exist an intrinsic
mechanism within the Purkinje cell for the temporal learning. In an attempt to look for a underlying mechanism
for time-encoding memory formation within individual Purkinje cells, we propose a biochemical mechanism
based on recent experimental findings. The proposed mechanism attempts to answer key aspects of the “Coding
problem” of Neuroscience by focusing on the Purkinje cell’s ability to encode time intervals through training.
According to the proposed mechanism, the time memory is encoded within the dynamics of a set of proteins -
mGluR7 , G-protein, G-protein coupled Inward Rectifier Potassium ion channel, Protein Kinase A, Protein
Phosphatase 1 and other associated biomolecules -which self-organize themselves into a protein complex. The
intrinsic dynamics of these protein complexes can differ and thus can encode different time durations. We
propose that the amount of mGluR7 receptor proteins and the collective dynamics of protein complexes within
individual synapses allow Purkinje cell to suppress its own tonic firing rate for a specific time interval. The time
memory is encoded within the effective dynamics of the biochemical reactions between involved biomolecules
and altering these dynamics means storing a different time memory. The proposed mechanism is verified by both
a minimal and a more comprehensive mathematical model of the conditional response behavior of the Purkinje
cell. Furthermore the dynamical simulations of the involved biomolecules, provide us testable experimental
predictions to verify the proposed mechanism.
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Detailed single neuron modeling is widely used to study neuronal functions. While cellular and functional
diversity across the mammalian cortex is vast, most of the available computational tools are dedicated to the
reproduction of a small set of specific features characteristic to a single neuron. Here, we present a generalized
automated workflow for the creation of robust electrical models and illustrate its performance with models
present in the rat somatosensory cortex (SSCx). Each model is based on a 3D morphological reconstruction and
a number of ionic mechanisms specific to the cell type of interest. We use an evolutionary algorithm to optimize
the densities of ion channels and other parameters to match the electrophysiological features extracted from a
number of recordings of each type. To better understand which parameters were well constrained by the
optimization and which ones might be degenerate, we performed a parameter sensitivity analysis. We also
validate the optimized models against the experimental data of additional stimuli and test how they generalize to
other morphologies of the same neuronal type. By applying this workflow to various electrical and
morphological types of the SSCx we created a new generation of SSCx neuronal models which reproduce the
variability of neuronal responses observed in experiments. Due to its versatility, our workflow can be used to
build robust biophysical models of any neuronal type.
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Traditionally detailed computational neuron models use pharmacologically characterized generic ion channel
models for the membrane currents. Although these generic ion channel models represent different current types
(K, Na, HCN, KCa and Ca), they mostly capture the response of a mixture of several genetic subtypes of an ion
channel family. With this approach one can faithfully capture the electrical properties of different neurons, and
one can trace the causal events of an emergent phenomenon down to individual neurons as well as to current
types. However, one can not link such phenomena to specific ion channel genes. Now that cell-type-specific
gene expression data from the Allen Institute for Brain Science [1] and corresponding models for a set of
genetically-specified ion channels have become available [2], we were able to construct a detailed electrical
model of the mouse somatosensory cortex layer-5 pyramidal neuron. We adjusted the density of 35 genetic ion
channels from the Kv, Nav and HCN family, along with generic voltage-gated calcium (Cav) channels and
calcium-activated potassium (KCa) channels so that the electrical behavior of the modelled neuron matched
somatic membrane potential recordings. The model parameters were constrained using BluePyOpt [3] with the
experimental electrophysiology features extracted with BluePyEfe [4]. With such a large parameter space, the
optimization time and computational resources used were substantially higher than those used by models with
generic ion channel models. Optimization results corroborate the established concepts of ion channel degeneracy
as multiple combinations of ion channel conductances were able to replicate the experimental
electrophysiological features [S]. The resulting model could be used to explore the role of ion channels in
cellular physiology and in a longer-term perspective, such models could allow simulation of channelopathies at
the cellular and network level.
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The cortical local field potential (LFP) is a commonly used experimental metric and has a growing number of
applications in brain-machine interfaces. Previous modeling studies of the LFP have helped to clarify its
biological origins. However, the contributions of axonal currents to the LFP signal are poorly understood.
Simulations of morphologically and electrophysiologically detailed neuron models that include explicit axons
with full propagation of action potentials along the branches may provide further insight into the origins of the
LFP signal. Similarly, extracellular electrical stimulation is frequently used to perturb neurons and neuronal
circuits, both experimentally and in clinical applications. It is believed that electrical stimulation primarily
affects axons, but it is unclear how this effect depends on axonal properties. In silico experiments with realistic
axon models may therefore provide insight into the mechanisms of electrical stimulation.

In this work, we will present an extension of the L5 pyramidal model of Markram and colleagues with
continuous adapting (cAD) electrical type, that adds an axon model comprising axon initial segment (AIS),
myelinated internodes, nodes of Ranvier and unmyelinated collaterals; with an axon-specific pool of ion
channels and optimized ion channels densities. We show that this model reproduces the main axonal electrical
features, such as the action potential (AP) waveform and its preferential initiation at the AIS, as well as
propagation throughout the axonal arbor, and that the modeling approach generalizes to a wide range of
reconstructed L5 pyramidal morphologies. We use our model to compute realistic LFP generated by a single
neuron and study the electrical response of each compartment under extracellular stimulation from point source
electrodes (Intracortical Microstimulation or ICMS) at various locations.

We quantified the difference between the LFP generated by these neuron models and the LFP created by the
neuron without a detailed axon model. We evaluate differences that arise not only due to direct axonal
contributions, but also due to the changes in the electrical behavior of the non-axonal compartments that the
addition of the axon entails. We find that simulated ICMS is able to generate action potentials in the axon. The
location of action potential initiation, and consequently, the action potential properties, vary within the neuronal
arbor as a function of electrode position and stimulus parameters. Moreover, excitability and backpropagation
effectiveness vary between the main axon and collateral branches. Our model may therefore help in clarifying
the mechanisms of ICMS stimulation and in optimizing stimulation / recording parameters.
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Recent advancements in engineering has made it possible to record spike-time data of dozens of individual
neurons simultaneously. This data has made it possible to answer long-standing questions on how the brain
stores information and performs various tasks. A central tenant of neuroscience has been that populations of
interconnected neurons orchestrate to perform these tasks, and that the firing pattern of any single neuron need
not correlate with the organism’s behavior. What was hypothesized, and what we can now observe, is that the
firing patterns of these large groups of neurons tend to have a low dimensionality that matches the canonical
variable which they are meant to represent. Some examples of this phenomenon that have been studied in this
way are the head-direction system in mice, auditory pitch detection, and hand movement [1-3].

When high-dimensional data is hypothesized to represent a low-dimensional variable, the process by which this
variable is uncovered in the data is known as manifold discovery. Manifolds are locally Euclidean regions of
space that may have distinct topologies such as circles, spheres, or tori. Here we examine a 22-dimensional data
set of spike-time data that has a clear ring structure and circular variable when properly embedded in 3-
dimensional space. There are many methods of dimensionality reduction, both linear and non-linear; we provide
a survey of these methods and test the conditions under which data sets with non-trivial topology are preserved.
Some methods that are presented are Locally Linear Embedding (LLE), Modified Locally Linear Embedding
(MLLE), Principal Component Analysis (PCA), Spectral Embedding, t-SNE, Multi-Dimensional Scaling
(MDS), and Isomap [4]. In particular, it is shown that methods such as Isomap that account for global distances
in the high-dimensional data are best equipped to preserve the ring structure. We investigate what types of pre-
processing on the data is necessary in order to reproduce the manifold structure when mapped by these methods
as well as their resiliency in the presence of noise. Finally, we present a novel method that uses flux to quantify
the stability of such manifolds in terms of dynamical system attractors.

References

1. Peyrache A, Buzsaki G. Extracellular recordings from multi-site silicon probes in the anterior thalamus and
subicular formation of freely moving mice. CRCNS. org. 2015.

2. Chaudhuri R, Gergek B, Pandey B, Peyrache A, Fiete 1. The intrinsic attractor manifold and population
dynamics of a canonical cognitive circuit across waking and sleep. Nature neuroscience. 2019 Sep;22(9):1512-
20.

3. Gallego JA, Perich MG, Miller LE, Solla SA. Neural manifolds for the control of movement. Neuron. 2017
Jun 7;94(5):978-84.

4. Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality
reduction. science. 2000 Dec 22;290(5500):2319-23.



A network model for migraine-driven alterations in the contrast
sensitivity of rodent visual cortex

Nicold Meneghetti*!, Alberto Mazzoni'

'Scuola Superiore Sant'Anna Pisa, The Biorobotics Institute and Department of Excellence for Robotics and Al,
Pisa, Italy

*Email: nicolo.meneghetti@santannapisa.it

Migraine is a complex neurological condition affecting more than 10% of the general population and is
characterized by global dysfunctions in multisensory information processing. Mouse models of familial
hemiplegic migraine display increased glutamatergic transmission at intracortical synapses, while GABAergic
transmission remains unaltered [1]. Moreover, excitatory thalamocortical afferents are also enhanced. This effect
is stronger in fast-spiking inhibitory neurons than in pyramidal cells [2]. These results suggest that the
dysregulation of the excitatory-inhibitory cortical balance might be one of the central mechanisms underlying the
intricacies of migraine neurobiology.

The development of new therapeutic interventions is however limited by our poor understanding of the link
between such cellular alterations and the subsequent dysfunctional computations at the network level. Here we
investigated this link by modeling migraine-related cellular alterations in a recurrent network of spiking neurons
developed in previous works [3]. We investigated the effects of each of the pathological synaptic changes at the
macroscopic network level, and their relationship with the dysregulation of excitatory-inhibitory balance
observed experimentally [2]. The network reproduced the experimental spectral content of murine V1 local field
potentials (LFPs) in response to visual grating stimuli of different spatial contrasts in both healthy and migraine
conditions. In particular, the thalamic input caused the emergence i) of a broad [30-100] gamma band by
triggering local resonances and ii) of a narrow gamma band at 60 Hz through entrainment to an oscillatory drive.

Our model could shed new light on how the experimentally observed cellular alterations at the basis of the
migraine are reflected into the macroscopic measurements of brain activity, such as LFP and EEG. Unraveling
the correlates of a pathological cellular circuitry into such network-wide signals (commonly recorded in clinical
neurophysiological investigations) could be of unvaluable help in using EEG or LFPs to probe the alterations of
information processing in migraineurs patients. Finally, a model capturing the network dynamics of migraine
could be a valuable benchmark for developing new pharmacological targets and for predicting in silico their
effects.

Acknowledgements
This work was funded by the Italian Ministry of Research (MIUR) through PRIN-2017 “PROTECTION”
(project 20178L7WRS).

References

1. Pietrobon D. Ion channels in migraine disorders. Current Opinion in Physiology. 2018 Apr 1;2:98-108.

2. Tottene A, Favero M, Pietrobon D. Enhanced Thalamocortical Synaptic Transmission and Dysregulation of
the Excitatory—Inhibitory Balance at the Thalamocortical Feedforward Inhibitory Microcircuit in a Genetic
Mouse Model of Migraine. Journal of Neuroscience. 2019 Dec 4;39(49):9841-51.

3. Meneghetti N, Cerri C, Tantillo E, Vannini E, Caleo M, et al. Thalamic inputs determine functionally distinct
gamma bands in mouse primary visual cortex. bioRxiv. 2020 Jan 1.



Synchronization through uncorrelated noise in excitatory-inhibitory
networks

Lucas Rebscher!, Klaus Obermayer!, Christoph Metzner*

Technische Universitdt Berlin, Neural Information Processing Group, Berlin, Germany
2Technische Universitit Berlin, Department of Software Engineering and Theoretical Computer Science, Berlin,
Germany

*Email: christoph.metzner@gmail.com

Gamma rhythms are thought to underlie many different cognitive processes in the brain, ranging from attention
over working memory to sensory processing and has further been suggested as a key mechanism in neuronal
communication [1]. Recently, Meng and Riecke [2] demonstrated that, counterintuitively, synchronization across
networks of inhibitory neurons increased when neurons were subject to independent noise. However, they
focused on inhibitory networks with gamma band activity produced by the interneuronal network gamma (ING)
mechanism. We therefore asked whether uncorrelated noise can also have a beneficial effect on the
synchronization of interacting gamma rhythms produced by the pyramidal-interneuronal network gamma (PING)
mechanism.

We modelled two interconnected excitatory-inhibitory (EI) networks in different network settings and analyzed
how synchronization within and across the networks changed depending on the strength of uncorrelated noise the
networks received. The EI networks comprised 1000 excitatory adaptive exponential integrate and fire (aEIF)
neurons [3] and 250 aEIF neurons each and were coupled using conductance-based synapses. We explored two
different connectivity settings (all-to-all and sparse random coupling) and for each setting three network
configurations: 1) weak coupling between networks and weak noise, 2) strong coupling and weak noise and 3)
weak coupling and strong noise.

Results for the two different settings did not differ strongly, therefore we only present the results for the sparse
random coupling. In the weak coupling and weak noise configuration, we found a strong synchronization within
but no coupling across networks as coupling and noise were too weak. For configuration 2 with strong coupling
but weak noise, we found a strong synchronization both within and across networks. Both networks showed the
same dominant frequency and spike time variability was very low, especially in the inhibitory population. In
configuration 3 with weak coupling but strong noise, we also found a strong synchronization across the
networks but with a weaker within-network synchronization compared to configuration 2. Here, we found an
increased spike time variability and a sparse participation of the inhibitory population in the network rhythms.
We further saw that the synchronization depended on the weakening of the intra-network synchronization which
allowed the second network to control the activity of a subpopulation thereby synchronizing the two networks

(fig. 1).

In conclusion, our results suggest that synaptic noise can have a supporting role in facilitating inter-regional
communication, however, with a different signature and mechanism than synchronization through strong
coupling. Importantly, our models build a basis to investigate mechanistic explanations for altered neuronal
dynamics in neurologic or psychiatric disorders, where deficits of inter-regional communication in the gamma
band seem to play a crucial [4].
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Figure 1. A Setup consisting of two interconnected EI network that are both subject to uncorrelated noise. B
Results of two-dimensional parameter exploration over the noise strength and the frequency ratio p. C Weak
noise + weak coupling: strong within-network and weak across-network synchrony. D Strong noise + weak
coupling: weak within-network and strong across-network synchrony.



Phasic and tonic changes in pupil size differentially track surprise and
confidence during adaptive learning

Tiffany Bounmy*!, Audrey Mazancieux', Florent Meyniel!

!Cognitive Neuroimaging Unit, NeuroSpin center, Frédéric Joliot Institute, CEA-Saclay, Gif-sur-Yvette, France
*Email: tiffany.bounmy@cea. fr

Learning in a changing and stochastic world is a challenging problem. To face stochasticity, one should integrate
over past observations to infer stable estimates of the world’s statistics. However, if those statistics change over
time, one should also update her estimates quickly and flexibly. Ideally, the weights assigned to past versus new
observations should thus be adjusted dynamically according to the occurence of changes. The ability to
dynamically strike this balance between stability and flexibility is known as adaptive learning. On the
computational level, Bayesian inference indicates that confidence about our estimates is key to adaptive learning:
high confidence promotes stability and inversely, low confidence fosters flexibility. On the implementational
level, specific neuromodulators such as noradrenaline (NA, a.k.a. norepinephrine) have been linked to
unexpected uncertainty [1,2], a form of uncertainty that reduces confidence about current estimates when
changes arise. However, the role of NA in the confidence-weighted regulation of learning remains unclear.

Here, we tested the implication of NA in the confidence-weighting of learning by combining two learning tasks
with pupillometry (one previously published [3] and a new one) in 36 participants (24+12). Subjects had to learn
the hidden probabilities that generated auditory sequences of binary stimuli, and report their probability
estimates together with the associated confidence. Subjects were fully informed in a non-technical way that these
probabilities changed abruptly over time without notice and that an order-1 Markov process and Bernoulli
process generated the sequences in the two tasks, respectively. We designed an ideal Bayesian learning model
for each task and we formalized surprise as the log improbability of each observation and confidence about
probability estimates as their (log) posterior precision.We relied on pupillometry to indirectly probe brain levels
of NA [4].

We found that reported probability estimates and confidence levels correlated with the Bayesian solution and
exhibited different qualitative signatures of this solution, replicating previous studies [5]. Phasic and tonic
changes in pupil size showed an interesting dissociation. Phasic changes were accounted for by surprise and
tonic changes by confidence. Those results were obtained in each task, demonstrating robustness to the task
statistics used. Our findings are compatible with noradrenaline playing a role in the confidence-weighted
regulation of learning.
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Neural oscillations are evident across cortex but their spatial structure is not well explored. Are oscillations
stationary or do they form “traveling waves”, i.e., spatially organized patterns whose peaks and troughs move
sequentially across cortex? Here, we show that oscillations in the prefrontal cortex (PFC) organized as traveling
waves in the theta (4-8Hz), alpha (8-12Hz) and beta (12-30Hz) bands. Some traveling waves were planar while
many rotated around an anatomical point. The waves were modulated during performance of a working memory
task. During baseline conditions, waves flowed bidirectionally along a specific axis of orientation. During task
performance, there was an increase in waves in one direction over the other, especially in the beta band. We
discuss potential functional implications.
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The reactivation of neural activity associated with past experiences has been found in both human and non-
human mammals to support memory recall as well as consolidation, but how the intrinsic and synaptic properties
of neurons produce this network-level activity is not well understood. Replay has been best studied in the
hippocampus of rodents performing spatial navigation tasks. The hippocampus has place cells, which are cells
that fire when the animal is in a particular region of the environment. During rest and pauses in movement the
hippocampus then replays on a compressed timescale sequences of place cells that correspond to actual
trajectories through the environment. The content of a replay event can potentially be of any possible trajectory
through the environment, and the replay can occur in either forward or reverse order of the actual movement.
There are several existing models that show how particular plasticity features can produce replay in biological
recurrent neuronal networks, but none replicate the change in replay content observed over learning.

Here, we performed new data analysis on an existing hippocampal replay data set [1], and we perform network
simulations to assess which plasticity rules are necessary to replicate the experimental results. Shin et al. [1]
recorded hippocampal replay events in rats that learned to perform a W-track spatial-alternation task in a single
day. They found that the fraction of reverse replay events at the side well that were of the taken past path
decreased with learning, while the fraction for forward replay events of the taken future path increased with
learning. We performed additional data analysis on this data set and found that this change in replay content is
explained by 1) a decrease over learning of the probability that a locally starting replay is reverse ordered and 2)
an increase over learning of the probability that a remotely starting replay is reverse ordered.

From these results we can infer how the likelihood of a given place cell to participate in each type of replay
event changes over learning. We adapt a previously published model of replay [2] to simulate the spiking
activity of an animal performing the W-track spatial alternation task (Fig. 1a). The model spontaneously
generates replay events during pauses in movement (Fig. 1b), which are analyzed using Bayesian decoding as in
Shin et al., 2019 (Fig. 1¢). With this model we develop and test several hypotheses to explain the experimental
results through a combination of intrinsic and synaptic plasticity.
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Figure 1. Simulation of hippocampal replay. a Raster plot of an example simulation with movement-related
spiking and then spontaneous activity. Significant replay events marked in grey. Cells sorted by their order of
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Attention allows the human auditory system to preferentially process specific stimuli of behavioural or
situational relevance. The neural mechanisms underlying frequency-based attention, the attention to a specific
sound frequency, have been studied across species and spatial scales. At the neuronal level, electrophysiology
studies in animals have shown attention-induced changes in the response properties (i.c., the receptive field) of
individual neurons [1]. The influence of frequency-based attention has also been studied in the human brain
using, for example, functional MRI (fMRI). These studies uniformly showed increased responses to attended
sounds [2,3], but did not provide evidence for receptive field modifications, similar to those observed in animal
electrophysiology, in the human auditory cortex. This study combined the collection of fMRI data during a
frequency-based attention task to measure attention-induced changes in auditory cortical responses with
computational modeling to simulate the neuronal mechanisms underlying the fMRI data. Unexpectedly, fMRI
showed a reduced response to attended sounds, which was strongest in cortical locations whose preferred
frequency matched the attended one (Fig. 1). To explore the neuronal underpinnings of these observations,
frequency-based attention was incorporated in a Wilson Cowan Cortical Model (WCCM) of the auditory cortex
[4] as frequency-specific sharpening of neuronal receptive fields (at population level) and decreased response
gain. These mechanisms were implemented by modifying parameters defining excitatory-inhibitory WCCM
connections. Model responses replicated the suppressed response to attended sounds as seen with fMRI. While
the observation of decreased responses with frequency-based attention conflicts with previous fMRI studies,
both increases in frequency selectivity and decreased gain have been described in animal studies [5,6]. Our
results therefore suggest that the mechanisms underlying frequency-specific attention may depend on the
employed experimental paradigm. They furthermore put a reduced gain and increased frequency selectivity
forward as candidate mechanisms underlying our fMRI findings, and future modeling endeavors will be aimed at
discriminating between (or determining the relative contribution of) these alternatives.
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Working memory (WM) is the ability to retain information not directly perceived by sensory systems. A neural
correlate of WM retention is sustained firing rate elevation in cortical circuits, which is usually modelled using
bistable systems with the background and active steady states [1]. The active regime could be also metastable, so
the system slowly returns to the background after a stimulus [2]. WM retention is accompanied by increased
gamma-band power and coherence between cortical sites [3]. However, the functional role of gamma activity in
WM is not fully understood.

Here we explore stabilizing effect of gamma oscillations on a multi-circuit single-object metastable WM model.
Each circuit (Fig. 1A) is described by firing rate equations. The system contains two local clusters with two
circuit groups in each (Fig. 1B). Circuits within a cluster receive gamma-band input in the same phase. The
groups C1 and C2 receive a common white noise, which mimics an input from a larger WM representation. The
circuits from I1 and I2 receive independent white-noise inputs. Circuits are linked via excitatory connections,
fast within a cluster and either fast or slow between the clusters. The results are shown in Fig. 1C. Gamma input
increased the post-stimulus activity duration, as well as the duration difference between C and I groups. In the
model with fast (but not slow) inter-cluster connections, these effects were more prominent when gamma inputs
to the clusters had the same phase. Thus, we demonstrated that gamma input could selectively stabilize WM-
related activity in the circuits that participate in a larger WM network, and such stabilization is more efficient
when long-range connections are fast and local gamma generators are synchronized.
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Figure 1. A Single-circuit system. E/I — excitatory/inhibitory populations. B Multi-circuit system. Lines
represent symmetrical excitatory connections. C Duration of post-stimulus activity (statistics of 25 runs).
Horizontal dash — the median, thick vertical line — two middle quartiles. NONE/1CLUST/SYNC/ANTI —
absent/1-cluster/in-phase/anti-phase input.
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Epilepsy is a chronic neurological disease that affects 1 in 200 people. In 30% of those affected there is a
negative response to pharmacological treatment, where this type is called refractory epilepsy. In this case, a
surgical intervention is indicated as treatment, where success consists in finding the cortical area responsible for
the generation of seizures, called the epileptogenic zone. In this work, electrical recordings of this area were
studied in patients with refractory epilepsy in order to discern the underlying oscillatory mechanisms during the
epileptic process. For this, neuronal activity was studied for basal (far from the seizure) and preictal
(immediately before the seizure) periods through recordings of intracerebral electrodes implanted in patients to
achieve a greater resolution of the local field potential. Then, the intrinsic dynamics of the two types of records
was discerned by using a time windows analysis and studying the amplitude and phase couplings for each signal.
The causality of these records was also quantified through information theory tools and the Bandt-Pompe
permutation methodology, which showed an increases in the carry of information of brain oscillations in the
range of high frequencies.



Quantification of the network strength in neural anticipated and
delayed synchronization

Monserrat Pallares Di Nunzio®!, Sabrina Natali Guisande Donadio?, Mauro Granado®, Fernando Montani?

!Conicet- UNLP, IFLP, La Plata, Argentina

*Email: monsepallaresdinunzio@gmail.com

The phenomenon of synchronization between two or more asymmetrically coupled brain areas is a very relevant
topic for understanding the mechanisms and functions within the cerebral cortex. Anticipatory synchronization
(AS) refers to the situation in which the receiving system, referred to as the 'slave', synchronizes with the future
dynamics of the sending system, referred to as the 'master'. In contrast, delayed synchronization (DS) represents
the intuitively opposite case. In this work we investigate and compare the magnitude of connection between
simulated neural networks in AS and DS regimes making use of causal information and calculating the Jensen-
Shannon divergence through a symbolic formalism of ordinal patterns. By studying multiple temporal scales, it
could be observed that Jensen-Shannon divergence is bigger for the AS regime than the DS regime, which means
that AS has a lower magnitude of connection than the DS regime. Furthermore, this formalism allows us to
successfully discern the dynamical characteristics that differ in these two synchronization cases.
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Neural circuits display nonlinear dynamics. For instance, central pattern generators display internally generated
oscillations. Multistable systems are used as models of memory storage and retrieval. The structure of network
connectivity is a key feature determining network dynamics, but many questions remain as to how structure
shapes activity. We study the relationship between structure and dynamics in a simple model of neural activity,
combinatorial threshold linear networks (CTLNs), whose activity is governed by a system of threshold-linear
ordinary differential equations determined by an underlying directed graph (Fig. 1A). Like real networks,
CTLNs display the full spectrum of nonlinear behavior, including multistability, limit cycles, and chaos.

Much is known about fixed points of CTLNSs, but much less is known about their dynamic attractors [1-3]. On
one hand, the activity of a symmetric TLN always converges to a stable fixed point [2]. On the other, CTLNs
whose underlying graph has no bidirectional edges or sinks have must have persistent dynamic activity [3].
However, many CTLNs outside this family also exhibit dynamic attractors, and both dynamic attractors and
stable fixed points can coexist in a network. Networks with superficially similar structure can have wildly
different dynamics.

