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Abstract

This paper presents tables of key thermoelectric properties, which define thermoelectric conversion
efficiency, for a wide range of inorganic materials. The twelve families of materials included in
these tables are primarily selected on the basis of well established, internationally-recognized
performance and promise for current and future applications: tellurides, skutterudites, half
Heuslers, Zintls, Mg—Sb antimonides, clathrates, FeGas-type materials, actinides and lanthanides,
oxides, sulfides, selenides, silicides, borides and carbides. As thermoelectric properties vary with
temperature, data are presented at room temperature to enable ready comparison, and also at a
higher temperature appropriate to peak performance. An individual table of data and commentary
are provided for each family of materials plus source references for all the data.

© 2022 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

Scope and organization
This compilation is concerned with the properties of inorganic thermoelectric materials which are being
explored to provide fundamental understanding and for a wide variety of thermoelectric applications. We
begin with a brief introduction defining the thermoelectric figure of merit, which specifies conversion
efficiency, then define the thermoelectric-related parameters in the data tables and provide an overview of
the twelve families of materials forming the basis of the compilation. This is followed by individual sections
which comprise, for each family of materials, a table of data plus a commentary on the data for that section,
with source references for the data in the table and any additional references cited in the commentary. In the
final section we summarize challenges and future perspectives for inorganic thermoelectric materials.

The rationale for the selection of materials is outlined in section 1.3. The twelve sections and their
authors are:

Tellurides (Tanmoy Ghosh and Kanishka Biswas)

Skutterudites (Pengfei Qiu, Shun Wan and Lidong Chen)

Half Heuslers (Shen Han, Chenguang Fu, Tiejun Zhu)

Zintls (A K M Ashiquzzaman Shawon and Alexandra Zevalkink)
Antimonides (MgsSb,) (Kazuki Imasato and G Jeffrey Snyder)
Clathrates (Melis Ozen, Kivanc Saglik and Umut Aydemir)
FeGajs-type materials (Radl Cardoso-Gil)

Actinides and lanthanides (Eteri Svanidze)

Oxides (Dursun Ekren, Robert Freer and Ryoji Funahashi)
Sulfides and selenides (Anthony V Powell, Shriparna Mukherjee, Sahil Tippireddy and Paz Vaqueiro)
Silicides (Franck Gascoin and Theodora Kyratsi)

Borides and carbides (Philipp Sauerschnig and Takao Mori)

—_ =
HO O RN WD

—
N

Thermoelectric figure of merit

Thermoelectrics can be used to generate power, when the material is located in a temperature gradient, or
enable cooling when a current is passed through the material. The thermoelectric performance (for either
mode of operation) depends on the efficiency of the material for converting heat into electricity. The
efficiency of a thermoelectric material depends primarily on the thermoelectric materials figure-of-merit,
known as zT or ZT [1, 2]. Whilst both versions are found in the literature, we will employ zT when referring
to the figure of merit of a material, and ZT for a device or module. In its simplest form zT is described by:

zT = ($’0) T/k or zT= (o?) T/pr (1)

where the voltage generated is defined by the Seebeck coefficient (denoted by S or «). In order to maximize
efficiency at a particular temperature (T), a high electrical conductivity o (or low electrical resistivity p) is
required along with low thermal conductivity . The latter parameter (x) is made up of two components,
lattice thermal conductivity (k) and electronic thermal conductivity (x.). As the electrical transport and the
electronic contribution to thermal transport are directly linked through the Wiedemann—Franz law [3], there
have been considerable efforts to modify o and « independently in order to maximize zT [1, 2, 4].

To achieve sufficient power, a thermoelectric generator must be used efficiently across a large
temperature difference AT = Ty, — T. and so the material zT' must be high across this temperature range.
The Device ZT is a weighted average of the thermoelectric material zT that gives the maximum efficiency 7
across this finite AT, where the maximum efficiency is given by:

AT (1+2T) -1

e o A+ 2D + T/ Ty

Thermoelectric materials and the tables

The thermoelectric performance of most materials varies widely with temperature, thereby defining an
effective temperature range of operation or ‘thermal window’ (see section 3 and figure 1). Thus, it is
important that peak zT occurs in the range of temperatures appropriate to a specific application, and indeed
the average zT over that range may be more important than maximum zT. For convenience, thermoelectric
materials are broadly divided into families suitable for low temperature (273-500 K), medium temperature
(500-900 K) and high temperature (900-1300 K) applications [2, 4], although some materials, or
combination of materials, can be exploited in more than one range. Traditionally, telluride materials (such as

(2)

3
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Bi,Tes) were established as the first commercial thermoelectric materials and are still employed widely today.
However, because of their limited thermal window, restricting operation to low temperatures (peak
performance ~380 K), and increasing environmental and sustainability concerns, there is active interest in a
wide range of alternative materials. This compilation presents data for 12 families of inorganic
thermoelectrics (listed in section 1.1) which are candidates for a wide range of applications. These inorganic
materials have been selected primarily on the basis of well established, internationally-recognized
performance (some for up to 60 years) and their promise for current and future applications. This applies to
the tellurides, skutterudites, half Heuslers, Zintls, Mg—Sb antimonides, clathrates, oxides, sulfides, selenides,
and silicides. With growing interest in ultra-high temperature applications, above 1300 K, we include data
for carbides and borides as these represent some of the most promising materials for such demanding
environments. Finally, we include three families of ‘exotic’ materials with relatively modest properties,
namely FeGaz materials, actinides and lanthanides. For these materials, the structures and chemistry offer
alternative atomic interactions and bonding scenarios for the regulation of charge carrier and transport
properties. Developing a better understanding of the relationships between crystal chemistry, chemical
bonding and electronic structure should allow the tailoring and enhancement of their thermoelectric
properties. The approaches may be relevant and transferable to other families of materials. Indeed, we hope
this review encourages the scientific community to investigate the full range of available materials using the
spectrum of modern tools.

As all the material families have different temperature dependencies, we include data relevant to
temperatures for peak performance (on the basis of zT or power factor), and also properties close to room
temperature, to enable comparison between the families of materials. Whilst the room temperature
properties provide a useful baseline, it is accepted that such thermoelectric parameters will be modest for the
high temperature materials, and the documented high temperature performance will be more relevant and
representative.

Thermoelectric parameters and relationships

At a particular temperature, T (K), data for up to 12 thermoelectric performance-related parameters are
reported, depending on the data available. We first present abbreviations (and units) for these parameters,
and then outline important inter-relationships.

Abbreviations and units

— Weighted mobility, sy, (cm? V=!s71)

— Hall mobility, gy (cm? V=!s™1)

— Intrinsic mobility, y1, (cm? V=1 s71)

— Lattice thermal conductivity, xp (W m~! K™!)
— Seebeck coefficient, S (uV K™1)

— Electrical conductivity, o (27! cm™1!)

— Thermoelectric quality factor, zT'

— Bandgap, E; (eV)

— Effective mass, m,* (m,)

— Static dielectric constant/relative permittivity, &,
— Thermal conductivity, « (W m~! K—1)

— Carrier concentration, # (cm™?)