We give some of the first results which go beyond fixed points and relate the structure of a CTLN to its
dynamics. We focus on a structural relationship, graphical domination, and show that if one neuron graphically
dominates another neuron, then the firing rate of the dominating neuron eventually becomes greater than the
firing rate of the dominated neuron. This constrains trajectories of the dynamical system. Using this fact, we
show that many CTLNSs do not have persistent dynamic activity. We prove that if a CTLN's underlying graph is
a directed acyclic graph, neural activity really must flow through the graph and must eventually end up at a
stable fixed point (Fig. 1B). This is the first example of a proof guaranteeing convergence of the activity of a
TLN to a stable fixed point outside the symmetric case.

We also construct a family of sequential memory networks. Each network consists of m layers of n neurons
connected cyclically (Fig. 1C). The network has mn limit cycles, each corresponding to a sequence of neurons.
Different initial conditions lead to different limit cycles (Fig. 1C). Our domination result allows the network to
“remember its place” once it comes back around to a previously visited layer. These networks have a large
capacity to encode dynamic patterns via limit cycles, giving a richer set of memory patterns than stable fixed
points. Thus, these networks can model sequential memories, rhythms, or central pattern generators.
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Threshold linear networks (TLNs) are recurrent networks whose neuron dynamics are prescribed by a system of
differential equations with threshold nonlinearities. The choice of the ReLU function []+ as threshold makes the
system piecewise linear in the state space, providing a very simple yet rich framework. A special case of TLNs
with uniform synaptic weights was first introduced in [1] and provides a purely combinatorial framework in
which the dynamics of the network solely dependent on the connectivity of the associated graph (hence called
Combinatorial Threshold Linear Networks, CTLNs), whereby changing only the connections among edges, rich
dynamics (multistability, chaos, quasiperiodicity) arise. Moreover, since the CTLN model consists of simple
perceptron-like units, it does not require the neurons to intrinsically oscillate, further simplifying the assumptions
posed on neurons.

This very simple mathematical setup makes it particularly suitable for engineering circuits performing common
neural functions, yet still allowing a lot of flexibility in terms of the kind of dynamics that might be observed.
The CTLN model then constitutes a powerful unifying framework for modelling a wide range of phenomena in
neuroscience, in which the various neural computations can be obtained as graph variations. Our aim here is to
present a few interesting cases that exemplifies how connectivity alone gives rise to a diverse range of important
neural functions (Fig. 1).

In the first example, in panel A, we present a TLN that can count the number of pulse inputs it has received via
the position of the attractor in a linear chain of attractor states. More precisely, when the network receives a
uniform input, it will move to the next state in the chain, indicating an increase in the count. Activity is
maintained in this state indefinitely until future pulses are provided to the system, allowing to track the number
of pulses by the attractor position in the chain. This network is a very simple alternative to the neural integrators
used to maintain a count in working memory of some number of input cues.

The network in panel B only differs from A on the direction of the bottom arrows. This small change now allows
the network to count signed pulses, since now it can travel back to the previous attractor on the chain as well.
This type of signed count is valuable for tracking the relative number of left and right cues as in various two-
alternative forced-choice tasks.

Finally, in panel C we exhibit a CTLN capable of producing two coexisting quadrupedal gaits: bound and trot. In
fact, all quadrupedal gaits presented in [2] can be reproduced by CTLNs and moreover, it is possible to have at
least three coexisting gaits in a single network (not pictured here) without having to resort to synaptic plasticity
(corresponding to changes in the synaptic weights in the network). This constitutes a new outlook on central
pattern generators (CPGs) where different gaits correspond to different attractors in the same network, that differ
only by initial conditions (equivalently, by the stimulation of a specific neuron) and not by a parameter
bifurcation.
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Popular for its ability to non-invasively image the macroscopic anatomical and functional connections in the
brain, functional magnetic resonance imaging (fMRI) of the human cortex has revealed promising results
concerning the reliability and stability of individual-level cortical connectomics. However, the synapse-level
mechanisms underlying inter-individual variability are not well-understood, such as the respective roles of long-
range white-matter structural connectivity vs. cortical physiological dynamics. One approach to bridging these
mechanistic gaps is using biophysically-based neural circuit models of large-scale brain dynamics which can be
quantitatively fit to empirical neuroimaging data. In this study we have utilized a circuit model [1] with
neurobiologically interpretable parameters to model functional connectivity (FC) at the individual level in
healthy subjects, finding that such a model is able to capture differences between subjects.

We generated parcellated, resting-state FC matrices for 879 healthy adults. We employ a cortical circuit model
developed by Demirtas et al. (Fig. 1) whose free parameters represent synapse-level activity, allowing the
macroscopic inter-individual variations apparent in fMRI scans to be understood in terms of the underlying
cellular architecture [1]. A key advantage of this model lies in its assumption that local circuit properties are
heterogeneous across the cortex, following a large-scale gradient related to cortical hierarchy and indexed by the
T1w/T2w structural MRI measure [1,2]. Using this low-dimensional circuit model, we generate simulated FC
matrices which are optimized to maximally fit the respective empirical data at the level of individual subjects as
well as the group average.

Our circuit model, with hierarchical heterogeneity in local circuit properties, is sensitive to subject-level
differences in FC. Allowing a hierarchical, heterogeneous distribution of weight parameters across the cortex
substantially improves the model's ability to fit empirical FC data by specifically adding to the model the
flexibility to capture leading components of inter-individual variation. To verify that these improvements in fit
meaningfully capture inter-individual variation, we visualize the leading principal components of the empirical
FC matrices across subjects. We use these principal components of inter-individual variation to develop a novel
method to quantify a model's ability to capture inter-subject variability and propose extensions to the model
accordingly. Further, model parameters related to cortical physiological dynamics explain the majority of
variation across subjects, while subject-level structural connectivity failed to significantly capture variation.
Thus, our model supports the notion that microcircuit properties related to cortical physiology and dynamics
contribute to neural variability across individuals in healthy populations.
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The thalamus is a key brain structure engaged in attentional functions, such as selectively amplifying task-
relevant signals of one sensory modality while filtering distractors of another. Whether the architectural features
of thalamic circuitry offer a unique locus for attentional control is unknown. Here, we developed a biophysically
grounded thalamic circuit model of comprising excitatory thalamocortical and inhibitory reticular neurons,
which captures characteristic neurophysiological observations from task-engaged animals (fig. 1). Our results
provided important insights into the following questions.

We found that top-down attentional control inputs onto reticular neurons effectively modulate thalamic gain and
enhance downstream readout, to improve performance across detection, discrimination, and cross-modal task
paradigms. In addition, our simulations and theoretical analyses reveal that the thalamic reticular nucleus (TRN)
is much more potent a site for top-down control than thalamocortical neurons. This provides mechanistic insight
and functional explanation and for the experimental finding of the indirect, TRN-mediated pathway for top-down
attentional control neurons [1]. Both bottom-up and top-down inputs increase firing rates in thalamus, raising the
questions of how they are disambiguated in downstream readout. Our analyses reveal that heterogeneity of
thalamic response patterns plays an essential role in attentional enhancement of stimulus information. We
examined neuronal recordings from auditory thalamus and primary auditory cortex in the mice during a cross-
modal attention task, and found the existence of the similar geometrical structure in population activity patterns
(i.e., coding and readout axes).

It has been a question of whether attentional gain modulation observed in thalamus is generated locally within
the thalamic circuit or instead whether such signals could be inherited from downstream sensory cortex via
corticothalamic feedback projections. We analyzed spiking activity from simultaneously recorded auditory
thalamus (MGB) and primary auditory cortex (A1) during task performance, and our results revealed that
thalamic gain modulation is not explained by corticothalamic feedback. Furthermore, auditory cortex activity
patterns show signatures of the readout strategy predicted by the model, to decode information from multiplexed
bottom-up and top-down modulations. Moreover, our modeling indicates that strong recurrent excitation
degrades the separability between bottom-up from top-down signals from population firing patterns.
Significance and Fit for OCNS Audience. This work should be of broad appeal to the OCNS audience.

Our model makes specific predictions on how distinct synaptic-level perturbations could alter circuit dynamics
and attentional behaviors, allowing direct testing in animal models using optogenetics and electrophysiological
recordings. In addition, our well-constrained thalamic circuit model in the awake regime can be further extended
to study how distributed thalamo-cortical networks perform cognitive computations. More generally, we hope
such studies will encourage the study of circuit models to make dissociable, testable predictions across circuit
and behavioral levels.
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The advent of large high-dimensional datasets in neuroscience has been an important milestone for advancing
our understanding of neural information processing and improving performance of brain computer interfaces.
However, most existing methods of analysis fall short of capturing the complexity of interactions within the
concerted population activity. Novel techniques need to address this complexity and be applicable in a wide
range of neural data analysis scenarios. In this work, we employed copulas which disentangle single-neuron
statistics from the dependency structures within the population and evade the curse of dimensionality with pair
copula constructions [1,2]. This approach makes it possible to study the shapes of dependency structures
between variables with vastly different statistics, (Fig. 1A) e.g. discrete spiking activity and continuous
behavioural response variables like running speed. We adopted a fully non-parametric approach for the single-
neuron margins and copulas, since parametric copula families impose strong assumptions on the shape of the
stochastic relationships which can lead to misspecification, especially in the case of discrete variables. Both
copula and margin densities were estimated using Neural Spline Flows (NSF) [3]. Overall, NSFs performed
better relative to existing non-parametric estimators when trained on artificial data with known dependency
structures (Fig. 1.B), while allowing for easier sampling and more flexibility. Finally, we demonstrate our
framework’s aptitude to capture non-symmetric tail dependencies (Fig. 1C) in deconvolved spiking responses
from calcium recordings of neurons in the rodent primary visual cortex responding to a visual learning task [4].

References

1. Aas K, Czado C, Frigessi A, Bakken H. Pair-copula constructions of multiple dependence. Insurance:
Mathematics and economics. 2009 Apr 1;44(2):182-98.

2. Onken A, Panzeri S. Mixed vine copulas as joint models of spike counts and local field potentials. InAdvances
in Neural Information Processing Systems 2016 (pp. 1325-1333).

3. Durkan C, Bekasov A, Murray I, Papamakarios G. Neural spline flows. Advances in Neural Information
Processing Systems. 2019;32:7511-22.

4. Pakan JM, Currie SP, Fischer L, Rochefort NL. The impact of visual cues, reward, and motor feedback on the
representation of behaviorally relevant spatial locations in primary visual cortex. Cell reports. 2018 Sep
4;24(10):2521-8.



Joint pdf Continuous margin x
=
=

= -
= > g
2 o .
8" g °
5 B G 0o 1 2 3 4
Ea. > 1
% = + Be Discrete margin y
- ‘G
- =
o]
- E_ 3
1] 1 2 3 4 ] 0.5 1
continuous variable x transformed variable x o
B c
4-D vine continuous data
12 o Neuron 1 \_“‘_‘“.—j\-\
- - - Neuron 2 _“ﬂ_
- HE I~
§ 08 , MNeuron 3
w U .
3 - -
@ Neuron 4 _‘__'_,_,_m
Z06
) . Meuron 5
04 ] 8 - o 0 20 40 60 80 100120 140 160
pesition (em)
0.2 e
% = T = — trial averaged spikes
reward zone

flow jath tll2 tlln  tl2n  bern

51,23
Figure 1. A Joint probability density function with continuous and discrete margins is decomposed into a copula
and separate margins. B NSFs outperform other non-parametric estimators on artificial data (inset). C (Left)
Average activity of 5 rodent V1 neurons as a function of position of mouse in a virtual corridor. (Right) Flow
vine copulas extracted from same group of neurons (5D vine).



Whole-brain modelling suggest mechanisms behind pro-segregation
effects of cholinergic neuromodulation

Carlos Coronel*!, Rodrigo Cofré?, Carsten GieBing?, Patricio Orio*

"Universidad de Valparaiso, Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Valparaiso, Chile
2Universidad de Valparaiso, Centro de Investigacion y Modelamiento de Fenémenos Aleatorios, Valparaiso,
Chile

3Carl von Ossietzky University Oldenburg, Department of Psychology, Oldenburg, Germany

4Universidad de Valparaiso, Instituto de Neurociencia, Valparaiso, Chile

*Email: carlos.coronel@postgrado.uv.cl

Segregation and integration are two fundamental principles of brain organization [1,2]. While segregation is
necessary for specialized processing of information, integration allows the coordination of the activity of several
brain regions to produce a coherent behavioral outcome. Recent studies show that neuromodulatory systems
dynamically promote the transitions between different functional states, starting from a static connectome [2].
Specifically, a recent framework proposed that the cholinergic and noradrenergic systems promote segregated
and integrated brain states, respectively [2]. Here, we combined empirical fMRI recordings with computational
modeling to gain insights into the biophysical mechanisms involved in the pro-segregation effects of the
cholinergic system. The empirical fMRI data consider recordings under the effects of nicotine in healthy
smokers, both in resting-state and in a Go/No-Go attentional task [3]. We built functional connectivity (FC)
matrices from the fMRI BOLD signals, and quantified integration and segregation using tools from graph theory
[4]. We showed that nicotine has a pro-segregation effect (increase transitivity and decrease global efficiency) in
the task block, but not in the resting-state. Then, we used a whole-brain neural mass model [5], interconnected
using a human connectome and coupled to a hemodynamic function to simulate fMRI BOLD-like signals. We
simulated the effects of nicotine by decreasing global coupling and the feedback inhibition of the model, and
then fitted the empirical and simulated FC matrices. The model fitted to the empirical data showed an increase in
transitivity, a decrease in global efficiency, and a loss of modular organization under the effects of nicotine.
Therefore, our model validates the results using the empirical data, that is, confirms the pro-segregation effects
of nicotine and provided a biophysical mechanism to simulate these effects. This framework constitutes a new
set of tools and ideas to test how neural gain mechanisms mediate the balance between functional integration and
segregation in the brain.
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The complexity of brain dynamics has been approached from several points of view, in particular, using
measures coming from dynamical systems and information theory. Several studies have proposed the existence
and importance of chaotic regimes in brain activity, and chaotic oscillators have been used to simulate brain data
due to their rich dynamical repertoire. On the other hand, plenty of measures have been used for assessing
complexity from real neural data and theoretical models. In particular, Information theory provides tools for
defining synergy: the information contained in the interactions of the system is higher when looking at the
system as a whole than as separated parts, i.e., there are more high order than low order interactions. Using the
O-information, a measure that builds on multivariate extensions of the mutual information, synergy was assessed
in fMRI data and shown to decrease with aging. In this work, we try to answer how the dynamical and
information-theoretic views on the complexity of brain signals are related. For this purpose, we studied the
emergence and quality of statistical high-order interdependencies on small networks of homogeneous neural
oscillators, assessed through the calculation of the O-information. The analysis consisted on a survey over the
possible coupling configurations of 2 and 3 nodes oscillators, varying the inter-and intra-node connection
parameters, and the calculation of the Lyapunov spectrum and the O-information, for distinguishing distinct
dynamical and information-theoretic regimes, respectively. In addition, we performed a search over the possible
3-node configurations using a genetic algorithm, looking for the best connectivity matrix in terms of synergy i.e.,
minimizing O-information. We found that the simple limit-cycle dynamical regimes were redundant, i.e.,
showing positive O-information, and dynamical regimes with non-integer attractor dimension showed negative
O-information, suggesting synergy. The higher dimensional integer dimension tori (quasiperiodic regimes)
showed mixed results, being redundant in some cases and synergistic in others. However, when the
interdependencies between the variables were broken through a random time shifting of the data points, the O-
information in the quasiperiodic (toroidal) regimes was maintained, making the synergy in these regimes non-
significant. On the other hand, O-information in time-shifted data from chaotic series dropped to zero. These
results were confirmed using simulations of simple chaotic systems such as the Lorenz equations. In the case of
three oscillators, the optimal synergistic configuration among nodes presented one independent node influencing
the other two ones, and the induce dynamical regime was chaotic. A parameter sweep in the vicinity of the
optimum also showed correspondence between synergy and higher dimensional dynamics. Our results invite
further numerical and theoretical approaches for understanding the relation between dynamical complexity and
information-theoretic measures, especially for oscillatory systems. Also, the relationship between
synchronization and redundancy may underlay previous results related to aging.
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Measuring neural activity with fMRI while a person is memorising and retrieving information, can provide
insight into cognitive processes of short-term memory distortions [1], or shortly, false memories. Functional
activations have been analysed through a range of methods, however, they have a non-trivially associated auto-
correlation and cross-correlation signal structure and are notoriously challenging to analyse due to their very low
temporal resolution.

In our study, we applied detrended fluctuation analysis (DFA) to investigate fMRI data representing a diurnal
variation of working memory [2] in four types of experimental tasks: two visual-verbal (based on lists of
semantically or phonetically associated words) and two non-verbal (pictures of similar objects). The regional
brain activity was quantified with the Hurst exponent and detrended cross-correlation coefficients [3]. Our
analyses clearly show that the fMRI data obtained from most brain areas within a small-scale range can be
regarded as 1/f type process identified in many physical, biological or even economic systems. However, the
obtained characteristics of the signals in specific occipital lobe areas depend not only on the type of experimental
tasks but also on the stage of the experiment, i.e., memorising the stimuli or information retrieval.

A particularly apparent difference is visible between memorisation in verbal and non-verbal tasks. In the former
case, for some brain regions in the Visual II resting-state network, the Hurst exponents assume values very close
to 0.5, indicating a lack of linear temporal correlations in the signals [4]. In contrast, we observe more persistent
behaviour in the latter. The reduction of persistent behaviour in tasks relative to the spontaneous brain activity
(resting state) is statistically significant in many brain areas, as presented in (Fig. 1). The cross-correlations
between brain areas are, too, indicative of differences in the processing of tasks and experimental stages.
Uncovering such regionally coordinated changes involves comparing distributions of correlation matrices’
eigenvalues. We strengthen these results by grouping eigenvalues according to their eigenvector similarity rather
than their natural order. The detrended correlations turn out to be more sensitive than Pearson correlations,
showing the greatest differences between the resting state and other tasks, between memorisation and retrieval
and between verbal and non-verbal tasks, as well as other subtler results.
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We recorded the activity of midbrain dopamine (DA) neurons in a task where monkeys had to use working
memory to discriminate between two temporally separated vibrotactile stimuli. Since the animal had no clue
about trial difficulty, its motivational level could be quantified by the reaction time (RT) to a tactile start cue
through which the animal communicated its readiness to perform the task at the beginning of each trial (Satoh et
al., 2003). Then, the animal was presented randomly and independently with one of 12 stimulus classes (f1, f2).
Even if [f1-f2| was the same, performance in some classes was clearly worse. This disparity was previously
explained by a contraction bias that shifts fl perception towards its mean and generates a subjective difficulty

[1].

Here we address the question of how motivation influences behavior and DA activity in the discrimination task.
To do so the recorded trials were divided into two groups based on their RT (short- and long-RT trials).
Interestingly, when averaged over all classes, the RT was significantly longer in error trials. Furthermore, a
shorter RT improved performance in classes with a higher subjective difficulty (fig. 1A). To find out the reason
of this enhancement a Bayesian model for the discrimination was fitted to both trial groups independently. The
noise parameter introduced to emulate uncertainty was smaller in the short-RT condition (p<0.001, t-test),
implying that motivation increased precision. Since smaller noise generates a weaker contraction bias, subjective
difficulty was diminished, boosting performance in that group. These results confirmed that the motivation level
of the animal had a strong impact in decision-making by selectively enhancing perception and reducing
subjective difficulty in conflictive classes, therefore increasing reward rates.

Midbrain DA activity codes reward prediction errors. However, these predictions can be modulated by the
eagerness to work for rewards. DA activity in the two trial groups exhibited significant differences. Phasic
responses to the initial cue and to the first stimulus were larger in short-RT trials (fig. 1B). Contrastingly, during
the second stimulus and at reward delivery phasic DA did not depend on the RT. DA responses to the start cue
and to the first stimulus represented the motivational state in the trial since they had significant negative
correlation with the RT on a trial-by-trial basis. Instead, responses to the second stimulus only represented
reward prediction errors. Firing activity during working memory was a purely motivational signal: it was not
tuned to the initial stored frequency and exhibited a ramping behavior. Importantly we found that the ramp-like
DA activity was more pronounced in short-RT trials (fig. 1B).

To sum up, we showed that willingness to work for rewards leads to better outcomes by enhancing precision and
reducing a perceptual bias. Also, high motivation was associated with larger DA activity. During the delay
period, when the bias presumably appears, DA showed a more pronounced ramping in trials with higher
motivation. Such a higher sustained DA activity may be related to a better usage of cognitive resources such as
working memory, allowing for more precise inferences when needed. Together, our results point to an intricate
relation between DA and perception as they are both modulated by the animal’s intrinsic motivation.
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In delayed comparison tasks the first stimulus is perceived contracted towards its mean; an effect known as
contraction bias. However the nature of the bias and its representation by the neural population activity are not
well known. To get insight about these issues, we trained recurrent spiking neural networks (RSNNs) to decide
which of two-time intervals (d1, d2), presented sequentially separated by a delay interval, was longer. Networks
were trained with a set of duration pairs, selected randomly and independently in each trial (Fig. 1a), using the
full-FORCE algorithm. Then, a large number of test trials were obtained from the trained networks for further
analysis of task performance and population activity.

The trained networks exhibited the contraction bias (fig. 1b), implying that temporal correlations in the sequence
of the training stimuli are not needed to generate the bias. To investigate its origin we explored the idea that the
perceived duration resulted from combining present and past stimuli. With this goal, we considered two models:
Bayesian inference and a plausible Bayesian heuristics. In the latter, the perceived d1was an exponentially
weighted sum of current and past d1°s. At the behavioral level we fitted both models to the performance data
from the trained networks (fig. 1b). The parameters were the variance of the two noisy observations. Although
the models yielded statistically similar fits, a given network favored either one or the other, as assessed by their
RMSE:s. At the neural activity level we analyzed the kinematics of the population trajectories in state space. The
mean population activity for each d1 described orbits for which we computed all the relative distances [1].

To assess whether the delay-period population activity combined present and past d1°s (either as a Bayes
estimate or as a Bayesian heuristics) or coded the true value of d1, we reasoned that the mean relative distances
<D> should reflect the network’s estimate of d1. Then, once the model that best fitted the performance data and
its estimate of d1 were determined, we confronted the two hypotheses as follows: the coefficients of a linear
function (a <D> + b) were separately fitted to the estimated d1 and to the true d1 and the goodness of the fits
were compared using their RMSEs [2]. For the 20 tested networks the test favored the mixing hypothesis (fig.
1c). The evaluation of the mutual information that neurons had on previous d1's showed that the mixing of
current and past stimuli came from the network recurrent connectivity, which allowed information from past
stimuli to persist and be combined with the current d1.

To summarize, during the delay period the trained RSNNs combined current and past stimuli, thus generating a
contraction bias. The population activity for fixed d1 described orbits in state space maintaining relative
distances that coded an estimate of d1. Interestingly, this estimate closely approximated either Bayesian
inference or a simple Bayesian heuristics, depending on the network. Networks processed information about the
stimulus in a way that closely resembled the way that cortical populations reproduced a sample interval [1]. Our
results suggest that a similar strategy could be employed both by the brain and by trained RNNs and in different
tasks, generating biases through Bayesian or Bayesian-like computations

Acknowledgments
Grant PGC2018-101992-B-100.

References

1. Remington ED, Narain D, Hosseini EA, Jazayeri M. Flexible sensorimotor computations through rapid
reconfiguration of cortical dynamics. Neuron. 2018 Jun 6;98(5):1005-19.

2. Egger SW, Remington ED, Chang CJ, Jazayeri M. Internal models of sensorimotor integration regulate
cortical dynamics. Nature neuroscience. 2019 Nov;22(11):1871-82.



a) el L
® (490,610) 4.=d
ol (430,550) ==
(370,490) -
@ 400 -
£ (2503.70) e == (490?70)
¥ - £l
< 300 F -- ®
- (430,310)
00k = © ° (370,250)
(310,190)
100 [ (250,130)
1 1 1 1 1 1 ]
200 250 300 350 400 450 500 550
d1 (ms)
b) 100 /Q,.——e——ﬂ—ﬂ C) 550
€ o 500 +a<D>+b
5 80 * —O— g,y
z o 450
o v
- 60 w©
E —O— Data 400
= -d-. )
CN <]~ ‘Model 250 |
— w
2 =30
= 20 M
5 2501
e 200
250 300 350 400 450 500 250 300 350 400 450 500
d 1 (ms) d 1 (ms)

Figure 1. a Stimulus set (d1, d2). b Psychometric curves (percentage of trials where d1 was called lower) for an
example network. The Bayesian model yielded the best fit. ¢ the mean relative distance <D> coded d1 following
rather closely the Bayesian estimate d1 Bayes. The RMSE for the Bayesian hypothesis was 2.74 while for the
true d1 hypothesis was 12.58, clearly favoring Bayesian inference.
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The brain is a hierarchical system composed of diverse interactions among neural units (referring to neurons or
neural populations) across different levels of hierarchy, however we are yet to finalise the method of multiscale
brain model construction. To resolve this issue, we propose a computational framework, namely multimodal
dynamic causal modeling (mmd-DCM). Extending the conventional DCM method, which has been widely used
for macroscale and mesoscale brain data analysis with the Bayesian modeling method, we coupled one neural
model with multiple observation models.

More specifically, neural activity is translated into different observation signals: all model parameters are fitted
to reproduce the observation data and share neural activity. The present mmd-DCM focuses on model
construction using electrophysiological data. This opens up the possibility of considering microscale brain
dynamics, and includes three types of observation signals: voltage-sensitive dye imaging (VSDI), calcium
imaging (Cal), and blood-oxygen-level-dependent (BOLD) signals, which are in different temporal and spatial
resolutions.

In order to apply the proposed mmd-DCM to a large brain circuit, we developed a systematic estimating scheme
that integrates information from local and global circuits. In our previous studies [1,2] we showed that the
incorporation of interactions with other brain regions (not observed) is necessary for the modeling of local
activity. The local activity is not the result of exclusive interaction among local neural units (neurons or neural
populations depending on the level) isolated from other neural populations, but is affected by the external neural
inputs or contexts. Thus, while estimating the connectivity, multiscale and multimodal data would complement
the inference of the system circuitry. In the current study, we combined multimodal data to link multiscale
circuitry and to infer circuitry at each scale using mmd-DCM.

To evaluate our scheme with mmd-DCM, we constructed a biologically plausible model with Cal signals
obtained from the 2/3 layer of the barrel cortex. Then, we simulated Cal, VSDI, and BOLD signals at different
temporal and spatial scales, and estimated model parameters. The results show that by integrating local and
global circuit information with mmd-DCM, we are able to estimate model parameters with a higher accuracy
than those of the conventional method, thereby showing its usefulness for extending multiscale brain dynamics.

Acknowledgments

This research was supported by Brain Research Program and Brain Pool Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017M3C7A1049051 and NRF-
2017HID3A1A01053094).

References

1. Jung K, Kang J, Chung S, Park HJ. Dynamic causal modeling for calcium imaging: Exploration of differential
effective connectivity for sensory processing in a barrel cortical column. Neurolmage. 2019 Nov 1;201:116008.
2. Kang J, Jung K, Eo J, Son J, Park HJ. Dynamic causal modeling of hippocampal activity measured via
mesoscopic voltage-sensitive dye imaging. Neurolmage. 2020 Jun 1;213:116755.



Outlining contextual settings for rule learning through a probabilistic
category learning task

Nicholas Menghi*!, Will Penny!
"University of East Anglia, Social Sciences, Norwich, United Kingdom

*Email: n.menghi@uea.ac.uk

Category learning can be achieved by using different cognitive strategies. Learners might focus on acquiring the
response associated with particular exemplars or they can try to extract a pattern from the stimuli and learn the
rule or structure behind the associations. This work aims to extend the literature on exemplar and rule learning
by outlining the context in which participants either learn to extract a rule or the value of each exemplar. We
design a task in which multiple stimuli are relevant and the appropriate response depends on the pattern of
stimuli presented. Participants were not directly instructed to find a rule but to learn the association between
stimuli and outcomes. We manipulated two contextual settings: the stimulus-response mapping (rule) and the
temporal structure of the stimuli that were presented. We had two different rules, where participants had to either
add or subtract stimulus features to find the pattern. The subtraction rule was designed to be easier to explicitly
declare. We had three different trial structures: one where order was interleaved, one where it was blocked and a
mixed one, which was a mixture of the first two, blocked first, then interleaved. We fitted an online latent cause
model of participants’ behaviour. It allowed us to cluster stimuli based on their similarity, participants action and
the category the stimuli belonged to, giving us insights about participants strategy. We analyzed the number of
clusters created, the pruning threshold which defined which cluster to prune during learning, and two additional
measures derived from the model: entropy and recognition. Those indexed the uncertainty about which cluster a
stimulus belongs to and the probability of a stimulus given the model. Later we used these measures as
regressors for a following EEG study. Participants performed better for the subtraction rule and the blocked
temporal structure. The proportion of participants who correctly declared the underlying association performed
better than participants who did not. The difference in performance was clear in the mixed temporal structure:
when the temporal structure switched from blocked to interleaved performance for non-declarative participants
decayed compared to the declarative ones. The model created more clusters in the blocked temporal structure
compared to the others. The cluster pruning threshold was higher for the addition compared to the subtraction
rule and for the interleaved compared to the blocked and mixed temporal structure. Recognition varied based on
temporal structure and differed between declarative and non-declarative participants in the mixed conditions
after the switch in temporal structure. Our results describe the context in which rule and exemplar learning occur,
so providing a foundation for further behavioural and neuroimaging studies.
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50 million people worldwide suffer from epilepsy, among which one-third of patients cannot be effectively
treated by pharmacotherapy or surgery. Epilepsy is a highly patient specific neurological disease and
epileptogenesis is not well understood. Clearly, the individual brain structures and functions play an important
role in contributing to epileptogenesis, the gradual process by which a brain develops epilepsy. Fortunately, with
modern technology, we are able to visualise those changes through measurements of brain activity. Functional
neuro-imaging data such as EEG shows that there is hyper-excitable and hyper-synchronous neuronal activity
during seizures. Critical slowing down (CSD) is a phenomenon seen in many dynamical systems. When a system
is getting closer to a critical transition state, its variance, autocorrelation and the time for a perturbed system to
return back to baseline increases. The first two passive characteristics (variance and autocorrelation) have been
seen in epileptic patients [1]. On the other hand, phase transitions are often used to describe pathological brain
state transitions observed in neurological diseases such as epilepsy. In this project, we are interested in
investigating the phase transitions through CSD biomarkers as a way to measure the state of a brain.

We have reviewed the state of art literature on the topics of critical slowing down, seizure prediction and time
series analysis. Eventually, we have come up with 6 new biomarkers on the top of traditional critical slowing
biomarkers (variance, autocorrelation and response to perturbation). Together we have 9 biomarkers which are
designed for time-series signals such as EEG. The goal of the biomarkers is to forecast the state transitions of a
dynamical system when a system is close to a criticality. We tested those biomarkers in simple mathematical
models. The aim is to examine the performance of the biomarkers in noise-free and noisy environments through
simulations. All of the models are known for their bifurcations when some structural parameters are varied [2].
The work in this stage is also carried out as a proof of concept; the biomarkers are able to indicate the upcoming
critical transition before it takes place. Most of the biomarkers are able to indicate the state changes, but those
changes are only shown qualitatively not quantitatively. The values of the biomarkers measured from one system
are not necessarily comparable with the same biomarkers from another system. Noise tolerances are also tested
for each biomarker obtained at different levels of white noise superposed on the simulation data. The noise level
is categorised as low, medium and high based on their signal-noise-ratios (SNRs). We examined whether each
biomarker derived from 100 realisations of simulations is still able to provide a statistically significant separatrix
under different SNRs.
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The rapid changes in sleep patterns over the first few years of life vary widely between children. In fact, never
are sleep characteristics and dynamics more varied than during early childhood [1,2]. Sleep is important for
infant and child neurodevelopment, yet there is a lack of mechanistic understanding of what drives the changes
on sleep over the early years of life. While sleep in the adult brain has been studied and modelled extensively,
very little has been done in infants and children, mainly limited to descriptive studies of sleep behaviour. Here,
we adapted an existing, physiologically based model of adult sleep to study infant and child sleep behaviour
[3,4]. We used Bayesian model estimation to identify the likely physiological parameters underpinning
population-level diversity in sleep characteristics as a function of age from 0 to 5 years. We found that the
empirically observed decrease in total sleep duration and consolidation of sleep bouts with increasing age are
well explained by decreases in the constant inhibitory input to sleep promoting neurons and increases in the
characteristic time to clear somnogens (sleep inducing agents) during sleep. Moreover, we explored time-
dependent parameter changes to simulate individual maturation of sleep patterns, finding realistic sleep-wake
dynamics consistent with heavily sampled, single infant data. Our findings show that physiologically based
models can be used to understand the developing neurophysiology driving sleep behaviour in children.
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Many higher brain functions are attributed to the cerebral cortex, characterized not only by a large number of
neurons but also by an extensive connectivity with other districts. The finely regulated interactions between
these different areas are suggested to be at the basis of the rise of complex patterns of activity. Due to the
complexity of the system itself, unravelling the mechanisms underlying brain functions such as sensory
processing and memory consolidation requires to devise simplified iz vitro models that allow to understand how
cells of different brain circuits interact.

In this work, we recorded the emerging electrophysiological activity by means of Micro-Electrode Arrays
(MEAs) paired with ad hoc polymeric structures in order to recreate interconnected heterogeneous networks. We
studied how the spontaneous activity of a cortical population is modulated by two distinct and specific
physiological inputs provided by thalamic and hippocampal subpopulations. Using compartmentalized polymeric
engineered masks, we recreated and recorded the electrophysiological activity of the cortico-thalamic and
cortico-hippocampal circuits, which are highly relevant as they are involved in the genesis of physiological
oscillatory rhythms whose alterations induce pathological conditions, such as absence seizures, and during
sensory processing and memory consolidation, respectively. From the spike and burst trains, we obtained
parameters to characterize the spiking and bursting activity, to identify the excitatory and inhibitory functional
connections, and to evaluate the interaction between sub-populations in terms of synchronization level of the
spiking activity. In particular, statistical interdependence between neuron pairs was obtained by convolving the
cross-correlogram with an edge filter to identify the local maxima and minima in the peak trains. Finally, the
synchronization level was evaluated by means of the Coincidence Index defined on the basis of the cross-
correlation function.

We found that the thalamic and hippocampal input modulate cortical activity in a complementary way. We
observed that the specific features of thalamic activity, characterized by tonic spiking, and the hippocampal one,
which presents highly stereotyped high-frequency bursts, modulated both the spiking and bursting dynamics of
the co-cultured cortical population. Hippocampal neurons drove a more sustained and packed cortical activity.
Moreover, they induce a change in the distribution of the inhibitory connections, which resulted in a decrease in
the amount of inhibitory information exchanged between the two populations. It was also observed that the sub-
populations in the cortical-hippocampal co-cultures established a greater number of strong connections within
themselves than in controls. A possible consequence is the observed modification of the synchronization of the
two sub-populations, which shows a significant increase of the synchronization level within the compartments
with respect to the one between them. Thalamic neurons induced a more random and scattered activity pattern,
with a strong redistribution of the functional inhibitory links. The thalamic assembly generates more inhibitory
connections than in controls, however none of them are projected to the cortical compartment. This difference in
functional connections may be the cause of the observed strengthening of the cortical compartment inner
synchronization.
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The disruption of coronavirus disease 2019 (COVID-19) poses a serious threat to global public health and local
economies. The combination of antimalarials hydroxychloroquine (HCQ) with azithromycin has confirmed the
anti-viral treatment on an urgent basis in limited clinical studies [1]. With the growing interest in the potential
use of HCQ for the treatment of COVID-19, it is essential to reflect on the risks of treatment, particularly for
cardiac toxicity. The purpose of this computational study was to investigate the propensity of
hydroxychloroquine (HCQ) on various ionic mechanisms to cause diverse effects on the sinoatrial action
potential. The sinoatrial node cell (SAN) was described as an equivalent electrical circuit with a number of
variable conductances representing voltage-gated Na+ channels (INa), voltage-gated Ca2+ channels (ICa),
voltage-gated K+ channels (IK), Ca2+- dependent K+ channels (IKCa) and hyperpolarization-activated current
(funny current, If). AHCQ drug model for the multiple ion channels was simulated after mining data from
experimental studies [2]. The biophysically altered ionic currents (ICa, IK, and If) were integrated into the single
SA node electrophysiological model [3].The resting membrane potential (RMP) was set at —80mV. Application
of 1 uM HQN showed inhibitory effects on ICa, IK, and If. The steady-state values for activation and
inactivation parameters are altered. The If current was substantially reduced with comparison to other currents.
As a consequence, the model produced SAN action potential prolongation, and the frequency was reduced. The
results show that the modified funny current plays an important role in reducing the frequency of the
spontaneous action potentials at SA node.The model successfully reproduces both ionic currents and action
potential observed in intracellular recordings from individual SAN cell. The effects of Hydroxychloroquine drug
are simulated with respect to funny current and action potential. As Hydroxychloroquin reduces the frequency
rate of the spontaneous action potential firing, we should prevent it as a potential drug against COVID-19. It also
supports the FDA guideline against using HCQ for COVID-1.
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Thoracic sympathetic postganglionic neurons (tSPNs) receive synaptic inputs from preganglionic neurons in the
spinal cord and regulate downstream effector targets including vasomotor and thermoregulatory systems. Rather
than acting as simple relays of spinal signals to the periphery, tSPNs can integrate and transform signals
depending on their cell-intrinsic biophysical properties. Understanding tSPN cellular integrative and recruitment
principles is essential to study mechanisms that alter excitability, including those seen after spinal cord injury
(SCI).

A previous conductance-based computational model of mouse tSPNs was described in [1]. In the current study,
we present updated ensemble tSPN models that effectively describe experimental data from different
electrophysiological modalities, including voltage-clamp (VC) step and ramp, as well as current clamp (CC)
protocols. A model of electrode resistance and capacitance is incorporated [2] to separate experimental artifacts
from ion channel dynamics, across multiple cells and multiple trials. In line with the previously studied mRNA
profiles in these cells, we determine ion channel properties such as maximal conductance and decay time
constants that best describe the experimental recordings. VC step protocol data (before and after the application
of Na+- channel blocker tetrodotoxin) is used to determine the dynamics of transient currents via Na+ and A-
type K+ channels, as well as electrode artifact properties. This data also gives an estimate of the sum of all the
long-lasting currents (delayed rectifier K+, M-type K+, Ca2+- dependent K+ etc.), which are further separated
and their maximal conductances determined based on their voltage dependent peaks under VC ramp protocol.
With this setup, including the electrode model, we can obtain ensemble models tuned to individual neurons and
describe the voltage-dependent delays observed in the onset of Na+ currents under VC step protocol. Further
improvement of space clamp errors is expected with a spatial model of the cell.

Future work will incorporate data obtained from CC recordings and all channel properties will be simultaneously
tuned to match the firing properties of the cells in response to current injections.We will employ this updated
tSPN model to study differences in passive and firing properties of genetically identified tSPN subpopulations
and the putative homeostatic plasticity engaged to maintain excitability after lost central drive as seen after high
level SCls.
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Na+/K+ ATPases (Na+ pumps) mediate long-lasting activity-dependent ionic currents that provide a neuronal
memory for previous activity than can last tens of seconds [1]. The cellular mechanisms controlling the
dynamics of these long events are not well understood and counterintuitive. Long-lasting memory traces arise
from Na+ pumps that instantaneously respond to Na+ concentration changes, with no explicit pump activation
time constant. Here, we use computational modelling of pump currents to examine how pump dynamics without
time constants shape both electrical (membrane potential) and chemical (Na+ concentration) memory traces.

We incorporated 1) a Na+ pump, 2) its effects on intracellular Na+ concentration, and 3) a dynamic Na+ reversal
potential into a Drosophila larval motor neuron model [2]. The pump current Ip = Ipmax / (1 + exp((Nah -
Na)/Nar)) is modeled as a maximal pump current [pmax multiplied by an S-shaped function of intracellular Na+
concentration (Na) with two parameters, the Na+ concentration (Nah) of pump half-activation, and a factor (Nar)
that determines the range of the current’s dependence on Na. This model does not include a time constant Tau of
pump activation — the pump responds instantaneously to changes in Na. The pump current shapes neuronal
dynamics in two ways: 1) The electric current resulting from extrusion of Na+ ions and pumping into the cell of
K+ ions contributes to membrane potential changes. 2) The extrusion of Na+ ions contributes to changes in
intracellular Na+ concentration and the Na+ reversal potential.

We find that despite the absence of an explicit Tau, the pump produces after-hyperpolarizations (AHPs)
following bursts of action potentials that can last for multiple seconds, as in experimental preparations [1]. This
‘Tau from no Tau’ arises from the interaction of the pump current with membrane currents and the intracellular
Na+ buffering system. The AHP duration depends on both parameters Nah and Nar, with larger values of either
producing longer AHPs. The dependence of AHP duration on Nah is weaker than its dependence on Nar. We
further show that at the end of the AHP, when the electrical effect of the pump has largely subsided, Na is still
substantially different from its resting level. The chemical effects of pump activity in the cell can thus last
several-fold longer than the electrical effects. This chemical memory trace that out-lasts the electrical memory
arises solely from interactions of the pump with membrane conductances and ion buffering. It does not require
additional molecular signaling cascades with slow dynamics.

We conclude that even in the absence of an activation time constant 7au, Na+ pumps provide a mechanism for
long lasting electrical (AHP) memory traces and even longer chemical (Na+ concentration) memory traces. Our
work provides testable predictions for physiologists and has implications for understanding information
processing in neural networks and the neural control of animal behavior.
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Thoracic sympathetic postganglionic neurons (tSPNs) reside in the sympathetic ganglia and receive excitatory
inputs from preganglionic spinal neurons. tSPNs were long thought to act as relays of input from the spinal cord
to targets such as vasomotor and thermoregulatory systems. We previously used modeling to show that tSPNs
may play a more active role in signal integration in the sympathetic pathway [1]. Important questions are
whether tSPN membrane properties: (i) are tuned to optimally process synaptic inputs, (ii) represent a locus for
behavioral state-dependent modulation, and (iii) undergo compensatory homeostatic changes in excitability due
to long-term alterations in central preganglionic synaptic drive (e.g., after spinal cord injury). We address these
questions in a model of mouse tSPNs [2]. Its membrane currents include: a fast Na+ current INa; a low-threshold
Ca2+ current ICaL; K+ currents IKd (delayed rectifier), IA (fast transient), IM (slow non-inactivating), and
IKCa (Ca2+ dependent); a hyperpolarization-activated inward current [H; and a leak current. To simulate input
from the spinal cord, we provide the tSPN model with excitatory synaptic conductance waveforms that match
measurements from mouse tSPNs in number, synapse strength, and presynaptic firing pattern. In the “canonical”
version of the tSPN model [2], this synaptic input results in a synaptic gain (defined as tSPN firing rate divided
by preganglionic firing rate) larger than 1, meaning that tSPNs can integrate and amplify these synaptic inputs.
This confirms that tSPNs may act as more than relays of spinal inputs [1].

We next individually vary the maximal conductance for each membrane current from its canonical value and
observe that: 1) Varying the conductances for IKd, IA, and [Hhas little effect on synaptic gain. These currents
therefore may not be effective targets for modulation or plasticity. 2) Increasing the conductance for
INaincreases synaptic gain, as expected for an inward current. 3) Increasing the conductance for the potassium
currents IM and IKCa and for the Ca2+ current ICaL decreases synaptic gain. For IM and IKCa this occurs
because they are outward currents, thus increasing their conductance decreases tSPN excitability. ICaL is an
inward current, but has a negative effect on synaptic gain because it indirectly reduces excitability via increasing
the outward current IKCa.

Our simulations implicate the tSPN membrane currents INa, IM, IKCa, and ICaL as factors that may determine
tSPN excitability and synaptic gain, with Ina being a positive regulator of gain, while IM, IKCa, and ICaL are
negative regulators. These membrane currents may thus be suitable targets for plasticity and modulation of
signal integration in the thoracic sympathetic pathway, including in the context of systemic changes after spinal
cord injury.
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Understanding the relationship between the functional activity and the structural wiring of the brain is an
important question in neuroscience. To address this, various mathematical modeling approaches have been
undertaken in the past, which largely consisted of non-linear and biophysically detailed mathematical models
with regionally varying model parameters. While such models provide us a rich repertoire of dynamics that can
be displayed by the brain, they are computationally demanding. Moreover, although neuronal dynamics at the
microscopic level are nonlinear and chaotic, it is unclear if such detailed nonlinear models are required to
capture the emergent meso- (regional population ensemble) and macro-scale (whole brain) behavior, which is
largely deterministic and reproducible across individuals. Indeed, recent modeling effort based on spectral graph
theory has shown that a linear and analytical model without regionally varying parameters can capture the
empirical magnetoencephalography frequency spectra and the spatial patterns of the alpha and beta frequency
bands accurately.

In this work, we explore the properties of an improved hierarchical, linearized, and analytic spectral graph
theory-based model that can capture the frequency spectra obtained from magnetoencephalography recordings.
The model consists of coupled excitatory and inhibitory dynamics of the neural ensembles for every brain
region, and white-matter structural wiring-based long-range excitatory macroscopic dynamics. We demonstrate
that this model, with just a parsimonious set of global and biophysically interpretable model parameters, can
display frequency-rich spectra. In particular, we show that even without any oscillations on the regional level,
the macroscopic model alone can exhibit oscillations with a frequency in the alpha band. We also show that
depending on the parameters, the model can exhibit damped oscillations, limit cycles, or unstable oscillations
that blow up with time. We further determined bounds on these parameters to ensure stability of the modeled
oscillations. These biophysically interpretable model parameters can be employed to investigate correlates of
differences in frequency spectra observed in different brain states and neurological diseases.
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The cerebellum has a distinctive circuit architecture in which each mossy fibre input typically projects to 250
granule cells, a population that comprises more than half of the neurons in the brain [1]. How does this size
expansion relate to cerebellar function? This has been an active research topic for decades [2-4]. Recent
theoretical work has shown how this expansion facilitates pattern separation and smooth function approximation
[5,6]. However, we currently lack a theory that explains why this architecture is suited to rapid online learning.

The cerebellum is critically involved in motor learning, refining trajectories as movements are being executed.
This is a dynamic problem requiring fast learning from limited information. We ask how this specific class of
learning problem informs the distinctive cerebellar architecture.

We consider a cerebellar-like network, with sparse, tunable connections that map low-dimensional inputs into a
high-dimensional internal, ‘granule cell’ layer. The network is tasked with simultaneously learning an internal
model of a motor system, and then using this model to better control motor output (Fig. 1 A). Learning happens
concurrently with trajectory execution, using a biologically plausible learning rule to adapt synaptic weights
(Fig. 1B).

Learning online from motor output as a motor plan is executed introduces a narrow time window that severely
limits the information available for synaptic plasticity mechanisms to appropriately adjust synaptic weights. We
show, theoretically and numerically, that increasing the number of granule cells effectively trades time for space,
allowing rapid and accurate learning in an online context. Our theoretical analysis uses general, geometric
arguments that are independent of specific learning rules. We find that the effect of having limited information
depends on the spread of the Hessian of the task error. As the number of granule cells increases, the spread
decreases. Hence the geometry of the error surface becomes more favourable for online learning, diminishing the
effect of information error and allowing for faster learning (Fig. 1C-D). This suggests that the large energy cost
associated with maintaining the majority of the brain’s neurons might be an inevitable cost of precise, fast, motor
learning. Our result fills gaps in the understanding of how cerebellar structure is optimised for online learning of
motor tasks.
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Figure 1. A Task diagram. The cerebellar-like net (FF) modulates the motor commands sent to the motor plant
P. The weights W adapt online so the plant output y matches the target trajectory yd. B Learning of trajectories.
C Network resizing. Granule cells are added. The number of mossy fibres and Purkinje cells is maintained. D
Effect of increasing the number of granule cells on learning performance.
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Introduction

Spiking probability as a function of stimulus intensity is the key-control element in the input-output relation in
functional electrical nerve stimulation. The range of intensities where the spiking probability of an auditory
nerve fiber (ANF) increases from 10 to 90% is defined as its dynamic range and reflects the fiber’s individual
loudness contribution during cochlear implant stimulation. The strongest noisy components during the excitation
process are fluctuations in sodium ion currents. A single ANF has a quite inhomogeneous structure with
changing diameter and large variations in sodium channel densities. The question arises how much the dynamic
range depends on the position of the stimulating electrode of a cochlear implant.

Methods

The noisy currents across the cell membrane were simulated in a simple, computationally efficient way: A
Gaussian noise current was added to each segment (compartment) of the ANF model every 2.5us, scaling
proportionally to the square root of the number of sodium channels (defined by sodium conductance measured in
mS/cm?). The intensity could thus be controlled by a deterministic parameter (k_noise = 0.05) [1]. This selected
k_noise value induced root mean square amplitudes of the transmembrane voltage comparable to experimental
results [1,2]. We placed the electrode at possible positions along a selected ANF varying from terminal to soma
and calculated the relative spread (RS) [2], a normalized measure which is about half of the dynamic range.
Results

For a standard ANF (dendrite diameter = 1.35um, axon diameter = 2.67um [3], 100um non- myelinated
presomatic region and 20um soma) increased stochastic behavior was found especially for electrode positions at
the dendrite, while the soma acted as a dampening factor. The closer the electrode was to the ANF, the more
pronounced the regional differences in spiking behavior and RS were. For an ANF - electrode (center) distance
of 300pum the RS were 13.10% for stimulation at the terminal, 5.51% for middle of dendrite and 3.97% for soma,
respectively — the 3 corresponding thresholds (100us pulses) were 117.1, 113.3 and 460.2uA. For the terminal
position spiking probabilities of 10, 50 (= threshold) and 90% need currents of 97.7, 117.1 (threshold) and
136.1pA, resulting in a dynamic range of 38.8pA (136.1-97.7) and 33.1% normalized to threshold (~ 2.5x RS).
Conclusion

The dynamic range of an average human ANF stimulated from a cochlear implant is largest for electrodes close
to the fiber terminal (that is close to the outer wall of scala tympani) where it exceeds a central position (close to
modiolus) by a factor in the order of three.
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Models of neuronal activity across scales have been widely studied, but few models consider coupling of
neuronal activity to its metabolic supply. Disruption of energy and oxygen availability to neurons, for example
during asphyxia or during epileptic seizures, leads to pathological activity in the electroencephalogram (EEG)
[1-3]. By varying energy supply and demand in a network model of Hodgkin-Huxley neurons, we observe that
activity varies from healthy asynchronous-irregular (Al) activity, to pathological states of iso-electric activity,
burst-suppression activity, and seizure activity. In the burst-suppression regime, as the energy supply ([O2] Bath)
increases, a transition from highly synchronous bursts to scale-free (semi-synchronous) bursts to less
synchronous bursts takes place. In parallel with this transition the average shape of the bursts changes from
asymmetric to symmetric. Scale-free bursts and a transition from asymmetric bursts to symmetric bursts are seen
in neonates recovering from hypoxic insult [1]. Therefore, we validate our model using EEG data from hypoxic
neonates. We estimate the model parameters that best fit empirical EEG epochs in terms of their burst statistics
during the recovery phase, yielding trajectories through the parameter space of [K+] Bath and [O2] Bath. We
show that for neonates with good outcomes (normal or mild injury), the projections of the time series tend to
travel toward the healthy regime. On the other hand, in neonates with bad outcomes (died or severe injury), the
projections of the time series tend to dwell in the pathological region of parameter space. Our modeling thus
provides a general platform to study recovery from brain pathologies arising from disturbances of brain
metabolism.
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Studies on the olfactory system of insects have found that Kenyon cells (KCs) show variable sensitivities to
stimuli [1]. One of the mechanisms responsible for this could be the control of their activity level through their
neural firing threshold. Controlling the activity level of the KCs could have a positive impact on the
discrimination capacity of the network. To explore this hypothesis, we have used a similar model of the insect
olfactory system to the one in [2], which includes a learning algorithm capable of finding the best distribution of
neural thresholds in KCs to solve a classification problem. After training the model using a random threshold
distribution and other one adjusted by the learning algorithm to obtain different levels of activity in the layer
corresponding to the KCs. As a first approximation to study the impact of threshold variability on the
discrimination capacity of the system we measure the similarity between the internal representations of the
patterns belonging to different classes using cosine distance [3].