Inter-relationships

All the parameters contributing to zT (equation (1)), i.e. Seebeck coefficient, electrical resistivity and thermal
conductivity vary significantly with charge carrier concentration in contrasting ways. Achieving high zT in a
material typically requires optimization of the charge-carrier concentration. As the charge-carrier
concentration can be controlled by intrinsic defects (such as vacancies and interstitials) as well as extrinsic
dopants (impurities), then the search for (or comparison between) good thermoelectric materials is really a
search for a material with the highest potential for high zT assuming it can be optimally doped. This
potential high zT is determined by the thermoelectric quality factor B [5, 6], defined in equation (3), which at
a particular temperature is directly proportional to zT [7]:

8mkg (2m, )3/ 579 WW
B= e ()32 3
3el’ (ks T) KL )

Here kg, m., e and h are the Boltzmann constant, electron rest mass, electron charge and Planck’s constant
respectively; thus except for temperature, the quality factor is proportional to pi/k1. This indicates the
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quality of a thermoelectric material can be divided into the quality of its electronic properties, given by the
weighted mobility p,,, and the quality of its thermal properties, given by the lattice thermal conductivity «,
[8]. Hence, improvements in ‘electronic properties’ can be defined as a higher ,,, while improved ‘thermal
properties’ means a lower x; for all material changes other than doping.

Several types of mobility are reported in the literature, most commonly the Hall mobility, intrinsic
mobility, and weighted mobility. The Hall mobility, uy, is directly obtained from measurements of the Hall
coefficient and resistivity. The intrinsic mobility, p,, is usually calculated using a single parabolic band (SPB)
model, and can be viewed as an estimate of py at the limit of very low carrier concentration (i.e. intrinsic
behavior). Thus, for a given material and temperature, 1, > py. Hall mobility (uy) is reported for over half
the material families in the compilation and intrinsic mobility (u,) for most of the remainder; this reflects
the available data in the source publications.

Finally, the weighted mobility, pw, is generally described as the drift mobility, 11, weighted by the
density-of-states effective mass (m1}5¢). Equation (4) further relates ., to the effective valley degeneracy
(Nv) and inertial effective mass, m; [9]:

" 3/2
m N
o = 1 <D05> ~ = (4)

e m;’

High weighted mobility is achieved in materials with lighter inertial effective mass m; (which is equal to the
single band effective mass 1 for an isotropic band) and/or higher effective valley degeneracy. The advantage
of comparing weighted mobility values among various materials is that it does not require Hall
measurements (and is therefore widely accessible) and it combines two different parameters (g and p)
that should be maximized to increase thermoelectric performance.

The weighted mobility has been calculated for all material families in this paper using equation (5),
where S and p are the experimental values of Seebeck coefficient and electrical resistivity, respectively, at
temperature T [7]:

_ 1s|
Ly = 331 <T> k& P [ks/e _2} T %IJTS/le 5)
300 1+ exp [—5 (k'j/‘e - 1)] 1+ exp [5 + (k'j/‘e - 1)]
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2. New entries

Since this is the first release of the Key Properties of Inorganic Thermoelectric Materials, all the entries in the
tables can be treated as ‘new’. Therefore, we present and discuss here the most important materials and the
trends observed in the tables. The reader is referred to the original publications for further details.
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3. Data tables and commentaries

The data tables are presented in the following sequence as sections 3.1-3.12:

(3.1) Tellurides, (3.2) Skutterudites, (3.3) Half Heuslers, (3.4) Zintls, (3.5) Antimonides
(Mg3Sb,), (3.6) Clathrates, (3.7) FeGas-type materials, (3.8) Actinides and Lanthanides, (3.9)
Oxides, (3.10) Sulfides and Selenides, (3.11) Silicides, (3.12) Borides and Carbides.

To set the scene and highlight the relationships between the different families of materials we show in

figure 1, typical zT values as a function of temperature for each of the families. This provides a very limited
representation of the available data, but highlights the similarities and differences between current materials.
Whilst the highest zT values (above 1.5) are available in the low and medium temperature ranges, there are
many high-temperature materials with peak zT values well above 1.0. A clear feature across all the materials
is the temperature dependencies; most medium and high temperature materials only really reach peak zT at
the highest temperatures, whilst some of the low temperature tellurides (e.g. 1a p-type; 1d n-type) soon reach
a very clear peak after which zT decreases rapidly with increasing temperature. Such behavior defines the
range of temperatures (or operating window) for which the material will be most suitable as a
thermoelectric. In this way the average zT (over a range of temperatures) can be more important, in
determining performance, than the peak zT at one temperature.

A common, though not universal, feature across many materials is that the n-type materials exhibit
higher zT values than their p-type counterparts. There are clear exceptions to this trend; notably among the
sulfides, where a high-performance n-type material continues to be elusive. Consequently, there is
considerable effort to develop related p-type and n-type materials of comparable performance to maximize
the efficiency of thermoelectric modules. Looking at examples of material families, it is evident that
skutterudites have their peak zT values at medium temperatures; the n-type skutterudites exhibit much
higher zT values than the p-type skutterudites due to superior electrical transport performance. However,
there can also be stark contrasts within individual families; the Sn clathrates display peak zT values at
low-to-medium temperatures, whilst the Ge clathrates are best suited for medium-to-high temperature
applications. The n-type Mgs;Sb,—Mg3Bi, alloys have only a relatively short history as thermoelectrics, but
show promising performance from room temperature to around 700 K. The peak zT' temperature can be
easily adjusted by just changing the Sb:Bi ratio. Finally, carbides, such as SiC, are ideally suited to ‘ultra high
temperature’ thermoelectric applications. Whilst their performance is average to good at 1200 K (curve 12a:
p-type; curve 12b: n-type data) their zT values are still increasing and will not reach their peak until much
higher temperatures, still within their stability range.
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Figure 1. Thermoelectric figure of merit (z7T) as a function of temperature for the families of materials. Details: (1) tellurides:
p—type—(la) Bi0‘55b1‘5T63, (lb) Pbo,ggNao,ozTe—4%Sl’TE, (IC) Geo‘ggpbo‘lBio,mTe, n—type—(ld) Bil‘gsbolzTEZJSon, (le)
PbTe—4%]InSb; (2) skutterudites: p-type—(2a) CeFes gsMng 15Sbi2, n-type—(2b) Bag.gsLag.0s Ybo.oa CosSbiz; (3) half Heuslers:
p-type—(3a) Nbyg gsHfo.12FeSb, n-type—(3b) Zro,Hfy sNiSng.og5Sbo.o15; (4) Zintls (including Mgz Sb,): p-type—(4a)
Yb14Mng2Aly sSbi1, n-type—(4b) MgszSb, 5Bigs; (6) clathrates: p-type—(6a) BagGais.sCug.033Sn30.1, n-type—(6b)
BagGaie.6Geas7; (7) FeGas-type materials: p-type—(7a) RuGay.95Zng.0s, n-type—(7b) FeGaz 30Geo 205 (8) actinides and
lanthanides: p-type—(8a) Ybs sSmyg»Sbs, (8b) USis, n-type—(8c) LasTey, (8d) URu,Siy; (9) oxides: p-type—(9a) Ca,.sBio
C0409, (9b) Bio‘94Pb0‘06 Cllo_99F€0_01 SeO, n—type—(9c) Sro‘gs(Tio‘ngo‘z)0,95Ni0,0503; (10) sulﬁdes and selenides: p—type—(lOa)
Cu,Se, n-type—(10b) Pbg.93Sbo.05S0.5S€0.5; (11) silicides: p-type—(11a) Mg, Lig25Si0.4Sno.6, n-type—(11b)
Mg;.98Cro.02(Si0.35n0.7)0.98Bio.o2; (12) Borides and Carbides: p-type—(12a) Boron carbide (13.3 at.% C), n-type—(12b)
Cag5Sr¢.5Bs.
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3.1. Tellurides