The results are shown in (Fig. 1), using boxplots that represent the distribution of the cosine distances of the
patterns of one class to the patterns of the other classes. The first column shows the similarity between the
representations of classes when the thresholds of the KCs are random. The thresholds were initialized randomly
with values in this range between 0 and the maximum number of inputs that a KC neuron can receive, so it could
be determined whether the threshold adjustment made by the learning algorithm in the rest of the cases results in
better representations than the random case. The second column in the figure shows the results for low activity (s
= 0.1), the third for medium activity (s = 0.5), and the last one for high activity (s = 0.9). It is clear that the only
activation level for which the similarity between the representations decreases is for the low activity level. This
shows that a threshold distribution that allows neurons to have different degrees of sensitivity improves the case
of random thresholds when the activity level of neurons is kept low. This advantage is lost as the specific
threshold distribution in the KCs begins to increase their level of activity. These results are coherent with the
findings of other studies like [4]. The fact that the control and variation of the neural threshold in a population of
neurons improve its discrimination capacity could be one of the mechanisms from which the generation of a
sparse code in biological systems is achieved, and leaves the door open to adapt this into a bio inspired algorithm
that could work in the context of deep learning to improve the effectiveness of neural networks.
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Figure 1. Discrimination of KCs among classes for different threshold configurations which give different
degrees of network activity, depending on the parameter s. It can be observed that the greatest discrimination
between classes is reached when the adjustment of thresholds set the activity of KCs low.



Improving the detection of ERPs and managing variability with dry
electrodes in personalized brain computer interfaces

Vinicio Changoluisa®!, Pablo Varona?, Francisco B. Rodriguez?

"Universidad Politécnica Salesiana, Quito, Ecuador
2Universidad Auténoma Madrid, Ingenieria Informatica, Madrid, Spain

*Email: fchangoluisa@ups.edu.ec

Event-related potentials (ERP) are positive and negative voltage deflections detected on the scalp related to a
specific stimulus. ERPs can be used to study and understand memory, attention, or as a control signal for brain-
computer interfaces (BCI) [1]. Due to their wide utility, new technologies have been offered to facilitate brain
monitoring for ERP detection e. g., dry ones, which are more comfortable and require less set-up time than their
wet counterparts. However, this modern technology still has problems to solve as its low signal-to-noise ratio
compared to traditional wet electrodes [2], which are combined with the well-known problem of inter-and intra-
subject variability in brain activity in the context of precise detection of ERPs. Thus, it is necessary to develop
algorithms to improve the detection accuracy of ERPs with dry electrodes. We propose to take advantage of the
hit vector, which is a feature vector obtained of the characterization of ERPs with the maxAUC method [3] in
each electrode. This method benefits from the continuous calculation of the area under the curve (AUC) in each
epoch of the EEG signal related to the presented stimuli, thus keeping ERPsspatial and temporal information
structure. We initially proposed the AUC calculation to convert the hit vector into a scalar and thus rank each
electrode. However, along with the P300, other components such as the N200 are generated [3]. Therefore, we
propose the variance (VAR) as another metric to qualify the electrodes from the hit vector. We applied our
methodology to a data set from a 12-subject P300-based BCI experiment using dry electrodes on three different
days to study the variability. The results show that characterizing the ERPs with maxAUC and scoring each dry
electrode with AUC and variance has an advantage over choosing a set of standard electrodes (STD),
traditionally used in P300 detection. We tested our method with five configurations of 1, 2, 3, 5, and 7
electrodes and recordings performed on the same subjects on distinct days. Table 1 shows the accuracy reached
with a Bayesian classifier (BLDA) in one electrode.

Table 1. Accuracy reached with one electrode. Cross-validation was implemented with two sessions (one
training and one test) by day.

STD AUC VAR
First day 45% 57% 62%
Second day 41% 62% 66%
Third day 35% 48% 56%

For the rest of the configurations, the precision achieved with our methodology is higher, although with
configurations considering a larger number of electrodes the advantage decreases. The results show that with
AUC it is possible to deal with data with a low signal-to-noise ratio, reduce the number of electrodes and achieve
better accuracy in ERP detection. Finally, due to the minimal electrode configuration search for each subject, it
is possible to create technologies to customize the detection of ERPs with better performance managing
variability, and being user-friendly.
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Temporal code-driven stimulation (TCDS) has been defined as a closed-loop method for studying temporal
sequences of activity in complex biological systems [1]. It adds to a long list of closed-loop stimulation
techniques applied in neuroscience research (e.g., since the generalization of dynamic clamp methods [2]).
Particularly, it provides an easy and generalizable method to register, as binary codes, the sequential activity of a
living system. It can be used to establish closed-loop stimulation with a biological system by triggering stimuli
after the detection of predetermined sequences of events.

This method has been successfully applied to study weakly electric fish signaling [1,3,4]. The properties of the
electromotor system of weakly electric fish, which generates electric signals in the water to communicate, enable
TCDS to be used to answer questions in the intersection between computational neuroscience and
neuroethology. In the case of Gnathonemus Petersii, a species of pulse-type weakly electric fish, patterns of
sequences of pulse intervals (SPI) have been related to behavioral responses [5]. Two of these patterns — scallops
and accelerations — were used here to stimulate the fish during closed-loop stimulation sessions. The relevance of
minimal codes — 2 bits representing short-term sequential activity — for the characterization of the state of the
system was addressed. Two different codes were selected to trigger the stimuli: 01 and 11. Results from 29
experiments and 7 different specimens show that, even when using such simple codes as triggers, distinct
responses arose from different codes. As indicated by preliminary results using an aversive stimulus, these
results hold as long as the stimulation is presented in a closed-loop manner, regardless of the shape of the
stimulus [1].

This response of the system could be explained by an increase of the probability of generating SPI patterns with
shorter IPIs — like scallops or accelerations — due to the presence of an artificial social context implemented by
closed-loop stimulation. TCDS also enables the use of triggering codes with behavioral significance, which is
expected to evoke more significant changes in the SPI pattern generation.
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Feedback loops are relevant to understand complex dynamics in neural systems. Closed-loops methodologies, in
which the system is stimulated based on its ongoing activity are well-suited to study this kind of dynamics [1,2].
However, relevant neural systems events frequently occur within or below the milliseconds scale. Therefore,
closed-loop tasks must be implemented at this time range with appropriate precision. To guarantee compliance
with these temporal constraints, it is convenient to use a real-time system, which performs tasks and responds to
certain asynchronous events within a deterministic time frame. To analyze the performance of real-time systems
it is necessary to measure latency, which is defined as the difference between the time when a task should start
and the time when the task actually starts.

A real-time implementation of a closed-loop stimulation method known as Temporal Code-Driven Stimulation
(TCDS) [3] is presented here. This implementation uses the Real-Time eXperiment Interface (RTXI), an
updated, open-source, flexible, and fast hard real-time framework specifically designed for research in biology
and neuroscience widely used by many laboratories [4]. The TCDS protocol acquires a biological signal in real-
time with the required precision and binarizes it. The binary stream is used to stimulate the system after the
detection of a predetermined binary code. This real-time protocol is useful for studying how neural systems
encode, decode, and process temporal information, which is a complex task due to the high variability of
temporal coding schemes that can even be multiplexed. A performance analysis is carried out measuring latency
values to verify that the TCDS protocol complies with the temporal constraints for its correct operation. In
addition, a validation test of the protocol is performed using an electronic neuron mimicking a living entity.
The average latency obtained during this performance analysis is below the order of milliseconds and the
maximum latency obtained is below RTXI task period. Based on these results, we can conclude that the
implemented TCDS protocol using the RTXI tool fulfills the temporal requirements for the study of temporal
coding in a wide variety of neural systems. Finally, the validation test results showed that stimuli are emitted
after code detection in the electronic neuron with a coherent response to the stimulation. These results provide
evidence of a successful TCDS implementation.
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The striatum is the input structure to the basal ganglia and plays an important role in the selection of motivated
behaviors. Its dysfunction is involved in some neurological disorders. The processing of information from
upstream regions to the basal ganglia is believed to happen locally in the striatum circuitry. While this implies
that the striatal output is not simply a relay station, it is still unclear how this processing occurs and how the
flowing information is shaped by the striatal network components, and ultimately affects behavior. It is also
unclear how the presence of dopamine affects these patterns. In previous work, we proposed a framework for the
striatal projection cells microcircuit based on lateral inhibition among different functional units containing spiny
projection neurons from both the direct and indirect paths [1], and argued that the asymmetrical architectures
resulting from experimental findings on the synaptic connectivity are best suited to produce the behaviorally
correlated patterns where complementary “go” and “no go” cells are simultaneously active and switches
between different types of behaviorally correlated patterns.

In this project we use biophysically plausible modeling, computational simulations and experimental information
to systematically analyze the patterns that emerge in these lateral inhibition medium spiny neuron (MSN)
networks as the result of the interplay of the intrinsic properties of the participating neurons and the network
architecture. We use two qualitatively different types of MSN models, differing in their excitability properties,
connected with GABA, inhibition with experimentally determined weight relations. One was adapted from the
equations presented in [2] (type II) and the other combines information from the models previously used in [3,4]
(type I). The neuron models were systematically reduced to have two-dimensional subthreshold dynamics. We
implement realistic network architectures following [1] and investigate the emerging patterns. We analyze the
different ensembles the neurons can form, their dependence on the intrinsic cellular properties and the network
connectivity, and the effect of dopamine on these patterns. We determine the dependence of the asymmetrical
patterns on the heterogeneity of both the weights of the lateral inhibitory connections and the cellular properties.
We compare our results with other scenarios involving non-realistic architectures and non-realistic neuron
models (e.g., no active ionic currents) to further establish the roles of the model building blocks on the
emerging network patterns. Furthermore, we test the resonant properties of the networks and compare between
the two scenarios determined by the two model types.
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Resonance refers to the ability of dynamical systems to exhibit a peak in their amplitude response to oscillatory
inputs at a preferred (resonant) frequency. In neuronal circuits, resonance is typically measured by using the
impedance amplitude profile Z defined as the absolute value of the quotient of the Fourier transforms of the
output and the input. Resonance has been investigated in single neurons by many authors both experimentally
and theoretically [1,2]. Network resonance has received much less attention. Two important questions are (i)
whether and under what conditions a network of neurons exhibits resonance in one or more neurons in response
to inputs to one or more neurons, and (ii) whether and under what conditions the information is communicated
between neurons in a frequency-dependent manner.

In this project we address these issues by using a minimal network consisting of two passive cells (linear, non-
resonant neurons) recurrently connected via graded synaptic inhibition or excitation and receiving oscillatory
inputs in either one or the two nodes [3]. In order to investigate how network resonance emerges we extend the
concept of impedance to nonlinear systems by computing the peak-to-trough amplitudes normalized by the input
amplitude. In order to investigate the communication of frequency-dependent information across neurons in the
network we borrow the concept of the coupling coefficient from the gap junction literature. The coupling
coefficient K, defined as the quotient between the postsynaptic and presynaptic membrane potentials of two
electrically coupled neurons, is used to measure the strength of the connection in the presence of constant (DC)
inputs. Here we extend this metrics to synaptically connected neurons and to the frequency domain. Linear
networks (linear neurons and linear connectivity) can only show a low-pass filter K profile (K as a function of
the input frequency). We show that the presence of the more realistic nonlinear synaptic connectivity can
produce band-pass K profiles. We note that the concept of communication of information we use here is
different than the standard one used in information theory.
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Neuronal synaptic inputs are processed in a frequency dependent manner, exhibiting either low-pass or band-
pass (resonance) response properties [1]. Resonance is believed to play a key role in the frequency-specific
information flow in neuronal networks. While the generation of resonance by ionic conductances is well
understood, less attention has been paid to the dependence of the resonant properties on the spatial structure of
the cell and its voltage-dependent characteristics. It is well established that the spatial structure has a key role in
supporting different and spatially segregated mechanisms of resonance. Previous works [2] investigated the
generation of resonance in CA 1-pyramidal neurons due the presence of different currents distributed along the
cell. The authors uncover two mechanisms: a somatic M-resonance at depolarized levels and a dendritic H-
resonance at hyperpolarized levels. However, the mechanisms by which the interplay of these two mechanisms
occurs are not well understood and it is not clear what interactions will ensure due to the presence of voltage
heterogeneities along the cell such as these expected to be present in realistic conditions due to inhibitory inputs
coming from PV+ (proximal) and OLM (distal) interneurons.

In this work we show how the mechanisms mentioned above interact at subthreshold level due significant
differences of voltage across the cell membrane and generate new filtering regimens and resonant profiles, thus
modifying the dendrosomatic integration and signal transmission across the neuron. For this, we build a simple
reconstruction of a biophysical neuron derived from standard multicompartment models. The model exhibits
great flexibility to support different voltage distributions and when the DC-terms are applied with a spatial
distribution mimicking the potential inhibitory input patterns, the difference between the somatic and distal
compartment resting voltage values could be sufficient to activate or inactivate different mechanisms
simultaneously. With a minimum amount of currents, this model can recreate the classic results about the
coexistence of different resonant mechanisms and also produce new scenarios with interaction between them.
Futher, we obtain the network impedance profile [3] and show that the spatial structure determines differences of
magnitude between somatic and dendritic responses. These differences are then amplified by ionic currents and
change for different H-channels distributions [4]. Finally, we study the implication this has for the signal-
attenuation profile, such as the appearance of phasonance and frequency bands with less attenuation.
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Neuronal oscillatory patterns can be characterized by a number of attributes such as frequency, amplitude, duty
cycle, characteristic transition times between silent and active phases, and number of spikes per burst. The values
of these attributes are determined by the interplay of the participating currents and, for the appropriate currents,
can be captured the maximal synaptic conductances. Experimental and theoretical work has shown that multiple
combinations of parameters can generate patterns with the same attributes [1-4]. This endows neurons and
networks with flexibility to adapt to changing environments and is substrate for homeostatic regulation [4]. At
the same time, it presents modelers with the phenomenon of unidentifiability in parameter estimation. Attribute
Level sets (LSs) in parameter space are curves (surfaces or hypersurfaces) joining parameter values for which a
given attribute is constant. Typically, but not always, LSs are attribute-dependent [2]. In previous work we have
characterized the dynamic compensatory mechanisms leading to the generation activity-attribute LSs in realistic
models for single neurons [2]. Whether and under what circumstances the attribute LSs for individual neurons
are conserved in the networks in which they are embedded and what additional network level sets emerge is not
well understood.

In this work we describe a canonical (C-) model for oscillations LSs for single cells exhibiting a wide range of
realistic neuronal oscillatory patterns. The model is canonical in the sense that all attributes share the same LS
(the oscillations are identical along LSs) and can be considered as an idealization of the familiar, conductance-
based two-dimensional models. A systematic symmetry breaking in the C-model leads to the familiar phase-
plane diagrams for neuronal oscillations and to the separation of LSs for different attributes. The LSs for
individual C-cells are preserved in networks of C-cells connected via gap junctions where all cells belong to the
same LS, but are not necessarily identical. In contrast, LSs are not preserved for excitatory or inhibitory
networks, except for certain connectivity patterns for which the model symmetries are maintained. However,
new level sets emerge in these networks. We characterize them in terms of the single cell LSs and the
connectivity parameters for both homogeneous and heterogeneous networks where individual cells are identical
or not, respectively, within the considered LS. We extend our results to include biophysically plausible
conductance-based network models.
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Our ability to switch and perform an action in response to some attended information is known as cognitive
flexibility. The prefrontal cortex (PFC) is responsible for selecting and flexible routing oscillatory information
(item) from the hippocampus (HPC) to the target areas [1]. These may receive commands from PFC to suppress
items in HPC (retrieval suppression). Recently, a PFC model [2] showed that multiple stored items could be
selected by making use of firing rate resonance (ff) and lateral inhibition. There is evidence PFC and HPC
transient coupling via oscillatory-synchrony is favored by the nucleus reuniens (Re) [1]. This raises the questions
of how these structures cooperatively operate and what are the dynamic mechanisms behind it.

We address these issues by developing a PFC-HPC model which extends [2]. It includes (i) simpler neurons,
which allows for a mechanistic understanding of flexible routing, (ii) an HPC network with local inhibition from
interneurons (IN) preferentially to closer principal cells (PC), and (iii) relative input/output activity ratios in PFC
[3]. The HPC network receives square-wavePoisson modulated spikes with different frequencies and keeps
multiple oscillatory activity. Third, it also contains external Re input which influences the cognitive selection
and memory suppression [3]. We consider 2D conductance-based neuron models [4] where 20 PC connect to all
5 IN in a single PFC gate. A second gate also connects to the same IN population. The HPC network contains
850 PC and 250 IN. Whichever PCs in the gate receives an input frequency from HPC closer to f will fire more
and engage with the IN population suppressing other cells from the network. PC and IN have different fr, thereby
engaging with IN is more important in order to suppress the other item. In accordance with [2], (ii) and (iii) are
the only necessary ingredients to observe this effect in the PFC.

Our results show that chosen inputs by PFC, given its proximity with the gate’s internal fi, can be switched by
the activity from Re which alters the periodicity of the selected item. In addition, Re input into PFC can awaken
an otherwise suppressed gate and engage with HPC reversing the direction flow. This shows the importance of
Re in routing oscillatory-synchrony HPC-PFC in both directions [3]. We also show the relevance of HPC local
inhibition to maintain many stored items in the same network. There is more flexibility if Re area controls HPC-
PFC since it creates competition between PFC resonant networks in cognitive selection and HPC memory
storage through activation of local inhibition.

Acknowledgments
This work was supported by the National Science Foundation grant DMS-1608077 (HGR).

References

1. Eichenbaum H. Prefrontal-hippocampal interactions in episodic memory. Nature Reviews Neuroscience. 2017
Sep;18(9):547-58.

2. Sherfey J, Ardid S, Miller EK, Hasselmo ME, Kopell NJ. Prefrontal oscillations modulate the propagation of
neuronal activity required for working memory. Neurobiology of learning and memory. 2020 Sep 1;173:107228.
3. Dolleman-van der Weel MJ, Griffin AL, Ito HT, Shapiro ML, Witter MP, Vertes RP, Allen TA. The nucleus
reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling
memory and behavior. Learning & Memory. 2019 Jul 1;26(7):191-205.

4. Rotstein HG. The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic
resonance/amplification, nonlinearities and time scales. Journal of computational neuroscience. 2017 Apr
1;42(2):133-66.






Revealing the link between spiking cross-correlation patterns and the
underlying subthreshold neuronal dynamics

Rodrigo Pena', Horacio Rotstein™

"New Jersey Institute of Technology, Federated Department of Biological Sciences, Newark, NJ, United States
of America

2New Jersey Institute of Technology, Federated Department of Biological Sciences, NJIT / Rutgers University,
Newark, NJ, United States of America

*Email: horacio@njit.edu

A sharp peak near zero in cross-correlation functions (CCFs) indicates the presence of a putative monosynaptic
connection between the pre- and post-synaptic neurons [1,2]. However, CCFs are complex and contain
significantly more information about the spiking pattern relationships [2]. Some of this information is apparent
from the spiking patterns themselves, but spiking patterns are controlled by the neuronal subthreshold
(membrane potential) dynamics whose effects remain hidden in CCFs. Whether and how the subthreshold
dynamic information of post-synaptic neurons can be extracted from CCFs remains an open question. This is not
a straightforward task since in vivo neuronal interactions occur in the presence of background noise, oscillatory
network activity, and resonances which very often can give rise to similar spiking patterns as subthreshold
mechanisms making it difficult to disambiguate the source of the pattern.

We address this issue by combining biophysical modeling, numerical simulations, and dynamical systems tools
(phase-space analysis). By systematically focusing on a wide number of representative scenarios we identify the
presence of additional, lower peaks in the CCFs and link them to the type of nonlinearities and time scales that
operate at the neuronal subthreshold level. Under certain conditions, the combination of these dynamic
components which result from the neuron’s biophysical properties cause a subset of trajectories in the phase-
space diagrams to remain at subthreshold membrane potential levels for a longer time than others before
escaping the subthreshold regime and producing a spike. The variability of this spike-time delay is due to a
combination of noise and intrinsic dynamics. Similarly, our observations show that lower peaks also emerge in
the presence of background oscillations or ripples, but these come from a second wave of spikes and not from
subthreshold delayed spikes. We discuss the differences between these two types of peaks. Our results shed light
on the mechanisms underlying monosynaptic interactions and more general synaptic and background patterns.
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Auditory nerve fibers (ANFs) from the center to the edge of the cochlear spiral are tuned to progressively higher
frequencies. This results in the sound frequency being "place coded", which is an important property of the ANF
response. Several methods have been proposed and used in auditory models to encode the real-valued vibrations
of the basilar membrane into discrete ANF neural signals. However, it is not known to what extent these spike
encoding methods can encode the frequency of sounds. In this work, we investigate the amount of information
that these methods carry in their population response on the instantaneous frequency of a time-dependent sound
stimulus.

We first generate a simple stimulus that consists of random continuous frequency modulations in the range of
100 Hz to 10 kHz. We then extract a cochleagram representation from the stimulus, which is a rough
approximation of auditory nerve fiber discharge probabilities, using a Gammatone filter bank. We encode the
cochleagram into spikes with a population of neurons with a spike time resolution of 1 ms. We use four encoding
methods: ISC (Independent Spike Coding with an inhomogeneous Poisson process), SoD (Send-on-Delta, based
on the delta modulation sampling strategy) [1], BSA (Ben's Spiker Algorithm, based on stimulus estimation by
reverse convolution) [2], and LIF coding (by injecting the cochleagram as current to Leaky Integrate-and-Fire
neurons). To probe the place coding of frequency, we investigate how much information the instantaneous
neuronal population response in time carries on the time-dependent instantaneous frequency of the sound
stimulus, for each encoding method. To do so, we estimate the mutual information between these two variables.
In doing this, we take into account any latency due to the processing of the spike encoding methods by finding
the time delay between the two time series which maximizes the mutual information. We estimate this
information for a wide range of mean firing rates by varying the parameters of each method (Fig. 1). The
instantaneous frequency is quantized into 8 levels yielding a quasi-uniform distribution, and the total available
information is about 3 bit. To make sure our mutual information estimation is reliable, we use a stimulus long
enough such that the estimated error (shuffling bias) is less than 0.02 bit. We use the quadratic extrapolation
method to correct for bias in all mutual information measures [3].

We observe that the encoding methods peak in mutual information at different mean firing rates. The most
efficient method to place code frequency is Leaky Integrate-and-Fire coding, which captures about 80% of the
available information at a low firing rate of about 180 Hz (Fig. 1). This result is relevant for applications in
which sound stimuli have to be transformed into spike representations in a biologically plausible way, like in
computational modeling of the auditory system, in neuromorphic silicon cochleae (which are audio sensors that
output asynchronous spikes), and in biologically plausible spiking neural networks used in audio applications.
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Figure 1. The information that the population response encodes on the instantaneous frequency of the sound
stimulus. The y-axis is normalized by the total available information. The x-axis is the mean firing rate of the
response which depends on the parameters of the encoding methods. BSA is limited in firing rate by design. LIF
coding is the most efficient method.
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In Chapter 9 of his book, "Dynamical systems in neuroscience", Izhikevich describes the deterministic dynamics
of various types of neurons which emit a number of rapid spikes with quiet intervals between these bursts. In this
study we explore the stochastic pattern of bursts which results from including in the model the random noise
which plays a part in the behaviour of any active neuron. The inter-spike interval histogram, which uses long
simulation runs of the process and plots the number of occurrences of times between bursts as a function of time,
is an estimator of the probability distribution of times between bursts, and is a useful characteristic of such a
model. Here we extend an earlier study of the sample path behaviour of the stochastic Morris Lecar process to
the case of a Morris Lecar family of bursters.
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Synchronization in neural system plays important role in many brain functions such as perception and memory.
Abnormal synchronization can be observed in neurological disorders such as Parkinson’s disease, schizophrenia,
autism, and addiction. Neural synchronization is frequently intermittent even in a short time scale. That is, neural
systems exhibit intervals of synchronization followed by intervals of desynchronization. Thus, neural circuits
dynamics may show different distributions of duration of desynchronization even if the synchronization strength
is similar, and it was found that the patterning of neural synchrony (even if the overall synchrony strength is not
changed) may be correlated with behavior [1-3]. In general, some partially synchronized systems can exhibit a
few but long desynchronized intervals while other systems can yield many but short desynchronized intervals.
Experimental data thus far has shown that neural synchronization follows the latter trend in either healthy or
diseased brains [4,5]. In this study, we use a conductance-based PING network to study neural synchronization
specifically in the low gamma band. We explore the cellular and synaptic effects on the temporal patterning of
the partially synchronized model gamma rhythms and considers potential functional implications of different
temporal patterns. We found that changing synaptic strength does not only change the average synchronization
index but also alter the temporal patterning of synchronization (and these two do not necessarily co-vary in the
same way). Stronger synapses from inhibitory to excitatory neurons and from excitatory to inhibitory neurons
promote shorter desynchronizations, while stronger connections between inhibitory cells may have an opposite
effect. However, in almost all the cases, short desynchronizations were the most frequent, similar to the
experimental observations.
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We investigate optimal control strategies for a biophysical mean-field model of excitatory and inhibitory neural
populations [1]. Efficient stimulation can drive the model into specific activity patterns. We compute optimal
control strategies for this nonlinear dynamical system to understand how to efficiently apply external
perturbation to neural populations. This can give insights into the interaction of excitation and inhibition during
state changes in neural activity. Also, it can help understand how external stimulation should be designed to
optimally induce or stop specific activity patterns.