Thermoelectrics based on metal tellurides
Tanmoy Ghosh' and Kanishka Biswas"*>

! New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (J]NCASR), Jakkur PO,
Bangalore 560064, India

2 School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR),
Jakkur PO, Bangalore 560064, India

3 International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research
(JNCASR), Jakkur PO, Bangalore 560 064, India

E-mail: kanishka@jncasr.ac.in

Introduction

Metal tellurides are among the most extensively studied families of thermoelectric materials for near room
temperature to mid-temperature thermoelectric power generation. Particularly, the IV-VI semiconductors
like GeTe, Sn'Te, and PbTe and tetradymites Bi, Tes-based thermoelectric materials have attracted wide
attention in the community. Many of the modern-day approaches of improving thermoelectric performance,
based on either electronic structure modulation or phonon scattering manipulation strategies, were first
demonstrated on these materials. These families of materials, such as (GeTe),(AgSbTe;)100—x-based TAGS-x
and Bi, Tes-based materials are some of the most widely used thermoelectrics for commercial applications.
Figure 2 exhibits the maximum thermoelectric figure of merit, zT for a range of current metal telluride
thermoelectric materials. Here, we outline the status of these metal telluride-based thermoelectric materials,
the challenges, and recent progress. Typical thermoelectric performance-related parameters and zT values for
various Te-based thermoelectric materials are listed in table 1.

IV-VI tellurides

While both SnTe and PbTe crystallize in the cubic rocksalt structure at ambient conditions, GeTe has a
rhombohedral crystal structure at room temperature. However, GeTe undergoes a rhombohedral to cubic
phase transition at ~720 K. All three are narrow band gap semiconductors with band gap in the range
~0.18-0.32 eV. As a result of this favorable band gap, highly-symmetric crystal structure leading to
degenerate electronic bands, easy tuneability of electronic structure via chemical doping and alloying, and
heavy constituent elements, they are ideal for exploring high thermoelectric performance. At present, a
thermoelectric figure of merit, zT as high as ~2.7 at 720 and ~2.57 at 850 K can be achieved in GeTe [10]
and PbTe [11] based p-type thermoelectric materials, respectively. While SnTe is much less toxic than PbTe,
the maximum zT obtained so far is only 1.6 at 720 K [12, 13].

PbTe is a very important thermoelectric material; both band convergence and resonant level formation
strategies were first demonstrated in PbTe. Resonant level formation in PbTe upon Tl doping [14] and
valence band convergence in PbTe; _,Se,:Na [15] resulted in maximum zT ~ 1.5 and 1.8 in 2008 and 2011,
respectively. Since then, these electronic structure modulation strategies have been followed up for numerous
materials, and many 2nd (1 < zT < 2) and 3rd (zT > 2) generation thermoelectric materials have been
achieved, including in GeTe and SnTe. For example, In doping has been very effective in inducing resonant
levels in both SnTe [16] and GeTe [17], significantly improving their thermoelectric performance. Similarly,
doping or alloying of Sb [18], Mn [19], Zn [20], Cd [21] in GeTe is also highly effective in inducing valence
band convergence. While PbTe and SnTe have the same rocksalt crystal structure, the larger energy gap
(~0.35 eV) between the primary and secondary valence bands in SnTe results in low Seebeck coefficients and
consequently poor thermoelectric performance. Doping and alloying of many elements like Mn [22], Mg
[23], Cd [24], Hg [25] etc are highly effective in reducing the gap between the primary and secondary
valence bands. It has also been demonstrated that synergistic effects of band convergence and resonant level
can further improve the thermoelectric performance. This has been achieved in SnTe via co-doping of In and
Cd [26], and In and Ag [27]. Another highly successful strategy, based on phonon scattering manipulation,
namely, all-scale hierarchical architecture, was first demonstrated in PbTe, resulting in maximum zT ~ 2.2 at
915 K [28]. Recently, lattice strain in Na—Eu—Sn doped PbTe has been shown to be very effective in reducing
lattice thermal conductivity without compromising the carrier mobility; it resulted in 2T ~ 2.57 at 850 K
[11]. Many synergistic effects of electronic structure modulation and thermal transport optimization have
also been achieved via co-doping in GeTe and SnTe. For example, complementary effects of resonant state
formation via In doping, and reduced thermal conductivity due to solid solution point defects with Bi
doping, results in high thermoelectric performance with zT ~ 2.1 at 723 K in In and Bi co-doped GeTe [29].
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Figure 2. Maximum thermoelectric figure of merit, zT for various metal tellurides: AgInTe, [57], AgGaTe, [58], CulnTe;, [61],
CuGaTe; [63], AgSbTe, [64], BiTe [66], n-type GeTe [36], p-type GeTe [10], n-type PbTe [40], p-type PbTe [11], SnTe [12], n-type
Bi, Tes [46], p-type BiyTes [45], BiCuOTe [67], Las_Tes [68], Prs—,Tes [65], MnTe [50], Ag,Te [56], AgCuTe [52], and Cu,Te
[54].

Similarly, synergistic effects have also been achieved in GeTe by co-doping Sb and Bi [18], and in SnTe via
co-doping of Ag and Mn [30].

One major problem in SnTe and GeTe is their high p-type carrier concentration due to cation vacancies.
Doping, such as Bi in GeTe [21, 31] and self-compensation in SnTe [30] have been effective in reducing the
hole concentration. The rhombohedral to cubic phase transition in GeTe has been used as an added control
parameter to achieve high thermoelectric performance. The high temperature cubic phase of GeTe possesses
a four-fold degenerate light L band at higher energy and 12-fold degenerate heavy ¥ band at lower energy.
The polar distortion along the [1 1 1] crystallographic direction in the rhombohedral phase, however, splits
the 4 L pockets into 3 L and 1 Z pockets, and the 12 X pockets into 6 X and 6 1 pockets. Moreover, in the
rhombohedral phase, the ¥ band becomes the principal valance band with higher energy. This reduction of
band degeneracy, and practical problems arising from the high-temperature phase transition, led to much
effort on reducing the phase transition temperature and achieving higher thermoelectric performance in the
cubic phase at lower temperature. For example, In and Sb co-doping [32], Bi and Mn co-doping [33] and
MnTe alloying [19] have been successful. In recent years, however, it has been shown that precise control of
the rhombohedral distortion can be used to achieve a higher degree of effective band degeneracy due to band
orbital overlap and reduced lattice thermal conductivity using Bi doping [34]. This resulted in a maximum
zT ~ 2.4 at 600 K. Very recently, it was shown that Rashba spin splitting can be used to achieve effective band
convergence in Sn doped GeTe [35].