Our model is a mean-field approximation of the adaptive exponential integrate-and-fire model [1]. It consists of
an excitatory and an inhibitory node with feedback and feedforward couplings, which receive external input.
These external currents define the dynamical landscape of the system. There is a stable up state, a stable down
state, oscillations, and a bistable region. Studying optimal control strategies for a biologically plausible model of
neural dynamics might enable efficient perturbation strategies as opposed to ad-hoc stimulation protocols found
by trial and error. The concept of optimality requires to measure the cost of a control and the resulting neural
activity. The total cost is the sum of the precision cost (how much does the activity differ from a defined target?),
the sparsity cost (is control applied over extended periods of time and through one or both nodes?), and the
energy cost of the control [2]. The optimal control is the control that has minimum cost (fig. 1).

As a first exploration into the potential of such optimal control strategies, we investigate transitions from down
to up or from up to down state throughout the bistable regime, imposing constraints on either sparsity or energy.
We compute the optimal control for these state switching tasks with an iterative algorithm. In each step, it first
applies the adjoint method [3] to compute the control gradient, and second approaches the optimum control by
gradient descent. This is done numerically within neurolib, a simulation framework for neural modeling [4].
The optimal control at one particular point in the state space is shown in the figure. We analyze dimensionality
(does the control use both nodes, or one node?), amplitude, and cost of the bell-shaped control currents.
Enforcing energy efficiency leads exclusively to two-dimensional solutions (control is applied through both
nodes). Enforcing sparsity can lead to solutions where control is applied through either the excitatory or
inhibitory node, as well as to two-dimensional solutions. Which type is found depends on the location in the state
space. Control through excitatory and inhibitory currents is inherently different in a sense that firstly, inhibitory
control is sparser, and secondly, energy-efficient control operates primarily through the excitatory node.
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The functional role of the observed neural and behavioural variability in repetitions of the same task is a
fundamental question in neuroscience [1]. However, the relationship between trial-by-trial shared variability
(noise correlation) and behavioural performance is heterogeneous [2]. For instance, it has been proposed that
neuronal pairwise correlations might not always serve as a proxy for behavioural performance, since only the
variability along the encoding axis is detrimental to information transmission [3].

In this study, we investigate the complex relationship between predictability of optimal choices, correlations, and
stable states in rodent lateral orbitofrontal cortex (OFC) ensembles. The OFC has been associated with multiple
behaviourally relevant variables in the decision-making task space. However, unlike in other frontal areas, the
OFC signature of whether optimal choices are or are not predictable from previous trials outcomes is less
established [4]. We used a two-choice interval-discrimination task, designed such that the rewarded stimulus is
repeated in the upcoming trial after an incorrect choice, and thus it can be predicted. Methodologically, we
demonstrated the mapping between noise correlations of order 6, decoders operating in specific high-
dimensional Hilbert state-spaces, and stability of ensemble states associated with correct choices. This mapping
enabled us to explore the full space of all possible 6-order correlations, not directly accessible computationally,
leveraging Bayes-optimal kernel classifiers [5].

Results showed that only states associated with correct choices that can be predicted from the previous trial
outcome, are effectively decoded [5]; and showed higher positive noise correlations [2, 5]. Moreover, such states
behaved as attractors embedded in a high-dimensional state-space spanned by all possible constellations of up to
6=3 correlated units. However, both incorrect and unpredictable choice outcome states were unstable in the state
space, and non-decodable. This was due to strong negative correlations occurring before stimulus presentation.
These phenomena were significantly weaker for pairwise correlations and for other correlation orders.

Our results suggest that the successful processing of the task by IOFC ensembles could map to long-lasting
metastable states over trials. Such metastable states gain stability when the optimal choice is deterministic and
behaviourally relevant by attenuating triple-wise negative correlations; and destabilize otherwise [5].
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Slow oscillations are a pattern of synchronized activity commonly observed in the cerebral cortex, characterized
by the alternation of high (Up) and low activity states (Down).

The structure of local brain networks underlying such characteristic activity pattern is largely unknown.

In order to fill this gap, we study the evolution in time of network structure during synchronized (isofluorane
anesthesia) versus desynchronized activity patterns during the awake state.

We recorded the activity from head-fixed mice expressing gCamp6s calcium indicator in a window of 1mm side
on the temporal lobe that allowed monitoring the simultaneous activity of ~200 neurons. Calcium images were
preprocessed to identify neuronal cell bodies, extract the mean calcium fluorescence signal of each neuron and
reconstruct the spike train of each neuron [1].

We used Fano Factor of calcium spike times to measure network synchronization. We estimated the time
evolving network topology with a sliding window approach, where for each window we calculate the L1-
regularized precision matrix of fluorescence traces. As a result, we obtained a time sequence of functional
networks.

Our results are summarized as follows: During synchronized periods of Up and Down states, population events
(groups of spikes emitted by different neurons in a short time window) alternated with silent periods that are
characteristic of slow oscillations. Network synchronization as measured by the Fano Factor increases at the
beginning of a population event, then decreases and increases again at the end of the population event (Fig. 1).
Although electrophysiological recordings have suggested that the majority or all neurons in the network
contribute to Up states [2], our results revealed that during each population event only part of the observed
network synchronizes giving rise to a so-called chimera state (where synchrony and asynchrony coexist) [3]. As
previously reported [4], these Up-like states were represented by repeating neuronal ensembles. Interestingly, we
show that these ensembles present a non-trivial network structure characterized by the presence of a rich club of
highly connected hub neurons connected to peripheral (less connected) nodes, which produces negative
assortativity. During the awake state, the activity in the network was generally higher and less synchronized,
although some population events could still be identified. These Up-like events were less synchronous and their
structure more similar to that of a randomly connected network.
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The cerebral cortex exhibits a rich dynamic repertoire of activity ranging from highly synchronized to
desynchronized states. Each of these states, either physiological or pathologic, can be characterized by its
spatiotemporal complexity. An approach used in the clinic to quantify cortical complexity is the perturbational
complexity index (PCI), which quantifies the causal interactions that follow an exogenous perturbation of the
cortex [1]. It consists of estimating the Lempel-Ziv complexity of the spatiotemporal matrix of cortical activation
after perturbation. However, how do cellular, synaptic and network parameters modulate cortical spatiotemporal
complexity? In cortical processing there is co-occurrence of excitation and inhibition both during spontaneous
activity and in response to stimulation. To shed light on the role of inhibition in cortical complexity, here we
proposed a data-driven biophysically detailed two-dimensional computational model to investigate the relevance
of fast inhibition, GABA-A receptors-mediated, and slow inhibition, mediated by GABA-B-Rs.

Our model consists of pyramidal and inhibitory conductance-based neurons randomly distributed and
interconnected through biologically plausible synaptic dynamics within a local range [2]. The model is able to
reproduce spontaneous activity in the form of slow oscillations (SO, characterized by Up and Down dynamics)
as well as evoked activity by means of external perturbation. In our model, fast and slow inhibition modulated
Up and Down dynamics. During spontaneous activity, the progressive blockage of GABA-A resulted in a
shortening of Up states and elongation of Down states while the progressive blockage of GABA-B resulted in a
gradual elongation of Up and Down states. During evoked activity, the progressive reduction of GABA-A and
GABA-B resulted in a decrease in the PCI. We took advantage that the model allowed us to explore a larger
parameter space than the experiments did, and so we did a parametric variation of the inhibition levels. We
explored the effects of fast inhibition on PCI also by enhancing inhibition and found that there is a window of
excitatory/inhibitory balance in which complexity was maximal, but either enhancing or decreasing inhibition
diminished complexity. Indeed, we observed that during SO, a disinhibited network was fully integrated, while
weakly segregated, giving rise to activation waves that rapidly spanned the whole network. Conversely, in an
inhibited network, the spontaneous activity was highly segregated and weakly integrated, and the activation
waves propagated more locally and did not span over the whole network. Nonetheless, where there was a
balance between integration and segregation, the activation waves spanned over the whole network recruiting
their nearest neighbors. Our findings suggest that there is a close link between integration and segregation with
E/I balance and that higher/lower PCI values are not the consequence of merely increasing/decreasing
excitability.
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Spatiotemporal patterns of neural activity, often called brainwaves, have been established as common
expressions of the collective dynamical behaviour of neurons over mesoscopic [1-4] and macroscopic [5-8]
spatial scales. Recently, it has been shown that macroscopic wave patterns can be simulated in whole-brain
oscillator networks derived from human MRI tractography, when oscillator dynamics reflect the mean activity in
a cortically localised neural aggregate with a high degree of biophysical fidelity and nearby regions exert strong
influences on each other’s dynamics [9]. However, until now, it remained unknown whether whole-brain waves
also emerge with realistic, tractography-based time delays, though distance-dependent delays are well known to
contribute to the formation of spatial patterns [10]. We simulate whole-brain waves with delays empirically
derived from human MRI tractography, and develop a classification system for the array of resulting dynamics.
We utilise a dual approach to characterising patterns in 3-dimensional space. Firstly, we follow previous research
in calculating 3D flow-fields [9], making use of the neural-flows toolbox (https://github.com/brain-modelling-
group/neural-flows). The resulting flow patterns are described as sinks, sources, travelling waves, rotating
waves, diverging waves, or complex waves. Secondly, we assess the local phase coherence [11,12] of patterns by
use of a time- and node-averaged Kuramoto local order parameter, and describe dynamics as synchronised,
coherent, partially coherent, or incoherent. Simulations exhibiting a variety of dynamical behaviours are
obtained by varying global coupling strength, global conduction speed, and time delay spatial structure. We
classify each simulation into one of 6 classes, constructed by observation of common pairings of a particular
flow pattern and coherence description.

We find that wave patterns emerge most strongly (i.e., with a high degree of local phase coherence) when global
coupling strength and global conduction speed are high. We also find that while wave patterns with a high
degree of coherence can occur even when time delays have been completely restructured, the empirical delay
structure preferentially supports a stable coherent rotating wave when global coupling strength and conduction
speed are sufficiently high. Other delay structures tend to either obliterate large-scale patterns (i.e., have very
low local phase coherence) or support coherent activity with a variety of flow patterns other than the stable
rotating wave (Fig. 1).
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Long-term potentiation (LTP) and long-term depression (LTD), the ability of a synapse to enhance or weaken its
strength, is believed to be a biological basis of learning and memory. Hippocampal synaptic plasticity is
modulated by the alterations in neuronal intrinsic excitability. Intrinsic excitability and synaptic plasticity are
affected in Alzheimer’s disease (AD), a neurodegenerative disorder, characterized by progressive memory loss
and cognitive dysfunction. In the early stage of AD, hippocampal learning impairment is observed due to the
accumulation of amyloid precursor protein (APP) metabolite APP intracellular fragment (AICD) that modifies
intrinsic excitability of hippocampal CA1 pyramidal neuron and disrupts synaptic plasticity [1].

In this study, we investigated the effect of altered intrinsic excitability on synaptic plasticity in a hippocampal
CA1 pyramidal cell affected by AD using a computational modeling approach. We used a detailed
compartmental model of a hippocampal CA1 pyramidal neuron [2] and included the influence of AICD by
altering the small-conductance calcium-activated potassium channels (SK), L-type calcium channels, and
contribution of the GluN2B-containing NMDA receptor (NMDAr). A modified NMDAr dependent voltage-
based synaptic plasticity model [3] was used to analyse synaptic plasticity changes at clustered Schaffer
collateral synapses. Each cluster contained 50 synapses distributed along the dendritic branches with densities in
arange of 0.05 to 1.0 synapse/um. The synapses were stimulated with 1 Hz for 900 s to induce LTD and 2 bursts
of 100 Hz for 1 s, separated by 2 s window for LTP [1]. The results show that altered neuronal intrinsic
excitability due to the increased AICD production disrupts LTP leaving LTD intact. Elevated AICD levels
enhance NMDAr expression and lead to SK channel overactivation, thus reducing neuron sensitivity to the
incoming presynaptic inputs for high frequency LTP induction protocol. Contrary, neuron adequately responds
to low frequency stimulation and maintains LTD. Partial blockade of NMDA- restores normal SK channel
function and rescues LTP. These findings provide insights into the pathological dynamical effects of AICD on
NMDAr, SK channel properties, the resulting neuronal intrinsic excitability and impaired synaptic plasticity.
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Pyramidal neurons commonly fire with short bursts of high frequency. [1] used a computational model of
pyramidal neurons to understand if particular spatial and temporal features in neuronal inputs trigger these
bursts, which would suggest that these firing patterns represent special neuronal coding. Their two-
compartmental model fired bursts most often at the positive slopes of both sinusoidal and naturalistic inputs.

Here, we simplify their model, with the view of a more efficient simulation and implementation on
neuromorphic hardware. We do this by investigating whether the same behaviours from their model can be seen
in a network of intrinsically bursting (IB) Izhikevich neurons [2]. We create a comparably similar input signal of
Gaussian white noise (sampling rate fs = 400Hz, u = 0.003, and ¢ = 0.005) and use a 20Hz Butterworth low-pass
filter. It was first injected as input current directly into an excitatory IB Izhikevich neuron. The input current was
then inverted and injected into the same neuron to obtain the inhibitory response, investigating whether the
neuron has the bidirectional slope detection demonstrated in the Kepecs model [1].

The results show that the neuron fires most often at the positive slopes and also demonstrates bidirectional slope
detection (Fig. 1 shows an example of this behaviour), specifically for the low-pass filter cut-off frequency fc >
20Hz. Therefore, the IB Izhikevich neuron can indeed display similar behaviours in comparison to theKepecs

model [1].
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Our ability to sense, think, and react emerges from neural interactions at all scales, thus methods investigating
such causal relationship is essential to the study of brain functions. A rich repertoire of statistical methods has
been introduced to the field. Still, it remains difficult to efficiently and correctly estimate the network
connection, especially the connection direction [1]. Our previous work empirically evaluated differential
covariance (dCov) [2], calculated as the covariance between the derivative signal and the original signal, and
then demonstrated its superior performance in detecting network connections. In this paper, we explored the
intrinsic link of dCov to dynamical systems and modified it for dynamical differential covariance (DDC). After
formulating system equations of multi-scale neural dynamics, DDC was derived analytically and validated in
both simulations and real datasets. In networks with common false positive motifs governed by various
dynamics, DDC could correctly estimate both the existence and direction of ground truth connections with low
bias and variance. In addition, DDC retrieved ground truth connections with high sensitivity in both microscopic
and macroscopic neural dynamic simulations. Furthermore, using the Human Connectome Project (HCP) resting
state fMRI (rs-fMRI) recordings, DDC consistently picked up regional interactions with stronger structural
connectivity, measured by diffusion MRI (AMRI) [3], at the individual level. Compared to the empirical dCov,
DDC has higher noise tolerance and higher sensitivity. Moreover, it has the potential to adapt to different
interacting dynamics and recording techniques.

References

1. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, et al. Network modelling methods for
FMRI. Neuroimage. 2011 Jan 15;54(2):875-91.

2. Lin TW, Chen Y, Bukhari Q, Krishnan GP, Bazhenov M, et al. Differential covariance: A new method to
estimate functional connectivity in fMRI. Neural Computation. 2020 Dec 1;32(12):2389-421.

3. Rosen BQ, Halgren E. A whole-cortex probabilistic diffusion tractography connectome. Eneuro. 2021
Jan;8(1).



Odor-evoked increases in olfactory bulb mitral cell spiking variability

Cheng Ly"!, Andrea Barreiro?, Shree Hari Gautam®, Woodrow Shew?

'Virginia Commonwealth University, Statistical Sciences and Operations Research, Richmond, VA, United
States of America

2Southern Methodist University, Mathematics, Dallas, TX, United States of America

SUniversity of Arkansas, Physics, Fayetteville, AR, United States of America

*Email: cly@vcu.edu

At the onset of sensory stimulation, the variability and co-variability of spiking activity is widely reported to
decrease, especially in cortex. Considering the potential benefits of such decreased variability for coding, it has
been suggested that this could be a general principle governing all sensory systems. Here we show that this is not
so. We recorded mitral cells in olfactory bulb (OB) of anesthetized rats and found increased variability and co-
variability of spiking at the onset of odor stimulation. Using models and analysis, we predicted that these
increases arise due to network interactions within OB, without increasing variability of input from the nose. We
tested and confirmed this prediction using optogenetic stimulation of OB in awake animals. Our results establish
increases in spiking variability at stimulus onset as a viable alternative coding strategy to the more commonly
observed decreases in variability in many cortical systems.

Simultaneous microelectrode array recordings were made from the OB and anterior piriform cortex (aPC), with
and without an odor stimulus (1120 cells, 17674 pairs, 10 trials). An odor (Ethyl Butyrate) was presented for 1
second, from which we computed the population firing rate (i.e., the PSTH), spike count variance, and spike
count covariance in 100 ms overlapping time windows (Fig. 1A). In contrast to recordings in cortex, measures of
variability and covariability in OB increased when the stimulus was presented (Fig. 1A).

In order to explain this, we studied a minimal microcircuit of 7 cells with 2 representative glomeruli (Fig. 1B)
each with a Periglomerular and Mitral cell. Three granule cells provided inhibition; two independent to each
glomerulus, and a third common to both glomeruli. Each cell was described by a firing rate model in the form of
a stochastic differential equation. The transfer functions, synaptic variables, and time-scales are all derived from
a detailed biophysical model [1] for each cell type. To identify the circuit mechanisms consistent with our
experimental data, we considered both: i) the dynamics of plausible olfactory receptor neuron input noise
(presynaptic to OB) that capture our data, ii) whether the OB synaptic strengths were a factor, focusing on those
known to modulate mitral cell activity [2,3]: independent granule cell inhibition of mitral cells (WMG), shared
granule cell inhibition (wGc), and mitral cell excitation of granule cells (WGM). We calculated model PSTH for
10,000 points that fill the 3D volume of parameter space (Halton sampling) and retained those which matched
the experiments within a certain tolerance.

We found that granule inhibition to distinct MCs must be relatively strong, while shared GC inhibition among
MC must be weak (Fig. 1C). Qualitatively matching our experimental data is not automatically ensured but
requires specific combinations of co-tuned parameters (Fig. 1E). Importantly, we also found that total error
between model and data are minimized when the ORN input noise is relatively small and fixed (Fig. 1D). Thus,
we predict that evoked increases in OB variability does not require increases in ORN input noise. In awake mice
with direct optogenetic OB stimulation (Fig. 1F) that circumvents the ORN pathway [4], we indeed verify our
prediction.
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Figure 1. A Recordings in anesthetized rats show evoked increases in variability (variance and covariance too,
not shown), 1120 cells, 17674 pairs, averaged over 10 trials; gray regions represent population heterogeneity. B
Two glomeruli model focusing on individual (wMG) and shared (wGc) inhibition, and excitation (wGM). C
wMG > wGM > wGc captures data best. D Small, fixed ORN input noise (black) captures data best. E Capturing
firing rate data with model. F Direct optogenetic stimulation of OB in awake mice [4] gives evoked increases in
spike variability, verifying our prediction that input from nose does not need to increase for evoked increases in
OB spike variability.
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Our brain works with a complex network of hundreds of millions of components, cells. With recent advances in
measurement technology, the measurable size of data on brain connectivity is becoming larger. Therefore, more
efficient compression methods are becoming more important. This study utilized a Deep Neural Embedding
(DAE) technique to compress ~1000 neuronal functional connectivity [1] into small data as the form that can be
fully recovered. We then analyzed what features of the brain were captured by the compressed data, comparing it
to several network variables and principal components (PC). We also compared performance of DAE with that
of Principal Component Analysis (PCA), a commonly used linear dimensional compression method.

We could expect that DAE extracts features within the range of human explanations and may also extract
features that are beyond the range of human explanation. Therefore, we not only tried to interpret the extracted
features by widely comparing them with representative network-metrics, and but also designed a new metric,
which is not commonly used for network analyses to complement the difficult features to simply interpret. This
compression scheme will help us to effectively extract rules of various complex connectivity architectures.
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Figure 1. The network pattern shows a functional neuronal connectivity pattern. Here, the marker sizes show
Degree in panel (a), Betweenness Centrality in panel (b), and a new metric in panel (c).
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In Parkinson's disease (PD), the relationship between cortical thinning and various physical and mental
symptoms is not fully understood. Here, we attempted to predict PD symptoms from cortical thinning patterns in
PD patients. We evaluated the motor and non-motor symptoms of 181 PD patients treated at Kyoto University
Hospital using neurological tests, neuropsychological tests, and questionnaires. In addition, head MRI was also
recorded, and T1-weighted images (MPRAGE) were obtained. Then, we determined cortical thickness for T1-
weighted images using FreeSurfer (ver. 6) by dividing cortex into 180 unilateral regions (360 bilateral regions)
based on the HCP-MMP1 atlas.

From the dataset, first, we drew a dendrogram based on the Spearman correlations (Fig. 1), which evaluates the
similarity of individual differences in behavioral performance among tasks, and we were able to naturally
classify clinical tasks close to known domains. Second, we predicted the clinical-task performances based on
combinations of cortical thickness in all cortical regions using a a machine learning algorithm. Because we found
age severely affected to individual difference of many tasks performances, we will report the prediction result
after correcting the effect of age in the main conference.
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Figure 1. Dendrogram of behavioral tasks based on Spearman correlations, which reflect individual differences
in scores of tasks. The dendrogram is colored just to identify branches of subgroups easily. Odd- and even-

numbered tasks are listed on the left and right respectively. Here, we used omitted names of tasks and
subcategories to express individual tasks.
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Hypothalamic neurons that synthesize the neuropeptide melanin-concentrating hormone (MCH) are active
during waking and REM sleep. We used deep-brain calcium fluorescence imaging to identify individual
hypothalamic neurons that contain MCH. Previous in-vivo electrophysiological studies established a linear
relationship between neural depolarization and calcium fluorescence in MCH neurons. Spatial and temporal
correlation maps of the change in fluorescence between pairs of MCH neurons revealed local coupling among
neurons and the changes in connectivities that take place at the transition between REM sleep and exploratory
behavior [1]. In this study, we investigated the causal relationship among different MCH neurons and modeled
the local network using a Generalized Linear Model (GLM) and Transfer Entropy (TE). GLM is a generalization
of linear regression [2] and TE is a measurement of directed information flow. The calcium fluorescence z-
scores were fed into the MLSpike package to extract spike trains from calcium fluorescence. MLSpike maps the
continuous z-score values to a discrete point process. We used normal distribution for calcium fluorescence and
tested Poisson and Gaussian distributions for the spike trains. In each of these cases, GLMs and TE models were
utilized for each neuron, determining each neuron's effect on every other neuron. This approach differs from
correlation measures of neural activity in that it is directional. Using GLMs and TE, we were able to
approximate the directional (causal) couplings among neurons, i.¢., the neural network's functional structure.
Comparisons between actual test data (red) and GLM predictions (blue) reveal strong model performance (Fig.
1). Correlation was used to measure the similarity between predicted and actual z-scores. While the weighted
connections estimated by GLM (not shown) are nearly mirrored across the diagonal, as it becomes more difficult
to determine directionality with only one experimental variable. Additionally, there are a large number of
extreme coefficients, with both strong excitatory and inhibitory connections.

In contrast, GLMs coefficients were more targeted, due to the multivariate approach (Fig. 1). Only a few weights
fell outside of one standard deviation, with the set following a normal distribution (not shown). This
determination was reinforced by a kstest. Still, this was sufficient for predicting the test dataset. Additionally, the
coefficients are less reflexive than with linear regression models, such that neuron 1's effect on neuron 2 is not
identical to neuron 2's effect on neuron 1.
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In order to understand the complex cognitive functions of the human brain, it is essential to study the structural
macro-connectome, i.e., the wiring of different brain regions to each other through axonal pathways, that has
been revealed by imaging techniques. However, the high degree of plasticity and cross-population variability in
human brains makes it difficult to relate structure to function, motivating a search for invariant patterns in the
connectivity. At the same time, variability within a population can provide information about the generative
mechanisms. In this paper we analyze the connection topology and link-weight distribution of human structural
connectomes obtained from a database comprising 196 subjects. By demonstrating a correspondence between
the occurrence frequency of individual links and their average weight across the population, we show that the
process by which the human brain is wired is not independent of the process by which the link weights of the
connectome are determined. Furthermore, using the specific distribution of the weights associated with each link
over the entire population, we show that a single parameter that is specific to a link can account for its frequency
of occurrence, as well as the variation in its weight across different subjects. This parameter provides a basis for
“rescaling” the link weights in each connectome, allowing us to obtain a generic network representative of the
human brain, distinct from a simple average over the connectomes. We obtain the functional connectomes by
implementing a neural mass model on each of the vertices of the corresponding structural connectomes. By
comparing these with the empirical functional brain networks, we demonstrate that the rescaling procedure
yields a closer structure-function correspondence. Finally, we show that the representative network can be
decomposed into a basal component that is stable across the population and a highly variable superstructure (Fig.