As can be seen from figure 2, high thermoelectric performance has been achieved in these materials with
p-type thermoelectric transport. In fact, because of intrinsic Sn and Ge vacancies, it is very difficult to achieve
n-type thermoelectric transport. Only recently n-type thermoelectric transport has been reported in GeTe
through AgBiSe, alloying [36]. However, the zT ~ 0.6 at 500 K is much lower than that of the high zT of
p-type, GeTe-based thermoelectric materials. Indeed, n-type thermoelectric transport is far more explored in
PbTe. Still, the presence of a single conduction band at the L point, compared to the multivalley degenerate
valence band structure at L and ¥ points, makes it challenging to achieve high n-type thermoelectric
transport in PbTe. Introduction of mid-gap states through In [37] and Ga [38] doping in PbTe was highly
effective in enhancing the n-type thermoelectric performance. The n-type thermoelectric performance of
PbTe has also benefited from enhanced effective mass by conduction band flattening through MnTe alloying
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[39]. In a recent study, introduction of energy filtering through multiphase nano-structuring in a PbTe-InSb
composite greatly improved the n-type thermoelectric performance of PbTe, with zT of 1.83 at 773 K [40].

BizTe3

Bi, Te; and its solid solution alloys with Sb,Te; and Bi,Ses have been used in practical applications since the
1950s [41], and today they are still the most widely used thermoelectric materials for near room temperature
applications. These are layered materials and have hexagonal close packed arrangement of anions. The
structure comprises quintuple atomic layers of Te(1)-Bi—Te(2)-Bi—Te(1) along the crystallographic
c-direction and two successive quintuple layers are held together by weak van der Waals’ (vdW) interactions
between two Te(1) layers. Such a layered structure causes anisotropic electrical and thermal transport
properties when measured parallel and perpendicular to the layered plane. The highly polarizable Bi-Te
bonds, the presence of weak vdW bonds within the layered structure and the constituent heavy elements
result in strong lattice anharmonicity and consequently a low lattice thermal conductivity. Bi, Te; is an
indirect narrow band gap semiconductor with E; ~ 0.15 eV. A low band effective mass and a highly
degenerate electronic band structure also results in high Seebeck coefficient with high charge carrier
mobility. Phonon scattering from point defects due to Bi and Sb disorder in Biy 5Sb; 5Tes also markedly
reduces lattice thermal conductivity. These combinations of low lattice thermal conductivity, favorable
electronic band structure and high charge carrier mobility makes Bi, Te; based materials good candidate
thermoelectric materials. The thermoelectric properties of these materials have been greatly improved
recently by microstructural engineering and nanostructuring, which result in lower lattice thermal
conductivity while retaining relatively high carrier mobility with optimized pi/ky; p-type zT ~ 1.4 at 373 K
was obtained in Bi,Sb,_,Tes alloys by hot pressing ball-milled nanopowders [42]. Recently, nanostructuring
with secondary phase nanoprecipitates has also been achieved in BiSbTe—Zn alloys [43]. Melt-centrifugation
has been very effective in controlling the microstructure in (Bi,Sb), Tes, with microscale dislocation arrays
and a porous network, giving superior thermoelectric performance than zone-melted and hot pressed ingots
[44]. While point defects scatter high frequency phonons, boundary scattering targets the low frequency
phonons. Recently, liquid phase sintering was adopted to produce low energy grain boundaries with dense
dislocation arrays which include scattering of mid-frequency phonons without simultaneously decreasing
the charge carrier mobility. This resulted in a record high thermoelectric p-type figure of merit zT ~ 1.86 at
320 K in (Bi,Sb),Te; alloy [45]. Such liquid phase sintering has also been applied in Sb doped Bi,Te, ;Seq 3 to
obtain a high zT n-type material and a large density of dislocation arrays has been observed in the sample.
The consequent decrease of lattice thermal conductivity while retaining high charge carrier mobility resulted
in n-type zT ~ 1.4 at 425 K [46]. Bi,Te, 7Sep 3 nanoplates have also been synthesized in a microwave-assisted
synthesis route, which have zT ~ 1.23 at 480 K [47]. While many studies have focused on microstructure
engineering to optimize the thermal transport, recently K doping has been used to modulate the electrical
transport in Bi, Tes; for n-type material, zT ~ 1.1 was obtained at 350 K [48].

Transition metal (TM) tellurides

In this section, we discuss the TM based tellurides including MnTe, Ag, Te, Cu,Te and AgCuTe. MnTe
crystallizes in a hexagonal structure and is an indirect band gap semiconductor with E; ~ 0.8 eV. While MnTe
exhibits high Seebeck coefficient, its low carrier concentration (10'® cm™?) results in poor thermoelectric
performance. Many dopants, such as Cu, Ag, Na have been introduced to improve the carrier concentration,
which resulted in a maximum zT ~ 1.09 at 873 K [49]. Recently, the incorporation of SnTe nanocrystals was
very effective in improving zT ~ 1.4 at 873 K [50]. Another novel concept based on paramagnon drag
enhancement of the Seebeck coefficient has been used to improve thermoelectric performance [51]. This
resulted in maximum zT ~ 1 at 923 K in Li doped MnTe. On the other hand, Cu,Te, Ag, Te and AgCuTe are
superionic conductors. At room temperature, they have a complex crystal structure: for example, the ambient
structure of AgCuTe and Ag, Te are hexagonal and monoclinic, respectively. However, at high temperature,
these materials have a cubic structure and exhibit superionic conduction. In the superionic phase, the anions
form a rigid framework which supports high electrical conduction while the cations become superionic and
impede phonon propagation. Such a resemblance to the phonon-glass electron-crystal (PGEC) scenario
drives thermoelectric interest in these materials. However, high hole concentrations due to cation vacancies
causes metallic conduction and low Seebeck coefficients. Recently, Se alloying in AgCuTe was very effective in
suppressing cation vacancies due to stronger Ag—Se/Cu—Se bonds compared to Ag—Te/CuTe bonds.
Additionally, dynamic cation disorder decreases lattice thermal conductivity, and an impressive zT' ~ 1.6 at
670 K was obtained in Se doped AgCuTe [52]. Similarly, Sn doping has been used to tune the high hole
concentration of Cu,Te and zT ~ 1.5 has been achieved at 1000 K [53]. A mosaic crystal of Cu,(Te,S) has
also been reported with zT ~ 2.09 at 1000 K [54]. In contrast to p-type electronic transport of Cu,Te and
AgCuTe, Ag, Te exhibits n-type conduction. In Ag,Te, increased band conduction in PbTe alloyed Ag,Te
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resulted in zT' ~ 1 at 550 K in the high temperature superionic phase [55]. In contrast, Sb doping has been
shown to be effective in increasing the carrier concentration and electrical conductivity in the low
temperature monoclinic phase of Ag,Te and zT ~ 1.4 has been achieved at 410 K [56].