1).
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Figure 1. The representative structural connectivity of the human brain can be resolved into two components:
the “basal” network (left) and the “superstructure” network (right). The former comprises 1106 ubiquitous links,
i.e., those that occur in every individual, and the latter consists of the remaining 2806 links. Thickness of each
link corresponds to their average weights acros the population.
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Synapses are complicated pieces of biochemical machinery that are necessary for various cognitive functions [1],
and their dynamics have long been modelled computationally using ordinary differential equations (ODEs).
Recent proteomic studies have shown that synapses contain on the order of a thousand unique protein species
[2]. However, to date, models of biochemical activity within a synapse contain at most 55 unique protein species
[3]. This disparity in the number of biochemical species between real and model synapses can be attributed to a
dearth of knowledge that is needed to construct a structurally faithful and a fully parameterised dynamical ODE
model of a synapse.

Since there is currently not enough data on the synaptic biochemical reaction structure and rates to construct a
fully parameterised model, alternative approaches are necessary in order to have a model that incorporates more
of the known synaptic physiology. Specifically, any new approach would have to be agnostic to the full
structure and parameterisation of the biochemical system. We present a hybrid modelling framework where well
parameterised parts of the biochemical network are modeled using ODEs, and parts of the network that are not
well parameterised are modeled using a recurrent neural network (RNN) [4]. The RNN can learn dynamics that
are consistent with a minimal set of assumptions and physiological data without relying on the precise
knowledge of reaction structure and rates. Thus, we can link an existing ODE model to a learnable RNN model
that represents parts of the system lacking data via a minimal set of assumptions. The state vector in our model
consists of three parts: real biochemical species from the ODEs (e.g., calcium, calmodulin, etc.), RNN hidden
states and bridge species connecting the two. The result is a machine learning model that is partly interpretable,
can learn from data in order to reproduce observable dynamics and does not require prohibitively restrictive
amounts of data on reaction structures and rates. We present a working toy example in order to illustrate our
approach.

Most other models of synaptic activity are constructed in order to investigate a single or at best a handful of
phenomena. Because existing models include only a small part of the full synaptic biochemical network [3], it is
unclear how they would perform in reproducing a broader range of synaptic dynamics. While our work is still in
its early stages, we believe that our semi-black box RNN model could ultimately produce a dynamical model
that is rich enough to reproduce a much larger set of observations of synaptic dynamics. In addition, we believe
that such a model will serve as an invaluable tool for future experimental research via its usage inprobabilistic
experimental design techniques.
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The cerebellum plays key roles in motor learning, temporal information processing and cognition. It has been
suggested that the cerebellar granule cells (GrCs), the most numerous neurons in the brain, convert mossy fibre
(MF) input patterns into sparser signals, which could maximise the storage capacity of the synapses onto the
Purkinje cells (PCs). However, the postulated sparse coding scheme is still under discussion due to conflicting
experimental findings. A clustered activation of MFs has been found in vivo, but the computational advantages
of this clustering also remain unclear. Furthermore, GrC axons have two distinct parts, ascending axons (AAs)
and parallel fibres (PFs). Experimental studies indicate that AAs excite PCs more strongly but AA synapses onto
PCs are less plastic than PF synapses.

The goal of the present study was to examine how PCs can recognise spatial patterns in the input. In a previous
study the input was applied directly to PFs [1]. Here we extended the previous model with a detailed granular
layer model [2] to apply input to MFs. The extended network model measured 4.00 mm x 0.40 mm x 0.51 mm
along the transversal, sagittal, and vertical axes, respectively, and contained 491,520 GrCs, 1,228 Golgi cells
(GoCs), 1 PC, and 16,158 MFs forming 137,793 glomeruli. Based on different distributions of PC spines for PFs
and AAs, the PC received input through 110,777 PF synapses (77.08%) and 32,933 AA synapses (22.92%). We
also introduced 1,695 stellate cells as inhibitory Poisson generators spiking at 3.5 Hz. The spontaneous firing
rate was 5 Hz for MFs, which evoked spontaneous spikes at a rate of 1.00 £ 0.12 Hz for GrCs, 7.6 + 2.4 Hz for
GoCs and 67 + 32 for PCs.

In particular, we wanted to explore the effect of the spatial extension, position and sparsity of the MF input [3],
and in the next stage, the projection patterns from the GrCs to the PCs [4]. We found that fewer GrCs were
activated with clustered MF than when the same number of MFs were excited in a distributed fashion. As sparse
coding is beneficial for pattern recognition, this result predicts that clustered MF input would improve the
storage capacity of the cerebellar cortex. In these preliminary simulations, we also found large effects of the
location of the excited MF patch. When we stimulated MFs beneath the PC, the PC showed stronger firing rates
or depolarisation block depending on the intensity of stimuli. Owing to the randomness of positions of cells and
connectivity, there were large variations of the strength of the PC response depending on the precise location of
the stimulus. Likewise, we found a large variability in the difference between the PC responses to learnt and
novel pattern stimuli. We are currently investigating the effect of this variability on the reliability of pattern
recognition.
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The neural circuits that control movements can be dynamically reconfigured to support a wide range of
behaviours. This flexibility is supported by the modular organization of these circuits into Central Pattern
Generators (CPGs). The CPGs that generate swimming in fish and tadpoles form a chain of synaptically coupled
oscillators along the spinal cord. For a tadpole to swim forward, the oscillators along the chain have to be phase
locked, with oscillations propagating from head to tail. Tadpole can also struggle — a stronger movement with
oscillations propagating from tail to head. There is no clear mechanism to explain why the direction of
propagation is reversed during struggling. Current hypotheses consider that the relative frequencies of the
oscillators along the chain, or the ratio between descending and ascending excitatory coupling between
oscillators, determine the direction of propagation.

Here we demonstrate that the duration of the synaptic pulses coupling the oscillators also determines the
direction of propagation. In a chain of identical oscillators with unidirectional coupling, long synaptic pulses
support propagation in the direction of the coupling, while short synaptic pulses support propagation in the
opposite direction (Fig. 1).

To understand why this is happening, we consider two identical Morris-Lecar oscillators, with a unidirectional
synaptic connection, and analyse the phase difference between the postsynaptic and the presynaptic oscillators.
At the relaxation limit, and for an infinitely short synaptic pulse duration, the postsynaptic oscillator is phase-
advanced, by its entire active phase. This is because during the active phase, a short excitatory pulse phase-
advances the postsynaptic oscillator, while during the silent phase a short pulse delays the oscillator. The stable
point where the pulse neither delays nor advance the oscillator is at the jump from active to silent phase.

When pulse duration is increased, the pulse may delay the oscillator during the active phase, if it spans a
significant amount of time close to the jump from active to silent phase. If it is received close to this jump, the
pulse will delay the jump. This reduces the phase advance of the postsynaptic oscillator, and for large enough
pulse duration the postsynaptic oscillator may even be phase-delayed.

This transition from advance to delay of the postsynaptic oscillator, as synaptic pulse duration is increased, is
robust. We observe it far from the relaxation limit, and for other oscillator models, such as the Hodgkin Huxley
model. It does not rely on the excitability type of the oscillators. The phase difference between the oscillators is
controlled by the duration of the synaptic pulse, relative to the duration of the active phase of the oscillation.

These results extend from a pair to a chain of coupled oscillators as shown Figure 1. This highlights a new
hypothesis for the change in the direction of propagation between forward swimming and backward struggling.
During struggling, oscillations are slower so the synapses become depressed, shortening the relative duration of
the synaptic coupling between oscillators. This shortening of the relative synaptic coupling duration could
reverse the direction of propagation during struggling.
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Figure 1. Activity propagation along a chain of Morris-Lecar oscillators. A Tadpole body and chain of 20
oscillators with one-way excitatory synaptic coupling, to model wave propagation along the tadpole spinal cord.
B “Tail-to-head” propagation for short synaptic pulse duration. C “Head-to-tail” propagation for large synaptic
pulse duration.
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Astrocytes are a major cell type in the mammalian brain that produce large cytosolic calcium signals that are
thought to mediate astrocytes’ critical functions in the brain. These calcium transients are often initiated by the
binding of neurotransmitters (e.g., glutamate and ATP) to G-protein-coupled receptors (GPCRs) on the surface
of astrocytes. In this work, we extend an earlier detailed model of the astrocyte calcium response [1,2] to include
biochemical reaction cascades from the GPCR activation to the calcium signal. Importantly, we build in putative
positive and negative feedback loops from the cytosolic calcium to the signaling molecule inositol 1,4,5-
triphosphate (IP3), as well as two types of desensitization proposed for GPCRs (see Fig. 1 for a schematic of our
model). We use dynamical systems analysis and numerical simulations of the model to test a number of
experimentally-derived hypotheses about the astrocyte responses, and offer new testable predictions to further
our understanding of this system.

Namely, we make the following observations and predictions. We start by providing computational evidence for
two types of GPCR desensitization. Homologous desensitization affects only activated receptors, while the
slower heterologous desensitization depends on a downstream intermediary molecule and affects all GPCRs. We
propose experiments that would distinguish whether one or the other or both types of desensitization are at play
in a particular experimental preparation. Then, we suggest that the experimentally-observed reduction in calcium
level (or a reduction in amplitude of the continued calcium spike oscillations) in response to a sustained stimulus
may be more dependent on GPCR desensitization than on depletion of calcium levels in the endoplasmic
reticulum of the cell. Next, we show that astrocyte spontaneous calcium activity contributes to the variability of
calcium responses to a brief agonist pulse. Finally, we demonstrate that potential positive and negative feedback
loops from calcium onto IP3 production play crucial roles in determining the response delay and the distribution
of the calcium response types. Thus, we predict that the presence and the relative prominence of these feedback
loops can be assessed based on experimentally recorded calcium responses to specific experimental
perturbations. Overall, our results improve our understanding of astrocyte physiology, and provide specific
predictions for future experiments.
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Working memory training (WMT) has been used to improve attention and cognitive functions. Neuroimaging
studies have shown its effects on brain function and structures in cognitive control, salience, and default
networks [1]. However, WMT-induced neurochemical changes are sparsely investigated and how brief WMT
could change brain metabolism in these networks remains unexplored. Utilizing a non-invasive 3T proton
magnetic resonance spectroscopy (1H-MRS), we conducted the first pilot study investigating whether brief
WMT could change the excitatory and inhibitory responses of neurotransmitters within the key nodes of these
networks — dorsal lateral prefrontal cortex (dIPFC), anterior cingulate cortex (ACC) and posterior cingulate
cortex (PCC), regions highly relevant for WMT [1,2]. Ten healthy college students completed ten 1-hour online
WMT sessions within two weeks and brain metabolisms were assessed before and after WMT. Following survey
imaging and T1-weighted structural imaging, single-voxel point-resolved spectroscopy (PRESS) was conducted
for estimating the metabolite concentrations in left dIPFC, dorsal ACC and PCC [1,3]. PRESS scan parameters
included TR 2s, TE 90 ms, sweep width 2.5 kHz, 1024 sampling points, and 256 signal averages. Water
suppression and BO shimming up to second order were performed with the vendor-supplied

tools. Reference water signal was acquired for eddy current compensation, multi-channel combination, and
metabolite quantification. Spectral fitting was performed with LCModel software [4], using in-house basis
spectra of 18 metabolites which were calculated incorporating the PRESS slice selective RF and gradient pulses.
The spectral fitting was performed between 0.5-4.0 ppm. After correcting the LCModel estimates of metabolite
signals for the T2 relaxation effects, the millimolar concentrations of metabolites were calculated with reference
to water at 42 M [5]. Results indicated a significant increase in myo-inositol (p=0.017) in left dIPFC and choline
metabolism in both dorsal ACC (p=0.007) and PCC (p=0.021) after WMT. Our results suggest that brief WMT
can change glia-related metabolites such as myo-inositol and choline in key hubs of cognitive control, salience,
and default networks. However, this warrants further investigations in large sample size.
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Efficiency subcomponent in Kirton Adaption-Innovation Inventory (KAI) [1] is closely linked to
conscientiousness in Big-Five personality traits [2]. Conscientiousness can predict a better sleep continuity and
subjective sleep quality [3]. Neurologically, conscientiousness is associated with the functional connection of
dorsal anterior cingulate cortex (dACC) and insula, two main components of Salience Network (SN) [4].
However, an over-activated SN was frequently observed in previous insomnia research [e.g., 5]. Therefore, the
relationships between sleep quality, efficiency, and SN require further clarification. The resting-state
electroencephalogram (RS-EEG) microstates can be divided into four classical types, with type 3 (MS3)
localized to operculo-cingulate cortex, including ACC and anterior insula [6]. Utilizing EEG microstate analysis,
the current study aims to elucidate the link between trait efficiency and sleep quality as well as the underlying
neural mechanism. We hypothesize that sleep quality moderates the association between Efficiency and the RS-
EEG microstates. Sixty-one Chinese college students (22 females, 20.84 + 1.53 years old) participate in this
study. Their adaption-innovation and sleep quality (e.g., sleep latency) were measured by KAI and Pittsburgh
sleep quality index [7]. EEG microstate analysis was conducted on their resting-state EEG datasets. We applied
the PROCESS macro (model 1, sample size 5000, in 95% confidence interval) to examine the moderating effect,
in which Efficiency is chosen as the independent variable, MS3 as the dependent variable, Sleep Latency as the
regulatory variable. We found a significant effect of Efficiency on MS3 (b = 0.29, p < 0.05), which is moderated
by Sleep Latency (b = 0.25, p < 0.05, see Fig. 1). We visualized the relationships between MS3 and Efficiency at
high and low (1 SD above and below the mean) levels of Sleep Latency. Simple slope tests indicated that only in
the participants with long sleep latency, higher levels of efficiency were associated with longer duration of MS3
(see Fig. 1). These results indicate that the difficulties of falling asleep, reflected by a longer sleep latency, are
prominent in high Efficiency population who tend to have an overly activated SN.
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Abnormal synchronization of neuronal activity is related to multiple neurological disorders including
Parkinson’s disease (PD) and epilepsy. High-frequency deep brain stimulation (HF DBS) is an established
treatment for PD; however, symptoms typically return shortly after stimulation ceases. Coordinated reset (CR) is
a novel stimulation method that aims at counteracting hypersynchrony in neural networks. During CR, phase-
shifted stimuli are delivered through multiple stimulation sites. CR has been used for the treatment of
Parkinson's disease using both DBS electrodes and noninvasive fingertip vibrotactile stimulation, and its efficacy
was demonstrated in preclinical and clinical studies. Computational studies in neural networks with spike-
timing-dependent plasticity (STDP) showed that CR stimulation might reduce the synaptic weights, and in doing
so it leads to a long-lasting desynchronization by ultimately moving the neural networks to a weakly coupled and
stable desynchronized state. CR stimulation frequency in most studies was adjusted to the dominant rhythm,
however that may limit the use of CR due to the coexistence of multiple disease-related abnormal rhythms.
Motivated by new multi-contact electrode designs and spatially directed stimulation current steering algorithms,
we study the impact of the number of stimulation sites and the CR frequency in leaky integrate-and-fire (LIF)
neural networks with STDP. We show that long-lasting effects become most pronounced when stimulation
parameters are adjusted to the characteristics of STDP—rather than to the dominant rhythm. In addition, we
reveal a nonlinear dependence of long-lasting effects on the number of stimulation sites and the CR frequency.
Intriguingly, optimal long-lasting desynchronization does not require larger numbers of stimulation sites or high-
frequency CR stimulation.
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Excessive neuronal synchrony is a hallmark of several neurological disorders, including Parkinson’s Disease
(PD). An established treatment for advanced PD is invasive high-frequency deep brain stimulation (DBS). PD
symptoms return shortly after stimulation ceases. Theory-based approaches, such as coordinated reset (CR)
stimulation, counteract neuronal synchrony by delivering spatio-temporal stimulus patterns. In computational
studies, CR stimulation reshaped synaptic connectivity and drove plastic neuronal networks into an attractor of a
stable desynchronized state. This led to desynchronization effects that outlasted stimulation. Corresponding
long-lasting therapeutic effects were reported by preclinical and clinical studies delivering CR through implanted
DBS electrodes. Recent computational studies provided evidence that long-lasting effects of CR stimulation
might be sensitive to changes of the stimulation frequency. This might limit clinical applicability as excessive
synchrony in different frequency bands is associated with PD symptoms.

To improve parameter robustness of long-lasting effects of invasive electrical stimulation, we studied synaptic
reshaping due to spatio-temporal stimulus patterns in neuronal networks with spike-timing dependent plasticity
[1]. Our theoretical and computational results led to the hypothesis that randomized stimulus patterns improve
parameter robustness of long-lasting effects. In our theoretical and computational work, we analyzed sequence-
and stimulus-induced synaptic reshaping [1]. These two mechanisms describe synaptic reshaping as a result of
spatio-temporal (sequence-induced) correlations in the stimulus pattern and as a result of neuronal response
variability to individual stimuli (stimulus-induced), respectively. Stimulus patterns that adequately combined
both mechanisms led to strengthening of certain groups of synapses while weakening others. Focusing on
patterns that stabilize desynchronized neuronal activity by weakening excitatory synapses, we found that
randomized stimulus deliveries lead to more robust effects [1,2]. Long-lasting effects motivated the development
of non-invasive, sensory therapies that require the stimulus to be delivered only regularly or occasionally [3].
Accordingly, we extended our approach to model the effects of (moderately) randomized non-invasive,
vibrotactile CR stimulation, taking into account vibratory masking and habituation constraints [4].

In a corresponding clinical feasibility study in six PD patients, both regular and randomized vibrotactile CR
fingertip stimulation turned out to be safe and well-tolerated [4]. Patients experienced a sustained, significant
cumulative improvement of motor performance. Stimulation led to a significant reduction of high-beta EEG
power in the sensorimotor cortex after 3 months of therapy, indicating long-lasting desynchronization effects
(fig. 1). Our results provide promising first evidence that randomized spatio-temporal stimulus patterns may be
suitable for inducing long-lasting desynchronization effects and symptom relief in PD patients.
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Figure 1. Long-lasting desynchronization of a plastic neuronal network by coordinated reset (CR) stimulation.
A,B CR stimulation is delivered to four neuronal subpopulations (colored regions). C-H Simulation results for
the degree of in-phase synchronized spiking (C) and the mean synaptic weight (D) during randomized
vibrotactile CR stimulation. E-H Snapshots of connectivity matrix at different times.
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Both sensory and motor processes are driven by coordinated activity across brain areas. Analyses based on
dimensionality reduction have shown that some patterns of covariance amongst populations of neurons fall
within a "potent space" that influences downstream neural responses. Other patterns, however, fall within a "null
space" that inhibits the propagation of activity. These patterns are ubiquitous across neural modalities, and are
reported in primary visual areas [1] as well as preparatory motor areas [2]. Nevertheless, despite growing support
for the role of null space activity, its origins within synaptic circuits remain unclear. Here, a mean-rate model
was developed to capture the feedforward propagation of activity between two interconnected areas (a "sender"
and a "receiver" area) each representing an anatomically distinct network (Fig. 1a). Null and potent modes of
activity were gated by adjusting the connections between the two areas based on a novel synaptic rule. Mode-
specific propagation of neural activity was readily observed by applying a singular value decomposition to the
activity of both sender and receiver areas, and computing the correlation between each mode of activity,
respectively (Fig. 1b). Altering the number of null modes propagated between the two areas yielded no
systematic changes in firing rates, pairwise correlations, or mean synaptic strength. Thus, characterizing the
interactions between the two areas could not be achieved by standard measures of functional connectivity,
highlighting a fundamental limitation of these approaches. As an alternative, a measure termed the "null ratio"
was developed to capture the proportion of null modes propagated from one area to the other (Fig. 1c). This
measure was applied to experimental data consisting in simultaneous recordings from primate visual areas V1
and V2 while subjects were presented with oriented stimuli. The null ratio revealed that feedforward propagation
between these areas consisted of a predominant proportion of null modes, whereas only a few potent modes of
V1 activated downstream targets in V2 (Fig. 1d). These results are consistent with the small number of potent
modes required to encode simple oriented images, suggesting that the ratio of null and potent modes may reflect
properties of the visual stimuli employed in experiments.
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Figure 1. Feedforward propagation of null and potent modes of neural activity. a Illustration of a feedforward
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Many everyday tasks require that we produce and repeat sequences of thoughts or behaviors that unfold over
time. Examples abound, from playing golf to uttering sentences. Recent computational advances offer a solution
to this problem whereby a recurrent network projects to a read-out layer whose synaptic weights are trained to
generate the desired response [1,2]. However, these approaches rely on iterative learning rules that cannot
account for the rapid, one-shot learning reported in sensory and motor domains [3]. Here, we describe a one-shot
algorithm, termed Extreme Neural Machine (ENM), that learns to reproduce static and sequential patterns of
activity. The centrepiece of our model is a recurrent circuit comprised of either mean-rate or integrate-and-fire
neurons (Fig. 1a). These neurons activate an output layer via connections that are adjusted by a one-shot
supervised learning rule whose goal is to compress the desired signal onto a smaller number of dimensions,
where each dimension is a neuron from the recurrent network. While the learning process is not biologically-
grounded, the model is informative of recurrent population activity regimes that support task performance. First,
networks learned to compress and reproduce natural images (Fig. 1b). Error rates were computed by the mean
squared error between input images and network output. Error was lower for ENMs than statistical (principal
components analysis) and one-shotmachine learning (extreme learning machine) approaches (Fig. 1¢). Random
elimination of a small proportion of recurrent network connections prior to training yielded a negligible impact
on performance. Neurons of the recurrent network exhibited mixed selectivity for particular characteristics of the
stimuli, capturing aspects of cortical responses to combinations of input features. Next, networks learned to draw
and recall 2D figures (Fig. 1d), as well as reproduce high-resolution movie scenes (Fig. le). Following a training
phase where the model received a short movie segment (10 s), the recall capacity of the network was tested by
presenting a brief 1 s segment. The output units generated the remainder of the sequence, and accurate
performance was attained with only a few hundred recurrent units. An analysis of the activity within the
recurrent network revealed that neurons responded preferentially to spatial locations of the movie with high
contrast. Overall, the model provides a novel avenue to perform one-shot learning in recurrent networks. Distinct
signatures of recurrent activity obtained as a result of training will inform experiments on the biological basis of
temporal sequence acquisition.
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Figure 1. One-shot learning of static and temporal patterns in a recurrent network. a Architecture of the model. b
Static image reproduced at the output of a rate-based network. ¢ Rate and spiking networks improve their
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Reversal learning is often used to assess cognitive flexibility which reflects the ability to rapidly adjust behavior
to a changing environment and which is affected in psychiatric disorders. Determining the neural mechanisms
underlying reversal learning is therefore important for advancing our understanding of cognitive processes in
health and disease. It is currently not clear how the brain regions collaborate to achieve this type of adaptive
behavior.

We analyzed the neural responses in non-human primates during a reversal learning task [1] in which to obtain a
reward they needed to make an eye movement instructed by the direction of motion of one of two objects that
contained a target feature. The target feature changed (reversed) uncued multiple times during the session.
Multiple neurons in LPFC, ACC and striatum were recorded simultaneously. We converted the spike times into
normalized firing rates and combined these across multiple sessions to create a data matrix with three
dimensions — neuron identity, trial index relative to reversal and time relative to reward onset. We used this
matrix to extract the changes in the neural population response accompanying learning the target feature
reversal. Our hypothesis was that the changes across learning trials could be either in the form of overall activity
changes as well as in shifting the onset time of response features. To test this, we evaluated a number of tensor
factorization methods [2-4] to extract these changes across trials while preserving the natural structure of the
tensor. We found that tensor component analysis (TCA, [2]) could extract relevant components better while
accounting for a larger fraction of the response. TCA achieved this by identifying additional factors related to the
same subset of neurons. In our hands, for this data set, even methods explicitly designed to extract latency
changes did not work as well as TCA. In addition, our simulation results using artificial data showed that the
TCA results were stable against white noise and resampling noise.