Chalcopyrites

The I-11I-VI, (I = Ag, Cu; III = Ga, In; VI = Te) semiconductors, with unique electronic and thermal
transport properties, are potential high performance thermoelectric materials. These materials have
diamond like structures formed by the interconnected (I-VI)4 and (III-VI)4 tetrahedra. Compared to IV-VI
semiconductors, these chalcopyrites are wide band gap semiconductors with E, ~ 0.8—1.2 eV. Despite having
similar crystal structures, all the I-III-VI, (I = Ag, Cu; III = Ga, In; VI = Te) semiconductors have distinctly
different electrical and thermal transport properties [57]. AgGaTe, and AgInTe, possess low thermal
conductivity; however, their low electrical conductivity renders them unsuitable as high-performance
thermoelectric materials. The presence of Ga vacancies in AgGaTe, greatly improves thermoelectric
performance, with zT' ~ 1.02 at 873 K [58]. The related tellurides CuGaTe, and CulnTe, possess both high
electrical conductivity and high thermal conductivity. Therefore, much effort has been devoted to lowering
the lattice thermal conductivity of CuGaTe, and CulnTe, via a range of strategies based on inclusions and
point defects. For example, the inclusion of nanophase Cu,Se in CuGaTe, significantly reduces lattice
thermal conductivity [59]. Similarly, ZnS nanoscale heterostructures [60] and In,O3 nanoinclusions [61]
have been incorporated in CulnTe, to lower its lattice thermal conductivity. Solid solution alloying of Ag into
CulnTe, lowers lattice thermal conductivity by forming weak Ag—Te bonds, which results in a high zT ~ 1.6
at 850 K [62]. Multicomponent alloying of Ag and In in CuGaTe; has also been very successful in lowering
the lattice thermal conductivity, yielding zT ~ 1.64 at 873 K [63].

Concluding remarks

Many metal tellurides materials are used in practical applications because of their high thermoelectric
performance. Recent advances in understanding of electronic structure, electrical and thermal transport
properties, and sophisticated material processing techniques have led to important improvements in their
thermoelectric performance in recent years. Furthermore, a range of novel strategies have been developed,
including the precise control of the rhombohedral distortion [34] and Rashba spin splitting in GeTe [35],
engineering ferroelectric instability in SnTe [13], and greatly improved material processing techniques for
Bi, Te; based materials [45] for microstructure and nanostructure engineering. Recently, a very high zT ~ 2.6
at 573 K was achieved in I-IV-VI, compound AgSbTe, by inducing nanoscale ordering [64]. Similarly, the
novel concept of paramagnon drag in MnTe was employed to improve thermoelectric performance [51]. In
recent years, rare earth tellurides like Pr;_, Te, have also been introduced with high zT ~ 1.7 at 1200 K [65].
In addition to developing new high performance thermoelectric materials, unique strategies of electronic
structure and phonon transport manipulation are necessary to achieve higher thermoelectric performance.
Currently, the inferior performance of the counterpart n-type thermoelectric materials is major drawback,
which needs to be addressed. Similarly, Te-based oxide thermoelectric materials, which have great potential in
practical applications for high resistance against corrosion and thermal degradation, are worthy of attention.
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Skutterudites (table 2) are among the best thermoelectric materials for applications in intermediate
temperatures [123—125]. Binary skutterudites, with the chemical formula of MX; (M = Co, Rh, or I, X =P,
As, or Sb), crystalize in a body-centered cubic structure (Im-3), with the structure shown in figure 3(a).
There are two large icosahedral voids per unit (MsX,4), which can be filled with guest atoms (e.g. alkalis,
alkaline earths, rare earths, and others) forming filled skutterudites. The chemical formula of filled
skutterudites can be written as G,M4X,, where G represents the fillers and y is the filling fraction. The fillers
G are weakly bonded with the surrounding atoms with large atomic displacement parameters, which can
strongly interrupt the normal transport of phonons by introducing additional localized vibrational modes
and therefore significantly lower the lattice thermal conductivity (xr,). By the combination of significantly
reduced thermal conductivity and (maintaining) good electrical transport, the filled skutterudites well satisfy
the PGEC concept proposed by Slack [126, 127].

Cobalt antimonide (CoSbs) based filled skutterudites are reported to show excellent thermoelectric
performance among the skutterudite family [128—149]. When rare earth, alkaline earths, or alkali metals are
accommodated in the Sb-icosahedral voids without additional charge compensation, the resulting filled
skutterudites G,Co,Sb;; usually show n-type conductivity due to the extra electrons introduced into the
[Co4Sby,] framework by the filler, while the fillers hardly modify the band structure near the conduction
band minimum. The maximum filling fraction increases with the type of filler, roughly following the
sequence of rare earths, alkaline earths, and alkali metals, although it is also affected by the electronegativity,
radius, and valence of the filler ions. The optimal filling fraction for maximum power factors (PFs) roughly
obeys a ‘0.5 electron per unit cell’ rule, in which the carrier concentration reaches ~10?° cm~> [150]. Binary
CoSbs has an intrinsic high 1 of about ~10 Wm™" K~ at 300 K. Introducing foreign elements into the
Sb-icosahedral voids can greatly lower x; due to the filler-introduced resonant scattering of phonons. One
important realization is that these resonant scattering centers are tuned to a particular spectrum of phonons.
By filling the voids with different types of elements possessing different resonant frequencies, it enables
phonons with a broad range of frequencies to be scattered, leading to a significant reduction of lattice
thermal conductivity in the so-called multiple-filled skutterudites. With comprehensive strategies,
combining the optimization of carrier concentration by optimizing the filling fraction, the reduction of «
through multiple-filling, as well as the introduction of magnetic nanocomposites, the maximum zT has been
enhanced to a very high level, exceeding 1.7 in CoSbs-based n-type filled skutterudites [144, 149].

It is easy to obtain p-type filled skutterudites by alloying Fe at the Co-site or Ge/Sn at the Sb-site in
G,Co4Sb;. G,Cos_«Fe,Sby, (where x is the Fe doping content) represents one of the most promising p-type
filled skutterudites [149, 151-157]. The x in G, Cos—_xFe,Sb,; is usually in the range of 1.5-4. The maximum
filling fraction y in G,Co4—.Fe,Sby; is usually less than x/n, where n is the valence state of fillers. In
G, Fe4Sby,, the electrical transport is sensitively dependent on the valence states of the fillers, while the lattice
thermal resistivity Wi (=1/k1) obeys the relationship of Wy ~ (rcage—rion)3, where 7 and riop are the radii
of Sb-icosahedron void and filler, respectively [151]. It should be noted that the Sb in p-type filled
skutterudites is easier to volatilize at elevated temperature than in n-type filled skutterudites, thus the
maximum measurement temperature for p-type filled skutterudites is usually around 800 K, about 50-100 K
lower than that for n-type filled skutterudites. The maximum 2T is around unity for p-type G,Co,_.Fe,Sbis,
which is much lower than for n-type G,Co4Sb,, (figure 3(b)) [151-153].

Figures 3(b)—(f) present the collected physical properties (electrical conductivity, thermal conductivity,
Seebeck coefficient, and carrier mobility) and thermoelectric parameters (PF and zT') of p—and n-type
skutterudites at 300 K [128-149, 151-157]. These parameters are plotted as the dependencies of electrical
conductivity or carrier concentration. All these dependencies show similar trends even at high temperature.
As shown in figure 3(b), at 300 K, the zT5s of p-type skutterudites are smaller than those for n-type materials
across the whole range of electrical conductivity (o), although the optimal electrical conductivity for peak zT
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Figure 3. (a) Crystal structure of binary skutterudites. (b) Electrical conductivity (o) dependence of dimensionless
figure-of-merit (27T') for (filled) skutterudites at 300 K and 800 K. o dependences of (c) power factor (PF) and (d) Hall mobility
(pm) at 300 K. (e) The absolute Seebeck coefficients (|S|) as a function of Hall carrier concentration (ny or py) at 300 K. (f) o
dependence of thermal conductivity () at 300 K. The dashed lines in (b) are guides to the eyes. The dashed lines in (c) and (e)

represent the fitted curves based on the single parabolic model, in which the used g, values are 335 cm? V=!s~! and
225 cm? V157!, and the used m* values are 5 m, and 12 m, for n-type and p-type skutterudites, respectlvely

takes occurs in the same range, around 1500-2500 S cm ™. The disparity between the optimal zT values of n-
and p-type skutterudites is numerically determined by the different levels of PF as shown in figure 3(c). For
example, the maximum PF for n-type skutterudites at 300 K is approximately 40 4W cm ™! K~2, while that
for p-type materials is only around 20 yW cm ™! K.

Generally, the weighted mobility 1, (=po(m*/mg)*?, where piq is the drift mobility and m* is the
density-of-state effective mass) is an important factor to discuss the PF. Since the m* varies with the variation
of carrier concentration in skutterudites, it is difficult to achieve a satisfactory fit to all data by using fixed i,
but the general trend should be valuable and meaningful from the estimated p,, [158]. In figure 3(c), the
PF—o lines for n- and p-type skutterudites are drawn using the estimated i, (335 cm* V=!s~! and
225 cm? V=157 for n- and p-type skutterudites, respectively, estimated from all collected data) and m* (5m,
and 12m,, for n- and p-type, respectively, estimated from all collected data). As shown in figures 1(d) and (e),
the much larger pyy guarantees the larger PFs for n-type skutterudites although their m* values are smaller
than in p-type ones. This scenario is consistent with analyses based on band structure. For n-type
skutterudites, the conduction band edge is dominated by the Sb-dominated threefold degenerated bands.
However, for p-type skutterudites, there is one Sb-dominated light band and one Fe-dominated heavy band
in the valence band edge. Considering the heavily doped character of G, Co,_xFe,Sby,, the Fermi level crosses
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the Fe-dominated heavy band. The localized nature of Fe 3d orbitals is responsible for the large m* but small
1o observed in p-type skutterudites. This implies that, efforts to optimize the band structure through
exploring new alloy systems (if possible) to enhance the carrier mobility may be worthwhile for the
development of p-type filled skutterudites with higher thermoelectric performance.

Figure 3(f) shows that the p-type (filled) skutterudites generally exhibit lower total thermal conductivity
(k) and &y, than the n-type (filled) skutterudites under the comparable range of ¢. This is reasonable since
the p-type skutterudites usually possess higher filling fractions, which can lead to stronger scattering of
phonons. In addition, the coexistence of Fe and Co at the same atomic site introduces extra point defects to
scatter phonons, which are also responsible for the lower x; values observed in p-type skutterudites.
However, in figure 3(f), it can be seen that many n-type samples exhibit comparable « to the p-type samples
in the optimal o range. It is noted that these low & values are obtained in the multiple-filled skutterudites.
The combination of the low x and reduced influence on electrical transport by multiple-filling guarantees
the realization of high zT in n-type filled skutterudites.

Although skutterudites have been widely studied in the aspects of both material optimization and device
development, there are still great challenges for skutterudite thermoelectrics. Firstly, the current TE
performance of p-type skutterudites is behind that of the n-type skutterudites, which limits the development
of high efficiency devices. Considering that the localized 3d orbitals of Fe is the main reason for the low
carrier mobilities and poor zT5 of existing p-type skutterudites, alternative doping elements should be
explored to develop new p-type skutterudites. Secondly, the x, of n-type skutterudites below 700 K still has
much scope for reduction. Novel approaches, such as nanostructure engineering, are to be encouraged to
further strengthen phonon scattering, which is beneficial for enhancing the average zT of n-type
skutterudites over the entire temperature range and therefore effectively improving the conversion efficiency
of the devices. Furthermore, at high temperatures, skutterudites face severe oxidation and Sb volatilization
issues, leading to relatively poor reliability during service. Developing effective protective coating or sealing
technology against oxidation and volatilization is also important for their practical applications.
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3.3. Half Heuslers
Half-Heusler thermoelectric materials

Shen Han, Chenguang Fu and Tiejun Zhu
State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, People’s Republic of China

E-mail: zhutj@zju.edu.cn

Studies of thermoelectric properties of half-Heusler (HH) compounds have been carried out since the end of
the 20th century, focusing on compositions with 18 valence electrons represented by three typical systems,
i.e. MNiSn (M = Ti, Zr, Hf), MCoSb and XFeSb (X = V, Nb, Ta). In recent years, the 18-electron NbCoSn,
ReNiSb (Re is a rare earth element), and nominal 19-electron XCoSb compounds have also attracted
increasing attention. A summary of the peak zT values obtained for different HH compounds is shown in
figure 4, and a detailed comiplation of representative data are given in table 3. These advances make HH
compounds promising thermoelectric candidates for power generation applications with advantages of
mechanical robustness, thermal stability, and relatively low-cost constituents.

The intermetallic MNiSn, found to exhibit semiconducting behavior around 1988 [231], was the first HH
system to seriously arouse the interest of the thermoelectric community before the end of the 20th century
[232]. With the efforts in the past two decades, MNiSn-based HH compounds have now been developed into
the best n-type HH thermoelectric materials with peak zT above unity [164, 188, 192, 193, 233]. MCoSb has
attracted research attention since 2000 and rapidly developed as a representative p-type thermoelectric
system with a zT of about unity [168, 214]. It is worth noting that n-type MCoSb has recently been found to
show a similar high zT value as its p-type counterpart [169—171], making it the first HH system with both
good n-type and p-type thermoelectric performance. The studies on the thermoelectric properties of XFeSb
started as early as those on MNiSn and MCoSb [172], but it did not attract much attention at that time,
owing to the poor thermoelectric properties. Since 2014, with guidance of the band engineering concept and
the selection of rational dopants, the heavy-band XFeSb-based HH system has been developed as
high-performance p-type thermoelectric materials with a peak zT" value of about 1.5 through rational
compositional design and optimal doping [173—177, 179]. Very recently, prototype eight-pair HH
thermoelectric modules using n-type MNiSn and p-type XFeSb were assembled [234, 235]; they show a
maximum conversion efficiency of 10.5% and power density of 3.1 W cm ™ for a temperature difference of
680 K, demonstrating the encouraging prospect of HH compounds for power generation.

The nominal 19-electron HH system was usually thought to show metallic behavior and thus, it was
unexpected that NbCoSb exhibited a respectable zT value of 0.4 in 2015 [180]. Subsequently, with the
knowledge of defect chemistry [236], XCoSb was identified to be a defective HH compound with a
considerable fraction of cation vacancies (up to ~20%). Through tuning the content of cation vacancies that
lead to suppressed lattice thermal conductivity and optimized electrical properties, a peak zT ~ 0.9 was
achieved in Nb;_, CoSb [181], demonstrating that the nominal 19-electron HH system provides a new class
of material for the exploration of high-performance thermoelectrics and the understanding of the
relationship between vacancies and transport properties.