In our analysis we focused on the neurons in the striatum that previous analysis identified as broad spike neurons
which comprised 83% of the neurons in the dataset [1]. TCA-decomposition of the population firing rates
identified two distinct components whose activity increased or decreased with trial index relative to reversal.
Some components are active right after the reward, while others show an activation at later stages. Based on
these components we could identify two groups of neurons, whose firing rate responses shift in time when the
target is learned. One group shifts forward and the other backwards. This paves the way for a more
comprehensive analysis of these groups in terms of changes in spike-spike correlations between them as well as
the relation to the local field potential. In conclusion, we found that TCA can be used to find groups of neurons
with distinct learning profiles, which is a first step towards improving our mechanistic understanding of multi-
areal interactions during learning as well as other processes involving cognitive flexibility.
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Many experimental observations have shown that the expected utility theory is violated when people make
decisions under risk. Here, we present a decision-making model inspired by the prediction of error signal in
reinforcement learning. In the model, we choose the expected value across all outcomes of an action to be a
reference point which people use to gauge the value of different outcomes. Action is chosen based on a nonlinear
average of the anticipated surprise, defined by the difference between individual outcomes and the
abovementioned reference point. The nonlinear ‘surprise function’ assumes that (1) surprises of large amplitudes
have disproportionately magnified effects, and (2) negative surprises have larger effects than positive ones. It is
also straightforward to extend the model to multi-step decision-making scenarios. In the extended model, new
reference points are created as people update their expectation when they evaluate the outcomes associated with
an action sequentially rather than simultaneously. The creation of these new reference points could be due to
partial revelation of outcomes, ambiguity or segregation of probable and improbable outcomes. Several
economic paradoxes and gambling behaviors can be explained by the single-step and/or the multi-step version of
the model. Our model might bridge the gap between theories on decision-making in quantitative economy and
neuroscience.
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Neural oscillations are a fundamental mechanism for the communication and coordination of neural activity
between brain regions. The temporal coordination of these oscillations underlies many cognitive and behavioural
responses and higher order brain functions, such as attention and working memory. As a result of this, there has
been increased attention on targeting these oscillations for intervention in neurological disorders. Of particular
interest has been expanding treatment from pharmaceutical interventions, which are not always successful, to
include non-invasive stimulation techniques, such as transcranial alternating current stimulation (tACS) and
transcranial magnetic stimulation (TMS). These approaches have shown great promise for improving our
understanding of the dynamics underlying and entrainment of neural oscillations, and intervention in
neurological disorders. Existing models for external stimulation are often abstracted for computational
efficiency, making use of mean-field approaches and various simplified neuron models, such as leaky integrate-
and-fire neurons. These models, while useful for parsing out system dynamics, do not account for cell-type
differences in their frameworks. Improved understanding of cell-type specific responses to external stimulation
provides a pathway for testing the limits of acute targeting via external stimulation. In-vivo this would be an
intractable task, however, in-silico approaches give an efficient way to investigate these effects. In recent years,
the Allen Institute has made available morphologically accurate models of individual excitatory and inhibitory
cells. Using these models, we recreate external stimulation frameworks and investigate cell-specific reactions to
multiple stimulation paradigms of varying angle, strength, distance, and frequency. By taking such stimulation
parameters into consideration we begin to create a mapping of excitatory and inhibitory cell-type responses to
external stimulation in multiple cortical layers. The exploration of the state-space surrounding individual cell
type stimulation responses offers important insight into inter-cell dynamics. Of particular interest are differences
in the reactivity of inhibitory versus excitatory cell populations that may suggest future targeting options via
external stimulation. Further, these classifications offer a way to ameliorate existing abstracted models to better
capture the underlying dynamics of the system and better our understanding of the effects of external stimulation
on the brain.
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In schizophrenia, large-scale connectivity differences across illness stages have been identified in resting-state
fMRI-data [1]. Furthermore, analyses of resting-state MEG-data (rsMEQG) identified stage-specific changes to
signal power in the gamma frequency band, with first-episode schizophrenia patients showing increases in
gamma power and chronic patients showing reductions [2]. However, frequency-resolved connectivity changes
across illness stages remain largely unexplored in schizophrenia.

Therefore, we investigated the frequency-resolved functional connectivity (frFC) of first-episode psychosis
patients (FEP, n=27) and healthy controls (HC, n=49) using rsMEG recordings. We analyzed global brain
connectivity, differences in subnetwork connectivity and, the topology of cortical networks through graph
theoretical measures of frFC. frFC was calculated by correlating the slow (<0.2Hz) signal envelope between
cortical regions for specific, narrow frequency bands (delta [1-3Hz], theta [3-7Hz], alpha [8-12Hz], beta [18-
22Hz], gamma [32-42Hz]). We assessed group differences of global brain connectivity and graph measures and
identified differences in the subnetwork connectivity using network-based statistics.

We found a significant reduction of global brain connectivity in the alpha band for the FEP group, which was
most pronounced in left frontal regions. Furthermore, for the alpha band, we also identified a specific network of
connections that showed a significant reduction in FEP patients in the default and frontoparietal system. We
additionally found significantly increased gamma band connectivity in a network that was mostly located in the
limbic system and the default mode network. Lastly, graph measures assessing information integration,
segregation and network centrality were significantly lower in FEP patients then in HC subjects in the alpha
band (Fig. 1). These results further support the notion that the onset of psychosis is characterized by impairments
of interregional cortical communication which depends on neuronal synchronization. Whereas alterations of the
alpha band connectivity might relate to cognitive impairments, reduced attention, and executive control in FEP,
alterations in the gamma band connectivity may be involved in emotional and cognitive impairments.
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Computation in the brain takes place through the integration of the information processed in different specialized
brain regions. Brain oscillations can affect integration of the information by controlling the communication
between interconnected brain regions. It is hypothesized that the synchrony and the phase relations between local
oscillations of the brain regions controls the efficacy of the communication channels in the brain circuits. Like
every other network of oscillating dynamical systems, the synchronization between the oscillatory activities of
brain’s modules depends on how their phase change upon the impact of the inputs from other connected
modules. This property is conventionally quantified by the phase response curve (PRC) which shows how much
the brief inputs incoming at different phases of oscillation, change the phase of the receiving oscillator. The main
challenge for quantifying the inter-module synchrony in the brain is that every module is itself a giant oscillator
composed of many neurons that cannot be readily treated by the methods developed for low-dimensional
oscillators.

In this study, we numerically study the collective PRC (¢cPRC) for oscillating networks of excitatory-inhibitory
(EI) neurons and show how they affect the phase relation between two interconnected populations. We first show
that in hybrid networks, whereEandIneurons of different types, changing the strength of connections between E
and I continuously changes the cPRC and can ultimately change the type of PRC. Then we apply the results to
study the synchronization between two inter-connected populations and show that in a more biologically
plausible low coherence regime, when the synchrony within the populations is low, the cPRC cannot adequately
predict the phase difference.

First, we investigated the cPRC of a EI network and the effect of synaptic strength from I to E neurons on the
type of cPRC. To show the effect clearly, we built three types of populations. In the first case, we modeled the E
neurons by Hodgkin-Huxley (HH) and the I neurons by Wang-Buzsaki (WB) models as generic forms of Type-II
and type-I neuron models, respectively (Fig. 1). By increasing the strength of synaptic connections from the |
neurons to E neurons, we observed that the cPRC changed from type-II to type-I (Fig. 1A). In the second
experiment, we interchanged the type of E and I neurons (Fig. 1B), and by following the same procedure, we
observed a similar result. In the third experiment, we modeled the neurons all by the HH neuronal model (Fig.
1C), and in this case, increasing the synaptic strength of I o E neurons didn’t have a significant effect on the
cPRC. So, for those simulations with a single type of neurons, the connection strength between E and I neurons
does not play an important role, but it crucially affects the results whenEandIneurons are of different kinds.

In the second part of the study, we connected two EI populations to explore if cPRC could adequately predict
dependence of the phase relation between the two populations to the inter-population communication delay (Fig.
1D). We changed the coherency of population activity by varying the noise level and observed that the phase
relation of coupled populations qualitatively changed by the level of coherency so that the prediction based on
the cPRC does not work for lower values of coherency .



(B)0.8 (C)o.4

(A)
0.6
0.3
0.4
0.2
0 2 ‘J\ sE +E 04
. '_ '_ c
2 s 02 0022
D 0.2 0.02
-0.1
0.2 0.15 0.018
-0.2
0.4 pL 0.016
0.05 0.3
0 w2 w 3wl2 2x 0
(©)
oy
=
50.
o
*
Q0.
&
0.55 0.6 05 0.55 6.6
Time (s) Time (s)

4 (ms)

Figure 1. The effect of synaptic strength on cPRC. A-C show cPRC for networks composed of different
neuronal types as discussed in results section. The color bar refers to the synaptic strength from inhibitory to
excitatory neurons. D Heat-map: the zero-lag correlation between the activity of coupled population for different

values of coherency and delay between them.



Biophysical parameters control information transfer in spiking
networks

Tomés Garnier Artifiano”™!, Simo Vanni?

"University of Helsinki, Helsinki, Finland
2University of Helsinki, HUS Neurocenter, Helsinki, Finland

*Email: tomas.garnier.a@gmail.com

The nature of information transfer in neuronal circuits has been a mystery in neuroscience throughout the history
of this discipline. Effective population coding is dependent on connectivity, active and passive postsynaptic
membrane parameters and synapse dynamics, but how it relates to information transfer and information
representation in the brain is still poorly understood. Recently, Brendel et al. [1] showed how spiking neuronal
networks can efficiently represent a noise input signal. This "D Model” successfully showed that spiking neural
networks can recreate input signal representations and how these networks can be resilient to the loss of neurons.
However, this model has multiple unphysiological characteristics, such as instantaneous firing, single neuron
firing per time frame, and the lack of units related to physical values. To determine how this model relates to
information transfer in biological systems, it would be important to implement the D_Model in a more
physiologically accurate simulator. The aim of the present study is to build upon the D_Model to study how
information transfer is affected by biophysical parameters.

We first modified the D_Model in the Matlab environment to allow for the simultaneous firing of the neurons.
The network saturated when the simultaneous firing model used the synaptic weights previously learned for
single neuron firing but simulating de-novo with all neurons allowed to fire, the simultaneous firing D_model
was able to reduce reconstruction error and firing rate. Using our CxSystem2 simulator in a Python environment,
we built a network consisting of 300 excitatory and 75 inhibitory neurons, replicating the network used in the
D Model. We quantified the information transfer of Leaky Integrate-and-Fire neurons that had identical
physiological values for both inhibitory and excitatory neurons (Comrade cells) as well as more biologically
accurate physiological values (Bacon cells). We used Granger causality, transfer entropy, reconstruction error,
coherence, cross-correlation latency, and classification accuracy based on Granger causality F-statistics to
quantify the information transfer of the network. Using the weights obtained from the trained D_Model in the
CxSystem?2 simulator, we were able to quantify information transfer with a conductance-based spiking model.

We examined the behavior of the network while altering the values of the capacitance, synaptic delay,
equilibrium potential, leak conductance, reset potential, and voltage threshold. Broad parameter searches showed
that no single set of biophysical parameters maximized all information transfer metrics, but some ranges fully
blocked information transfer by either saturating or stopping neuronal firing. This draws boundaries on the
possible electrophysiological values neurons can have. This held true even under closer inspection with narrow
searches within electrophysiological ranges. From this, we conclude that there is no single optimal set of
physiological values for information transfer. We hypothesize that different neuronal types may specialize in
transferring different aspects of information (e.g., accuracy) or act as frequency filters, providing the
evolutionary pressure that gave rise to the diversity of cell types observed in the nervous system.
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Hybrid circuits built using living and model neurons and connections allow a precise characterization of
neuronal and synapse dynamics. They are also useful to validate model neurons and to unveil key components of
neural circuit dynamics. Our previous works have shown that adaptation and calibration of model neuron and
synapse models are a necessary step to build hybrid circuits, and that automatization of these processes leads to
highly successful implementations [1,2]. Many parameters affecting the dynamic interaction in hybrid circuits
have complex nonlinear dependencies which are difficult to establish a priori. An option to deal with this
problem is a massive search within the parameter space to map the regions that lead to robustness in the target
dynamics. This is possible but it is a high time-consuming process. Instead, we propose here an informed search
that optimizes this process in a short time by exploring the parameter space using a genetic algorithm. This
approach does not consider a detailed full parameter characterization but results in a fast adaptation that is
convenient for many experimental goals.

To illustrate this approach, we implemented a hybrid circuit to reproduce dynamical invariants between living
and model neurons in the pyloric CPG of crustaceans. Dynamical invariants are robust linear relationships
between intervals that build an activation sequence between neurons [3]. With this goal in mind, and from an
initial automatic adaptation/calibration, we explored online the parameter space of the neuron and synapse
models involved in the modulation of key elements that affect a specific dynamical invariant. In our study, we
used the linear correlation between the time intervals that define a dynamical invariant between a living neuron
and a model as the cost function for the genetic algorithm.

Our results show that within minutes, by employing just a dozen of individuals and 5 generations, the genetic
algorithm can easily obtain a valid configuration for the hybrid circuit to build the dynamical invariant. We also
compare the online solution provided by the genetic algorithm exploration with a full characterization of the
parameter space obtained with a computer cluster implemented with parallelization. The full cluster exploration
validates the proposed genetic approach. The genetic algorithm approximation for tuning synapse and model
neurons can be easily generalized to achieve other target dynamics, serving as a useful tool in the construction of
hybrid circuits.
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Effective stimulation of neural cells has played a key role in the study of neural activity. Perturbation of ongoing
neural dynamics has been traditionally implemented with electrophysiological and chemical techniques. Even
though the former techniques are highly effective at changing dynamical states, they are usually more invasive
and frequently produce irreversible effects in neural activity. Such invasive techniques limit the possibilities of
stimulation and experimental set-ups, limiting their applications, e.g., in protocols such as transcranial
stimulation. These limitations motivate the search for less invasive techniques that achieve effective dynamic
modification while avoiding neuron damage as well as allowing the recovery of departing states. Here we
demonstrate that infrared-laser stimulation elicits changes in neural dynamics in a non-invasive way. Previous
works have shown that laser stimulation successfully changes neural dynamics [1-3]. However, the biophysical
source of these alterations is still under study. In this work we analyze the effect of near infrared laser
stimulation in the neural system of the mollusk Lymnaea stagnalis, which is frequently employed in a wide
variety of experimental and theoretical studies in neuroscience research [4,5]. Using intracellular recordings, we
characterized the spiking activity before, during and after infrared-laser stimulation of individual neurons.
During stimulation, a laser beam was focused on the specific cell being recorded. We characterized spike
amplitude, duration, depolarization and repolarization slopes. The most notable changes were present in spike
duration, which was notably reduced by a dynamical change mainly in the repolarization phase. This change is
reversible, right after the stimulation ceases the neuron recovers its original waveform. Changes in spikes
characteristic were sustained throughout all experiments, showing the reproducibility of the stimulation effect
and the subsequent recovery. We assessed possible biophysical sources of the observed phenomena in a detailed
conductance-based model. Different electrotonic and active ionic channel parameter combinations were studied
in a Hodgkin-Huxley model. The results point out possible factors generating the laser effect observed
experimentally.
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Central Pattern Generators (CPGs) are convenient neural circuits to study sequential neural activations because
their connection topology and neuron dynamics can be characterized in detail using both experimental
preparations and biophysical models. Multiple studies have addressed the coordination of multifunctional CPG
rhythm cycles and have established that, in many CPGs, it is a consequence of mutual inhibition by chemical
synapses and synchronization induced by electrical coupling [1]. In this study, we use a biophysical model [2,3]
of the pyloric CPG to assess the role of electrical synapses in shaping the intervals that build up the sequence of
the circuit. We have analyzed the effect of the electrical conductance between the neurons of the pacemaker
group (AB-PD1-PD2) to induce variability in the circuit and thus discuss the change produced in the different
intervals that define the CPG sequence without disturbing theorderof the neuron activations (LP-PY-AB(PDs)).
We quantified the variability of all time intervals measured cycle-by-cycle in a set of long simulations. Our
results show that the conductance of electric gap junctions can regulate the variability of the intervals that build
up the cycle-by-cycle period. Several of such intervals are known to participate in dynamical invariants in the
form of robust relationships with the period. Dynamical invariants have been proposed to balance flexibility and
robustness of CPG sequences and their coordinated rhythm [4]. These results support the view that electrical
coupling largely contributes to shape the intervals that define functional sequences and dynamical invariants in
CPGs. The hypotheses drawn from this modeling study could be tested in hybrid circuits of living and model
neurons with modern dynamic clamp protocols [5,6].
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Electrical synapses are an efficient mechanism for achieving a high level of synchronization of neural activity
between neighbor cells [1-5]. Invertebrates Central Pattern Generators (CPGs) are suitable for studying
coordination of neural dynamics and, in particular, they allow for long recordings of simultaneous activity to
characterize synchronization, sequential activations, and overall circuit coordination. The present work aims to
analyze the evolution of synchronization between the two pyloric dilators (PD) neurons of the pyloric CPG of
crustaceans as a first step to assess the role of electrical coupling in flexible coordination of sequences generated
by this circuit. Long time series of simultaneous bursting activity were recorded with intracellular electrodes in
the PD neurons of Carcinus maenas. The activity was analyzed first with a detailed temporal characterization of
the synchronization of the time series, then a precise assessment of the timing and delay of action potentials
within each burst, and finally with maps showing the degree of synchronization of both the depolarizing wave
and spike dynamics. The results indicate that in this system the synchronization is not constant, but evolves
smoothly with each spike during the bursts. The observed spike delay variability between the PD neurons is
linked to their transient desynchronization, which in turn is influenced by the duration of the bursts. The
experimental analysis is complemented with a conductance based model study to estimate the coupling
conductance and the source of its dynamical features. Within the context of these results, we discuss the role of
gap junctions in shaping the time intervals that build robust sequences in central pattern generators [6] and tips to
test the hypothesis derived from the experiments through the design of hybrid circuits of living and model
neurons [7,8].
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The brain can be seen as working in a metastable regime. In the phase space of its dynamics, the trajectories pass
through one state to the next one, consecutively [1]. From this perspective, every behavior and thought involves
different brain networks that interact with each other in a sequential manner in this dynamical space [2]. Hence,
the identification of robust sequences can be key to relate neural activity with behavior and cognition. The
sequences of each process in the brain, as a complex biological system, are not exactly the same in every
repetition. However, they retain enough similarities to be distinct and distinguishable from one another. These
features allow sequences to be robust in functionality while retaining flexibility regarding the dynamic external
environment.

While the mathematical description and conceptual basis of the neural sequences had been proposed and studied
in previous works [3], they have not been systematically investigated in brain signals. The focus of the current
work is to provide a unifying approach to identify robust sequences from brain signals. Methodologies for the
study of M/EEG datasets are still developing due to the nature of these nonstationary waves. Designing an
approach to characterize neural sequences, as fundamental features of any brain activity, is a pending milestone
in M/EEG analysis. This will lead to novel biomarkers and metrics foranalysis of M/EEG signals for the purpose
of predictive and diagnostic implementations, as needed for patients with brain disorders or trauma, and for the
design of brain-machine interfaces and biologically inspired technologies. Such an approach can also be
leveraged for better understanding the dynamics of M/EEG microstates, i.e., quasi-stable spatial configurations
of brain activity, which have been shown to exhibit structured sequential activity [4].

The current study is a step forward in finding a methodology to clearly characterize neural sequences and
understanding the principles that govern their composition and the transition between them. We propose several
metrics for the analysis of their robustness and flexibility, and their hierarchical spatio-temporal organization. In
particular, we report on observed sequences in the study of the publicly available brain activity datasets. We also
illustrate the usefulness of computational models to interpret the characterization of robust sequences from
experimental data.
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Background

Cardiovascular disease is a principal cause of death, with stress being one of the risk factors [1]. Physiological
stress markers can be used for preventive, diagnostic, and therapeutic purposes. Lab-based studies have
associated decreases in HRV, that is, variations in the timing of consecutive heartbeats, which index
parasympathetic cardioregulation [2] with higher levels of self-reported stress [3]. It remains unclear to what
extent this link generalizes to daily life, particularly as naturalistic settings typically involve physical activity,
which itself affects HRV [4].

Methods

ECG and ACC data were ambulatorily recorded with a chest strap (EKGmove3; Movisens, Germany) in the
daily life of healthy older adults. Participants reported the level and timing of stress events (10-min temporal
resolution) every waking hour via a smartphone-based ecological momentary assessment. Heart rate and HRV
features were calculated. Supervised learning models (Decision Forest, Support Vector Machine, Multilayered
Perceptron and Stacking Ensemble) were trained on the extracted heart rate and HRV features with and without
including physical activity to classify binary stress labels. 5-fold nested cross validation was applied for
hyperparameter tuning. SHapley Additive exPlanations (SHAP) technique was used for feature importance
calculation.

Results

Twenty-five older adults (11 females; 69+4, 60-76 years) provided data from (on average) 5.76 days, which
included 168 stress events from 20 participants. The best performing supervised machine learning model, trained
without physical activity, was predictive with an accuracy of 74.2% (F1: 72.9%). Highly predictive features
were Median-RR- and Mean-RR-Interval. Including physical activity increased predictive model performance by
9% to 83.2% accuracy (F1: 82.6%).

Conclusions

This study provides evidence for the link between heart rate, HRV and acute stress under naturalistic conditions,
as well as when including physical activity. Ambulatorily assessed HRV as a physiological stress marker can be
useful for clinical applications. The approach of integrating physical activity into machine learning models is
expected to be of broader relevance for naturalistic (i.e., interactive and dynamic) psychophysiological studies.
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The ability to visually recognize different actions and complex movements is necessary for the survival of many
social species. The detailed circuitry underlying the neural processing of the visual recognition of body
movements is not yet known. For a detailed comparison with electrophysiological data, we have developed a
physiologically inspired hierarchical neural model for the recognition of body movements.

The model combines a feed-forward deep network (VGG-19 [1]) with a neurodynamical model that has been
demonstrated to reproduce the neural dynamics at the single-cell level in higher areas of the visual and premotor
cortex [2]. The lower levels of the visual hierarchy were modeled by the layers up to the conv5.1 layer of the
VGG-19 network, pre-trained on the ImageNet database. This readout level was chosen since it was shown to
match the activity of middle superior temporal sulcus body (MSB) patch neurons well [3]. These output features
were massively reduced by a feature reduction procedure that eliminates features with low variability over the
training set in combination with PCA. The reduced feature responses are used as input signals for radial basis
function networks that were trained with individual keyframes of the action (Fig. 1A). (Up to this level, the
model assumes a feed-forward architecture). Sequences of such keyframes were then encoded by recurrent
neural networks (RNNs). Building on previous work modeling in detail the activation dynamics of neurons in
the superior temporal sulcus (STS) and of mirror neurons in the premotor cortex [2,4], these recurrent networks
were modeled by a set of neural fields with mutual inhibition, resulting in a competitive selection between the
different learned actions. The outputs of the individual neural fields were summed up by motion pattern neurons
that are active only during one of the learned actions.

We tested the model using movies that show macaque monkeys involved in different types of actions. Similar
movies are presently being used in physiological experiments on body motion encoding in monkeys. The model
successfully recognizes the actions from real videos. The snapshot neurons are showing a traveling pulse of
activity within the neural field that encodes the corresponding pattern (Fig. 1A). The motion pattern neurons
show responses that clearly differentiate between the different encoded actions (Fig. 1B). The model makes
precise predictions about the response dynamics of different neuron classes, which are presently being compared
to recordings from the macaque visual cortex.
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All dynamical processes in vertebrate brains are physically embedded in a dense matrix of thin axons (fibers)
that release serotonin (5-hydroxytryptamine) — a neurotransmitter that modulates neural, glial, and vascular
processes. Serotonergic axons appear to be an essential ingredient of any adaptive nervous tissue and may inform
future architectures in machine learning. However, they typically do not form classical synapses and therefore
cannot be understood within the connectomics framework. We have recently introduced the novel concept of the
"stochastic axon systems," the scale of which may be comparable to that of the "deterministic," point-to-point
axons systems. To advance the theoretical understanding of the trajectories of serotonergic axons, we propose
two theoretical approaches.

The first approach is based on a random, step-wise 3D-walk driven by the von Mises-Fisher (vMF) directional
distribution [1]. We have developed an algorithm to automatically trace serotonergic axons in 3D-confocal
images in a transgenic mouse model and obtained estimates of the vMF-concentration parameter (k) in several
neuroanatomical regions. We hypothesize that the value of this parameter may control the self-organization of
serotonergic fiber densities, with immediate implications for normal and diseased brain states. For example, an
increase in serotonergic fiber densities have been reported in brains of individuals diagnosed with Autism
Spectrum Disorder [2]. The second approach is based on fractional Brownian motion (FBM), a continuous
stochastic process that generalizes normal Brownian motion. The model includes the recently discovered
properties of the reflected FBM (rFBM) [3,4]. In the superdiffusive regime, rTFBM-paths reproduce some
essential features of serotonergic fiber densities in the forebrain and brainstem. Our supercomputing simulations
show that rFBM-walkers accumulate near the surface of brain-shaped domains, just as serotonergic axons tend to
produce higher densities near the pial and ventricular surfaces [3]. The FBM model can be further enriched with
a "diffusing-diffusivity" (DD) component, to reflect the heterogeneous environment axons travel in [5].
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The ability of neurons to communicate with each other is crucial for normal functioning of the brain. The
information transfer from one neuron to the other occurs primarily through synapses. In most organisms, the two
synaptic modalities viz., chemical and electrical synapses co-exist, although their distribution is largely
unknown. Moreover, neuronal dynamics is influenced to a great extent by the presence of inhibitory neurons.
Although they constitute only 10%-20% of the neuronal population, they play a crucial role in maintaining
normal brain activity. It has been shown that such inhibitory (GABA-ergic) neurons are largely connected
through electrical synapses or gap-junctions. Furthermore, certain brain areas such as Reticular Thalamic Nuclei
(RTN) has predominant occurrence of inhibitory neurons, it is crucial to understand how the interplay of
synapses and gap-junctions influence the neuronal dynamics, especially in networks of inhibitory neurons.
Hence, in this work, using a generic model of excitable neurons, coupled through both synapse and gap
junctions, we study the conditions for self-sustained neuronal activity. We first show that coupled inhibitory
neurons, with high inhibitory conductance and comparatively low gap-junctional conductances exhibits
persistent activity. By systematically varying the gap-junctional conductance, we show the emergence of chaotic
attractor arising through a series of period doubling bifurcations. We further extend our study by considering a
ring of inhibitory neurons and obtain the optimal conditions required for sustained network activity.
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Reward positivity (RewP), an event-related potential observed 250-300 ms after feedback [1], is hypothesized to
reflect the dopaminergic response to the reward prediction error (RPE) during the reward processing. However,
the traditional grand averaging approach of ERP analyses cannot answer whether RewP is merely a response to
RPE valence in a categorical way (i.e., better-than-expected or worse-than-expected) or reflects the computation
of RPE in a parametric way. In this study, we take a model-based approach to explore the effect of RPE on
RewP. Specifically, we use the hierarchical Bayesian modelling to estimate individual parameter under the
reinforcement learning model and extract the trial-by-trial RPE as the regressor for model-based EEG analysis.
Thirty-seven healthy adults (19 male, 18 female, Mage = 26.97) performed four blocks of probabilistic reversal
learning task while we acquire their EEG response using a 128-channel system. The preprocessed data were
segmented into 1000 ms epoch from -200 ms before to 800 ms after the feedback slides. The reinforcement
learning model based on Rescorla Wagner model with separate learning rates for positive and negative feedbacks
was fitted with the choice data of the subjects to estimate the hyper-parameter and individual parameters using
the hBayesDM package [2]. Using the fitted parameters, the trial-by-trial RPE is generated and input as the trial-
by-trial regressors for the model-based EEG analysis using the LIMO-EEG plugin of EEGLAB [3].