In addition, some other HH compounds have also attracted some attention, including ZrCoBi, which
was reported to show a peak zT of ~1.4 for p-type and ~1.0 for n-type [185, 186]. The thermoelectric
properties of ReNiSb, a family of HH compounds with rare-earth elements, were also studied [191]. Further
performance improvement is expected if the optimization strategies, generally used for MNiSn, MCoSb, and
XFeSb, are successfully applied to ReNiSb. Similarly, NbCoSn, another 18-electron system with the predicted
high PF for both p-type and n-type [237], has also been investigated. A peak zT of ~0.6 was reported when it
was doped as n-type [187, 189], whereas optimal p-type doping for NbCoSn is still not successful.

Different from many other good thermoelectric materials, HH compounds are characterized by their
high PF (S%c), which directly contributes to their high zT value. The high crystal symmetry, from their cubic
structure, leads to multiple carrier pockets and high band degeneracy Ny near the band edge, such as the Ny
of 8 for p-type NbFeSb and ZrCoSb [238, 173]. Thus, a large density of states (DOS) effective mass is
obtained, resulting in a large Seebeck coefficient even at a high carrier concentration. In addition, the low
deformation potential guarantees weak carrier scattering by phonons and thus the relatively high carrier
mobility in the heavy-band HH system [175, 188]. Another distinct feature of the heavy-band HH system is
the high optimal carrier concentration #,p, defined as the carrier concentration where the peak zT occurs. In

a single-band system, the 71,y is approximately proportional to (1] T)3/ * under the classical statistics
approximation [239], where m}} is the DOS effective mass. For the HH system, 1, increases from
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Figure 4. Summary of the peak zT values for typical HH thermoelectric materials [163-230].

~4 x 10% cm ™3 for n-type ZrNiSn, ~2.6 x 10*! cm 3 for p-type NbFeSb, to ~4 x 10*' cm ™2 for n-type
TiPtSb, whilst the m}; increases from 2.8 1., 6.4 m,, to 14.5 m., respectively [174, 184, 188]. In comparison,
the 1oy of PbTe is about 3 x 10" cm ™ [240], one or two orders of magnitude lower than that of the HH
system. High 714, indicates that a high level of chemical doping is required for optimizing the electrical
performance, which could also bring additional point-defect scattering of phonons. Thus, the selection of a
rational doping element is important for the simultaneous optimization of PF and strong suppression of
lattice thermal conductivity in the heavy-band HH system [175, 179].

Knowledge of the intrinsic electronic structure of thermoelectric materials is of vital importance for the
selection of optimization strategies. The bandgap E, is considered to be the foremost parameter for a
semiconductor. The calculated E; for MNiSn, MCoSb, and XFeSb by density functional theory (DFT) is
0.4-0.5 eV, 0.95-1.13 eV, and 0.34-0.86 eV, respectively [163, 172, 173, 237, 238, 241-243]. Experimentally,
polycrystalline MNiSn samples, synthesized using high-temperature techniques and probably having excess
Ni-induced in-gap states, show E, values of 0.1-0.36 eV by different experimental methods. Recently, using
high-quality ZrNiSn single crystals, a combined study involving resistivity and optical measurements
together with angle-resolved photoemission spectroscopy (ARPES) gave experimental E, values of
0.5-0.66 eV [244]. These results demonstrate the effect of defects on the electronic structure and
thermoelectric properties of HH compounds. Experimental studies on the interplay between defects and
electronic structure for the other HH compounds are required.

Most HH compounds with high thermoelectric performance are generally heavily doped
narrow-bandgap semiconductors. The dominant scattering mechanism is acoustic phonon scattering (APS)
and the electrical transport properties can be explained using the SPB model. Under the assumption of SPB
and APS, the weighted mobility pw performs as a good descriptor characterizing the electrical performance
for thermoelectric materials [245]. The pw values of MNiSn and XFeSb are above 300 cm? V=!s™! at
room temperature and above 60 cm? V! s~! at temperatures higher than 900 K. In contrast, the MCoSb
system shows values of 100-250 cm? V! s~! at room temperature and less than 60 cm? V~!s~! at
high-temperature, corresponding to the lower zT' compared with that of MNiSn and XFeSb. It is worth
noting that ZrCoBi and NbCoSn also have a jiy above 300 cm? V= s~! at room temperature, implying their
potential as good TEs.

High lattice thermal conductivity, 1, is the main disadvantage of HH compounds that prevents high
thermoelectric figures of merit. By introducing multiple phonon scattering mechanisms through alloying,
nanostructuring, the formation of nanocomposites, and phase separation, the x;, at the temperature where
the peak zT occurs, can be largely suppressed to values of 2-3 W m~! K1, which, however, is still higher than
its minimum value (~1 W m~! K~! above 300 K) estimated using the Cahill model [246]. In comparison,
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the nominal 19-electron HH compounds, such as unalloyed XCoSb and TiPtSb, show significantly lower «p,
below 2 W m~! K~ ! in the high-temperature region [182—184], which can be ascribed to strong point defect
scattering resulting from the existence of substantial intrinsic cation vacancies. However, the net lower
carrier mobility, compared to the routine 18-electron HH systems, limits their thermoelectric performance.
This highlights the dilemma in developing high-performance HH thermoelectric materials, specifically, how
to maximally suppress lattice thermal conductivity while maintaining high carrier mobility [124].

In summary, the past two decades have witnessed significant development of HH thermoelectric
materials with the establishment of several low-cost, high-performance material systems. Targeting the
future optimization of thermoelectric performance and practical application of HH compounds, several
future directions are suggested:

(a) The interplay of point defects, electronic structures and transport properties is an appealing theme,
including intrinsic defects in the 18-electron HH system and short-range order in the defective 19-electron
HH system.

(b) Further reduction in thermal conductivity, especially near room-temperature, is highly desirable, with
the aim of improving the average zT.

(c) The development of devices using the current best HH thermoelectric compounds is progressing but the
related interfacial issues need to be solved. In addition, active Peltier coolers, which requires materials
with high PF and high  also brings new potential applications for HH compounds [247].

(d) HH is a large compound family with many members; the exploration of new thermoelectric candidates
in the HH system is always attractive. To aid exploration and development, guidance from accurate, rapid
electronic and phonon calculations is important.
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3.4. Zintls
Thermoelectric performance in Zintl phases: a bird’s-eye view

A K M Ashiquzzaman Shawon and Alexandra Zevalkink
Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI
48824, United States of America

E-mail: alexzev@msu.edu

One of the most recent additions to the thermoelectric material realm, Zintl phases are a class of
intermetallic compounds following the Zintl-Klemm concept, with structures consisting of both covalent
and ionic bonding. The cations (typically alkali, alkaline-earth or rare-earth metals) are treated as fully
ionized, providing valence electrons to main group metalloids, which in turn form covalent bonds to achieve
a closed-shell configuration. Although united by a common bonding scheme, the crystal structures of Zintl
phases vary widely. Enthusiasm for Zintl thermoelectrics stems primarily from their structural complexity
and diversity, with novel structures and compounds being reported regularly [253]. Further, many Zintls
exhibit salt-like behavior with high melting points and brittle mechanical properties.