Traditional ERP analysis found a P200, FRN, and P300 effect of feedback valence at FCz (Fig. 1A). For the
model-based analysis, one-sample t-test is applied to condition contrast (reward vs. non-reward) and RPE
contrast (positive RPE vs. negative RPE). While no significant cluster is found for condition effect after
correction for multiple comparisons using spatiotemporal clustering, the results reveal a significant modulation
of ERP for positive RPE than for negative RPE (Fig. 1B — cluster started at 212 ms and ends at 268 ms
encompassing frontocentral electrodes, mean beta value = 0.68, 95% CI [-.07 1.42], maximum t-value = 5.20 at
232 ms channel F6, corrected p-value = .003). The results support that a more positive RPE predicts a more
positive EEG response at frontocentral region, though the corresponding time is earlier than the typical RewP
time window. Model-based analysis provides an alternative angle to the average-based RewP and shed a new
light on the temporal dynamic of reward computation. It provides direct evidence that the “early” RewP encode
positive RPE in a parametric way.
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Figure 1. A Feedback-locked ERP for reward feedback (red line) and non-reward feedback (blue line). B LIMO-
EEG output of one sample t-test of beta of RPE for reward feedback vs. for non-reward feedback. Corrected for
multiple comparisons using spatiotemporal clustering with a cluster forming threshold of p = .05.
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Sequence learning, prediction and generation has been proposed to be the universal computation performed by
the neocortex [1]. The Hierarchical Temporal Memory (HTM) algorithm [2] realizes this form of computation. It
learns sequences in an unsupervised and continuous manner using local learning rules, permits a context-specific
prediction of future sequence elements, and generates mismatch signals in case the predictions are not met.
While the HTM algorithm accounts for a number of biological features such as topographic receptive fields,
nonlinear dendritic processing, and sparse connectivity, it is based on abstract discrete-time neuron and synapse
dynamics, as well as on plasticity mechanisms that can only partly be related to known biological mechanisms.
Here, we devise a continuous-time implementation of the temporal-memory (TM) component of the HTM
algorithm [3], which is based on a recurrent network of spiking neurons with biophysically interpretable
variables and parameters. The model learns non-Markovian sequences by means of a structural Hebbian synaptic
plasticity mechanism supplemented with a rate-based homeostatic control. In combination with nonlinear
dendritic input integration and local inhibitory feedback, this type of plasticity leads to the dynamic self-
organization of narrow sequence-specific feedforward subnetworks. These subnetworks provide the substrate for
a faithful propagation of sparse, synchronous activity, and, thereby, for a robust, context-specific prediction of
future sequence elements as well as for the autonomous replay of previously learned sequences. By
strengthening the link to biology, our implementation facilitates the evaluation of the TM hypothesis based on
experimentally accessible quantities. The continuous-time implementation of the TM algorithm permits, in
particular, an investigation of the role of sequence timing for sequence learning, prediction and replay. We
demonstrate this aspect by studying the effect of the sequence speed on the sequence learning performance and
on the speed of autonomous sequence replay.
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At the beginning of the last century, the British psychologist William McDougall [1] had proposed a model for
color sensations. The neural stage for color sensations consists of four channels — three of them correspond to the
three primary colors conceived by Thomas Young and the fourth one is for the white sensation — and is at a
monocular level in visual cortex. Also related to color vision, the British neuroanatomist Le Gros Clark [2] had
proposed that the three layers per retina within the Lateral Geniculate Nucleus (LGN) correspond to Young’s
three primary color channels.

Presently, both McDougall’s and Le Gros Clark’s ideas have largely been ignored or dismissed by researchers in
color vision (e.g., see [3]). Here I attempt to revive their ideas (with some modifications) and to develop a
neuroanatomically-based model for color sensations. Based on the fact of phenomenological monocularity of
color sensations, I localize the neural stage for color sensations to the thalamic recipient layer (i.e., Layer 4,
which is usually but incorrectly labelled as Layer 4C, see [4]) of the primary visual cortex (i.e., V1). More
specifically, I propose the following six-pack model for this layer: tangentially, it consists of two ocular
subsystems — namely, the ocular dominance columns receiving inputs from the two eyes respectively; Vertically,
from the top of the layer (i.e., the pia side of the cortical sheet) to its bottom, it consists of three sublayers
corresponding to the three primary color sensations: blue, green, and red.

Textbooks on the neuroanatomical organization of the primate visual system usually explain the geniculo-
cortical wiring schema as follows: for each retina, the M-layer (magnocellular) in the LGN projects to Layer 4Ca
in V1; and the two P-layers (parvocellular) project to Layer 4Cp. But, why does the Nature twist two bundles of
neural fibers together into one on the geniculo-cortical route? Here I propose that the organizational feature of
three divisions per retina in the LGN is still conserved within V1 Layer 4—though there may be a transform
from the three cone-based (i.e., S-, M-, and L-cones) spectral selectivities in the LGN to the three primary colors
(i.e., B-, G-, and R-colors) in V1 Layer 4.

Furthermore, I propose that the neural code directly corresponds to color sensations is single-moment
synchronization and that the magnitude of a sensation directly corresponds to the number of neurons within a
synchronously-firing cell assembly. In this view, for any snapshot of visual consciousness, the bindings at
various levels—among spatial points, between the two ocular subsystems, within one primary color channel,
across color channels (i.e., color fusion or mixture), and among visual features (such as between color and
orientation)—are all due to the same neurophysiological mechanism (i.e., synchronization).
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The Neuroscience Gateway (NSG) [1-3] has been in operation since early 2013. It provides ~20 neuroscience
modeling and data processing software on high performance computing (HPC) and high throughput computing
(HTC) resources of Extreme Science and Engineering Discovery Environment (XSEDE). It currently has over
1250 registered users (Fig. 1). Computational modeling of cells and networks has become an essential part of
neuroscience requiring HPC, and similarly processing of experimental data (EEG, fMRI) increasingly require
compute power of HTC and cloud. NSG lowers or eliminates the administrative and technical barriers that make
it difficult for neuroscientists to use HPC/HTC/cloud resources. It offers free supercomputer timethat the NSG
team acquires on XSEDE resources. NSG is open to any neuroscientist from any country.

We recently integrated NSG with the Open Science Grid (OSG) that is a framework for distributed HTC for the
academic community. We have also demonstrated a capability of NSG job submission to AWS cloud resources
where the NSG jobs use the “cloudbursting” features of supercomputers to send jobs to AWS resources. Both of
these capabilities are to satisfy computing needs of experimental and cognitive neuroscientists who utilize HTC
for data processing [4], just as computational neuroscientist utilize HPC for modeling. Recently added new
features to NSG include ability for users to (i) transfer large data directly to NSG’s backend storage, (ii) share
data with their NSG collaborators, (iii) process publicly shared data, etc. We have expanded NSG to include a
software development platform where neuroscience software developers get direct access and which provides a
neuroscience software stack. Neuroscientists can use this platform to develop, benchmark, and scale their
software. Robust software can be made available in containerized or cloud image form for dissemination either
via NSG or otherwise for the neuroscience community. We have added a software repository and a web front
end which provides detail information about the software such that users can use the software on NSG or their
computing resources of choice such as commercial cloud. NSG is increasingly used in workshops, training
classes and classroom teaching. Since its inception, NSG has enabled over 250 publications, presentations and
thesis work.
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From recollecting childhood memories to recalling if we turn off the oven before we left the house, memory
defines who we are. Losing it can be very harmful to our survival. Recently we quantitatively investigated the
biophysical mechanisms leading to memory recall improvement of a computational CA1 microcircuit model of
the hippocampus [1]. The model consisted of excitatory (pyramidal cells) and four types of inhibitory cells: axo-
axonic, basket, bistratified and OLM cells. Cell properties were validated extensively against experimental data.
Cells’ firings were timed to a theta oscillation paced by two distinct medial septal neuronal populations
exhibiting highly regular bursting activity, one tightly coupled to the trough and the other to the peak of theta. To
test recall of a previously stored memory pattern, the associated input pattern was applied as a cue in the form of
spiking of active CA3 inputs (those belonging to the pattern) exciting the network’s excitatory cells’ proximal to
the soma dendrites. The EC perforant path excitatory input (sensory input) to network’s excitatory cells’ distal
dendrites was disconnected. Dendritic inhibition acted as a non-specific global threshold machine that removed
spurious activity during recall. To systematically evaluate the model’s recall performance against stored patterns,
pattern overlap, network size, and active cells per pattern, we selectively modulated feedforward and feedback
excitatory and inhibitory pathways targeting specific excitatory and inhibitory cells. Our simulations showed that
the number of “active cells” representing a memory pattern was the determining factor for improving the
model’s recall performance regardless of the number of stored patterns and degree of overlap between them. As
“active cells per pattern” decreased, the model’s memory capacity increased, interference effects between stored
patterns decreased, and recall quality improved.

In the present study, we investigated the synergistic effects of the EC excitatory input (sensory input) and the
CA3 excitatory input (contextual information) on the recall performance of the CA1 microcircuit. Our results
showed that when the EC input was exactly the same as the CA3 input then the recall performance of our model
was strengthened. When the two inputs were dissimilar (degree similarity: 40% - 0%), then the recall
performance was reduced. These results were positively correlated with how many “active cells” represented a
memory pattern. When the number of active cells increased and the degree of similarity between the two inputs
decreased, then the recall performance of the model was reduced. The latter finding confirms previous results of
ours where the number of cells coding a piece of information plays a significant role in the recall performance of
our model.
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One of the significant dynamic property of neural networks is their ability to synchronize. Synchronization plays
a key role in the formation of functional states in the brain [1]. Experimental evidence suggests that

distinct functional cognitive states are associated with distinguishable patterns of brain activity, and these are
flexibly rebuilt when solving different cognitive tasks. Notably, neuronal populations engaged in the task form
spatio-temporal synchronous networks, while neurons that are not involved in the task may remain
unsynchronized [2]. The coexistence of synchronous and asynchronous oscillations is called a chimera state [3].
Studies of chimera states in the neuronal networks are rapidly developing and have a great interest for
computational functional importance [4].

In this work, we consider a ring neural network with asymmetrical chemical inhibitory synapses, modelling a
prototypical connectivity for sequential information passing (see, for example, [5]). We describe each neuron by
Morris-Lecar model with type II dynamics [6] which allow us to reproduce excitability properties of fast-spiking
interneurons. First, to understand if our network is capable of rapid and flexible spatio-temporal state
reconfiguration we need to determine exhaustively the dynamic modes of the network. Second, we make the
ansatz that for flexible reconfiguration, our network needs to be in a multistability mode. To perform large-scale
scanning of the network spatio-temporal dynamical regimes, we used the adaptive coherence measure [3].
Depending on the synaptic coupling strength (gsyn) and connectivity parameter (r = R/N, where R is a number of
connections of each neuron andNis a number of neurons), we found cluster synchronization, travelling waves,
chimeric states and regimes of oscillator death (cessation of activity). The multistability map is shown in Figure
1.

We find that for the vast majority of the parameter space the network shows multi stability with different
combinations of dynamic states coexisting. This shows that even simple network architectures allow for a rich
repertoire of dynamical behaviors and that these can be rapidly and flexibly navigated between by inputs,
resetting of initial conditions or neuromodulatory influences.
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In this work, we processed sets of images obtained by the light-sheet fluorescence microscopy method. We
selected different cell groups and determined areas occupied by ensembles of cell groups in mouse brain tissue.
Recognition of mouse neuronal populations was performed on the basis of visual properties of fluorescence-
activated cells. The identification of individual ensembles and the principles of their interaction, and the
correlation of activity of ensembles, are considered by many authors. Segmentation of a large set of neurons
involves grouping them into neural ensembles, which are usually formed as populations of cells (or cultured
neurons) with similar properties.

The proper selection of scale makes it possible to reduce errors and to use flexible settings for the integration of
heterogeneous data, and to define filters for noise reduction. Data obtained at intermediate scales affects the
identification of single image segments during their processing. Figure 1 shows how final segment contours can
be formed in different ways, depending on initial scales. In this work typical samples of cell groups in the brain
were studied. Spatial analysis of the distribution of cells according to fluorescence microscopy datasets was
performed based on data packages [1,2] (https://ebrains.eu). In our study 60 fluorescence microscopy datasets
obtained from 23 mice ex vivo were analyzed.

Based on data from the light-sheet microscopy datasets, we identified the visual characteristics of elements in
multi-page TIFF files, such as the density of surface fill and its distribution over the study area, the boundaries of
distinct objects and object groups, and the boundaries between homogeneous areas. To identify topological
properties of the images, we performed operations such as contouring and segmentation, and identification of
areas of interest. Individual elements in fluorescence microscopy records were selected based on their brightness
in grayscale mode. Frequently occurring patterns formed by individual elements were classified and found in
other sets of images: this way we built a training sample and classified the data in optogenetics multi-page TIFF
files. The presence of training samples was tested for different types of fluorescence microscopy. We selected
and constructed six sets of typical samples, with certain topological properties, on the basis of the density at the
boundaries, the density inside the boundaries, and the shape type.

In this work we demonstrated the usability of spatial data processing methods for pattern recognition and
comparative analysis of fluorescence microscopy records. Geoinformation applications provide sets of options
for processing topological properties of images, such as contouring and segmentation, identification ROIs, data
classification, and training sample construction. We have shown that the application of the procedure for
combining a group of cells into typical ensembles enriches the possibilities of brain image processing.

Such applied algorithms and methods can be used for data processing at an "intermediate scale" and in
describing the specific characteristics of the distinctive regions formed near the borderlines of stable ensembles.
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Figure 1. Selection of segments at different scales. A The original set of elements schematically: at scale 1 there
are gray and lilac ovals; scale 2 contains lilac circles; scale 3 has orange strokes. B-D Different scales
highlighted in light green.
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Individuals differ in their behavior and cognitive abilities, but to what extent the brain connectome vary between
individuals remain largely unknown. By combining diffusion-weighted images (DWI), fMRI, and
magnetoencephalography (MEG), this study quantifies the individual variations of connectome and their
consistency across imaging modalities. Furthermore, we associated individual variability in connectome with
cortical myelin content and white-matter microstructure [1]. We recruited 64 healthy participants in two cohorts
(49 females, age 18-35 years (mean:21.1, std:2.94). Cohort 1 (N=29) underwent 3T DWI, fMRI and MEG
scanning sessions. Cohort 2 (N=35) completed a 7T high-resolution (0.65 mm isotropic) structural MRI session.

For Cohort 1, we generated individual DWI-based structural connectome from whole-brain probabilistic
tractography. The connectivity matrix was calculated as the region-to-region connectivity strength, based on
cortical surface parcellations from the HCP multimodal atlas [2]. White matter microstructural metrics were
calculated from DTI, NODDI [3] and CHARMED models [4]. fMRI functional connectome was calculated by
correlating BOLD responses between regions of interest. MEG functional connectome was calculated from
regional correlations of source reconstructed alpha and beta-band oscillatory power. For Cohort 2, we measured
the T1 relaxation rate (R1) as a proxy to cortical myelin content.

We quantified the inter-subject variability (ISV) on connectome as the average cosine distance between the
connectivity profiles of individuals. The ISVs of structural and functional connectomes are characterized by
higher variability in association cortices and lower variability in sensory and visual cortices (Fig. 1A). This
pattern is consistent across all modalities at varying degrees, as shown by significant alignments between
functional and structural connectome variabilities in selective cortical clusters. Cortical myelin content, indexed
by the R1 value, is high in somatosensory, motor, auditory and visual cortices and low in association cortices
(frontoparietal and temporal areas) (Fig. 1B). Across the cortex, R1 is negatively related to ISV across modalities
(Spearman’s correlation between R1 map and structural ISV: r=-0.11, p = 0.009; fMRI ISV: r=-0.50, p =0.78e-
39; alpha-band MEG ISV: r =-0.24, p =0.0006; beta-band MEG ISV: r =-0.36, p =1.04e-07). Furthermore, fMRI
ISV is mediated by the level of anisotropy in white-matter microstructure (ISV: r =- 0.4, p =0.22e-26).

Our findings contribute to understanding of the individual differences in the functional and structural
organization of brain. The identification of consistent individual differences across modalities could provide
benchmarks to understand how disease modifies brain function.
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Figure 1. A Intersubject variability (ISV) is cosine distance between connectivity profiles of individuals. B ISV
is calculated on structural connectome (sc-ISV), fMRI functional connectome (fc-ISV) and MEG functional
connectome for alpha and beta bands (alpha meg-ISV, beta meg-ISV). R1 map shows cortical myelin content.
All measures are normalized across brain and represented with z-score.
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Diverse cognitive processes set different demands on locally segregated and globally integrated brain activity.
However, it remains an open question how resting brains configure their functional organization to balance the
demands on network segregation and integration to best serve cognition. Here, we use an eigenmode-based
approach [1] to identify hierarchical modules in functional brain networks, and quantify the functional balance
between network segregation and integration. In a large sample of healthy young adults (n=991), we combine the
whole-brain resting state functional magnetic resonance imaging (fMRI) data with a mean-filed model on the
structural network derived from diffusion tensor imaging and demonstrate that resting brain networks are on
average close to a balanced state. This state allows for a balanced time dwelling at segregated and integrated
configurations, and highly flexible switching between them. Furthermore, we employ structural equation
modelling to estimate general and domain-specific cognitive phenotypes from nine tasks, and demonstrate that
network segregation, integration and their balance in resting brains predict individual differences in diverse
cognitive phenotypes. More specifically, stronger integration is associated with better general cognitive ability,
stronger segregation fosters crystallized intelligence and processing speed, and individual’s tendency towards
balance supports better memory. Our findings provide a comprehensive and deep understanding of the brain’s
functioning principles in supporting diverse functional demands and cognitive abilities, and advance modern
network neuroscience theories of human cognition. The work was published in [2].
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We have proposed that the cognitive cost of task performance should depend on the rate of acquisition of novel
information and be independent of the amount of sensory data that can be predicted from past inputs. We have
defined and computed a lower bound for such information rate in a visuomotor tracking task (Lam & Zénon,
2021), and showed that effective information rate in human subjects decreased as a function of the predictability
of the signal, suggesting that subjects were modulating information rate to cope with the amount of noise in the
signals. In the current study, we attempted to draw a positive relationship between information rate and cognitive
effort. To do that, we evaluated effort by means of subjective effort ratings, pupil size data, choice preferences
between conditions with different information processing rate and dual task interference on a concurrent auditory
N-back task. Our results showed that higher information rate in the visuomotor tracking task was associated with
higher subjective mental effort ratings, larger pupil dilations during trial performance, lower choice preferences
and lower performance in the N-back, both in terms of accuracy and reaction time. Preliminary results suggest
that these associations are specific to information rate and do not depend on confounding factors such as
performance and physical effort.
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Is our current knowledge about the structural connectivity of the brain compatible with the measured activity?
Using a large-scale spiking network model of leaky integrate-and-fire neurons to achieve simulations with the
full neuron and synapse density, we previously answered this question in the affirmative for macaque cortex
[1,2]. Here, we apply the same framework to investigate human cortex. Concretely, we present a large-scale
spiking network model that relates the cortical network structure to the resting-state activity of neurons,
populations, layers, and areas.

The construction of the model is based on the integration of data on cortical architecture, single-cell properties,
and local and cortico-cortical connectivity into a consistent multi-scale framework. It predicts connection
probabilities between any two neurons based on their types and locations within areas and layers. Every area is
represented by a 1 mm? microcircuit with area-specific architecture and the full density of neurons and synapses.
The cortical architecture in terms of laminar thicknesses and neuron densities is taken from the von Economo
and Koskinas atlas [3] and enriched with more detailed data extracted from the BigBrain atlas [4]. While
connectivity on the area level is informed by diffusion tensor imaging (DTI) data [5], it is necessary to
complement this with predictions on laminar connectivity patterns. We rely on predictive connectomics based on
macaque data which express regularities of laminar connectivity patterns as a function of cortical architecture.
The local connectivity uses the model by Potjans and Diesmann [6] as a blueprint and is scaled according to the
cytoarchitectonic data. Analysis of human neuron morphologies provides synapse-to-soma mappings based on
layer- and cell-type-specific dendritic lengths [7]. The model contains roughly 4 million neurons and 50 billion
synapses and is simulated on a supercomputer using the NEST simulator.

While the available data constrain the parameter space to some extent, the model remains underdetermined.
Mean-field theory guides the exploration of the parameter space in search for a low-rate asynchronous irregular
state that generates substantial inter-area interactions through cortico-cortical weights that poise the network at
the edge of stability. Different realizations of the model are assessed via comparison with experimental data. The
simulated functional connectivity is compared with experimental resting-state fMRI data. Furthermore,

simulated spiking data is compared with spike recordings from medial frontal cortex recorded in epileptic
patients [8]. Preliminary results show that the model can reproduce an asynchronous irregular network state and
functional connectivity similar to the resting-state fMRI data. The model serves as a basis for the investigation of
multi-scale structure-dynamics relationships in human cortex.
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Changes of synaptic strength during learning allow animals to adapt to tasks and environment. However,
synaptic plasticity requires significant amounts of metabolic energy, which is so high that learning shortens the
lifespan of fruit flies by 20% when feeding is stopped, compared to naive flies [1]. Consolidated associative
memories in Drosophila have different metabolic cost, for instance, the formation of protein synthesis dependent
long-term memory (LTM) is more energetically costly than anaesthesia-resistant memory (ARM) [1]. As an
organ with a key role in the regulation of energy and metabolism, the brain is likely to modulate the use of
energy while learning. Indeed, to survive during starvation, flies stop some forms of energy-intensive memory
formation [2].

To research under which condition it is better to halt energetically costly LTM plasticity, we add an energy
constraint to a reinforcement learning setup. We modelled a behavioural paradigm of instrumental conditioning
as a decision-making network with two populations of sensory neurons corresponding to two alternatives,
connecting with two populations of pre-motor neurons, and the choice of action is determined by the competition
between the pre-motor populations. The synaptic strengths are modified by a covariance-based plasticity,
modulated by reward and presynaptic activity. We associate an electric shock to one alternative; the fly should
learn how to choose the safe alternative and avoid the hazard from aversive stimuli. We assume that the lifetime
of the fly is affected by two hazards: 1) the aversive stimulus, and 2) when the remaining energy is low there is a
hazard to perish from starvation. As the files will consume energy to learn to avoid the electric shock, they are
facing a trade-off between starvation caused by synaptic plasticity and the hazard of aversive stimuli. We find
the optimal regulation of the memory pathway by maximizing the lifespan the lifespan of the fruit flies. We
implemented two distinct consolidated memory pathways in Drosophila — a high-cost LTM pathway with a
strong memory retention and a low-cost ARM pathway which however decays over time [3]. When we
implement a single memory pathway with a fixed initial energy, we found the fruit flies with sufficient initial
energy using the LTM pathway survived longer than flies that don't learn. However, when the initial energy was
low, exclusively using the ARM pathway led to a longer lifespan. Next, we gated the memory pathway by an
energy threshold so that the model will select the LTM (ARM) pathway when the energy is above (below) the
threshold. In this regime, the expected lifetime can exceed the case of a single memory pathway. Hence, the
results show that energy adaptive learning allows the fruit flies to save energy when starving, and enable long-
term memory retention when the energy is sufficient. This learning mechanism helps the fruit flies survive
aversive tasks and hostile environments.
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In typical artificial neural networks with backpropagation, synaptic updates are distributed across the entire
network. In principle, all synapses might be modified following a single learning event. In contrast, biological
synaptic plasticity appears to be competitive at various levels, including between individual synapses [1],
between dendritic branches [2,3], and between individual neurons [4]. As a result, in biology only a few synaptic
connections undergo modifications at any time.

A possible reason for this restriction is that synaptic plasticity can be energetically costly [5]. Thus, competition
effects may be due to the requirement that learning is "frugal", minimising the amount of metabolic energy
consumed. For instance, it may be the case that energy debit constraints only allow a certain number of neurons
to undergo memory consolidation in any particular time interval, requiring such selection mechanisms in order to
efficiently allocate the energetic resources.

Here, we investigate the energetic impact of limiting neural plasticity through competition. We utilise a setup
similar to that employed in [6], training a 2-layer artificial neural network on the MNIST dataset, and defining
energy consumption as the magnitude of changes in the model's weights. We mainly focus on neuron-level
competition, using a random selection rule where, after a training example is presented and backpropagation
gradients are computed, only a subset of neurons have their weights updated.

We show that spatial competition between neurons can significantly reduce the energy needed for synaptic
plasticity. We observe energy savings both in terms of the total energy required to reach a set accuracy threshold,
with a more than two-fold reduction in cost for large networks of over 10,000 neurons (Fig. 1), as well as in
terms of the energy efficiency ratio between the minimum energy needed to learn the final set of weights and the
actual energy cost. Using the same methodology, we then further investigate the effects of more refined forms of
the algorithm, such as synaptic-level and refractory competition.

In conclusion, the experimentally observed spatial competition of neural plasticity may be associated with a
reduction in the energy needed to learn, providing evidence for the theory that such effects are at least in part
caused by metabolic energy constraints.
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Figure 1. The total energy required to train the network to 95% accuracy; the learning rate is Se-4, and the
hidden layer consists of 10000 units with exponential linear unit (ELU) activations.
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