Zintl compounds are often structurally complex, which leads to very low thermal conductivities,
comparable in most cases with the amorphous limit. This, along with the prospect of tuning carrier
transport properties through doping, makes Zintl phases ideal thermoelectric materials. Of the Zintl phases
studied in the last two decades, the A1;MX;; (A = Ca, Sr, Ba, Yb, Eu; M = Zn, Cd, Mn, Mg; X = As, Sb, Bi)
and AM,X, (A = Ca, Sr, Ba, Yb, Eu, Mg; M = Zn, Cd, Mn, Mg, Ga; X = As, Sb, Bi) compounds have been
most widely investigated. Other important classes of Zintl phases include those with compositions AsM, X,
A1 MeX12, A3sMX; and AgM, 5Xo. These materials have significant promise, as depicted by both theoretical
modeling and experimental results. With the exception of the AM,X, family, the compounds above exhibit
extremely low inherent lattice thermal conductivities. Their optimized thermoelectric properties are found at
various temperatures depending on the compositions. This opens up the possibility of applications at low,
mid and high temperatures. Yb;4sMnSb; and Yb;4MgSby; are two of the most promising p-type
thermoelectric materials available for high-temperature applications. At intermediate temperatures, p-type
AM,X, compounds have zT values as high as 1.3, and compounds like CagZn, 54,Sby have already reached a
zT value of 1.1.

Most Zintl thermoelectrics are p-type, as they have a tendency to form intrinsic acceptor type defects
(e.g. cation vacancies). However, recent progress has uncovered strategies to achieve n-type behavior. The
most prominent and successful examples are Mg;Sb,-based compounds, which are now important enough
to deserve their own section 3.5. The only other n-type Zintl phases with promising performance, to date, are
the AMX, (A = Na, K, Rb, Cs; M = Al, Ga, In; X = As, Sb, Bi) compounds. While their properties are
impressive, reaching zT values >1, there is still much need for newer n-type compound discovery.

Two sets of data are presented in table 4 for each composition, for room temperature and for the
temperature with the maximum thermoelectric figure of merit. To ensure a consistent approach to
calculating 1, we used the reported total thermal conductivity, and estimated the electronic contribution
(kE) using the Wiedemann—Franz law [3]. The Lorenz number was calculated using the equation of Kim et al
[254]. The values of «, reported in the table are then given by x — Kg.

Figure 5 shows the weighted mobility vs lattice thermal conductivity for selected Zintl compounds at
300 K, including both n-type (open symbols) and p-type (filled symbols). The contour lines represent slopes,
denoted by m. The ratio of weighted mobility to lattice thermal conductivity is directly proportional to the
thermoelectric quality factor, B, which indicates the potential zT that could be achieved under optimal
doping concentrations [245]. The relationship is given in equation (3). Therefore, as a general rule,
compounds closer to the top left corner of the plot are expected to have better thermoelectric performance
when optimizally doped. Indeed, the n-type Mg;Sb,_,Bi, compounds show the most promising ratio of
I/ K1 at room temperature.

The introduction of Zintl phases for thermoelectric applications has provided the option to find
inherently low lattice thermal conductivity materials made of earth-abundant, non-toxic elements. While
many p-type Zintl compounds have been discovered with respectable zT" values, tuning Zintl compounds
n-type is particularly challenging. This is primarily the case due to the low band degeneracy in conduction
bands, which are largely dominated by the s-orbitals of the cation [255]. The discovery of n-type MgsSb,
phases are attributed largely to the low formation energy of Mg vacancies, but this is not a common
phenomenon. Therefore, new Zintl phases new phases are being actively pursued computationally and
experimentally. Furthermore, the elements generally used to make Zintl compounds are highly reactive.
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Figure 5. Weighted mobility vs lattice thermal conductivity plot for several promising members of the Zintl family. Filled markers
indicate p-type while hollow markers show n-type materials. The abbreviations MA, AM, SPS and VHP refer to mechanical
alloying, arc melting, spark plasma sintering and vacuum hot pressing respectively.
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Though most Zintls studied for thermoelectrics are stable in air, such is not the case for the entire family.
This is a hindrance when it comes to the pursuit of new n-type Zintl compounds.
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3.5. Mg3Sb2
High thermoelectric performance of n-type Mgs;Sb,-Mg;Bi, alloys

Kazuki Imasato™” and G Jeffrey Snyder'

! Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States of
America

2 Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology,
Tsukuba (AIST), Japan

The n-type Mgs;Sb,-Mg3Bi, alloys (Mg; X, where X is a group 15 element, often a mixture of Sb and Bi) are
receiving heightened attention as one of the most prominent thermoelectric materials with high performance
in the range of room temperature (~300 K) to mid-temperature (~700 K) [295-298]. Owing to their highly
degenerate conduction band structure (Valley degeneracy N, = 6) [295, 296, 299] and extremely low phonon
thermal conductivity (k7 ~ 0.5 W m~! K™!), Peng et al [300] reported zT values are higher than 1.5 at 700 K
and reaching 1.0 around room temperature. Since the discovery of n-type MgsSb; sBigs [295], extensive
research has been conducted to optimize their thermoelectric performance by engineering the electronic
band structure [301-303], chemical doping [304-310], and the optimization of microstructure [311-314].
The crystal structure of Mg;Sb, and Mg;Bi, is identical to that of a relatively large class of AM, X, Zintl
phases. The space group is P-3m1 (No. 164). Mg;Sb, and Mg;Bi, can be treated as the special cases of AM, X,
in which Mg atoms occupy both the A and M sites. Twelve different reports for the most studied composition
Mg Sb, 5Big 5 and some other compositions with different Sb:Bi ratios are summarized in table 5.

To synthesize n-type Mgz X, an excess of Mg (x > 0) is required, such that the typical nominal
stoichiometry is Mgz . X,, to suppress the formation of Mg vacancies which are an electron killer defect
[297]. Note that the actual composition of the Mgz X, phase, written with nonstoichimetry as Mgs 4 s X, will
have § much smaller (possibly even § < 0) than the nominal x needed for processing. The amount of excess
Mg required varies, depending on the synthesis route and starting materials (powder, turnings, shot,
granules etc). n-type conduction can be achieved as long as the sample is in the Mg-excess thermodynamic
condition. This sensitivity of the thermodynamic chemical potential of Mg implies the n-type conduction
can be lost during high temperature (T > 700 K) processing as the high vapor pressure and reactivity of Mg
leads to a net loss of Mg at elevated temperature [306, 308, 315, 316]. The charge carrier concentration is
controlled by using aliovalent substitution, i.e. group 3 elements (e.g. Sc, Y, La) substituting for Mg or group
16 elements (e.g. S, Se or Te) on anion sites, as extrinsic dopants. All good thermoelectric Mgz X, materials
contain such an extrinsic dopant (e.g. nominal composition Mgz ,Sb 5Big.49Teg 1 [295]) but for
convenience they may be formulated simply as Mgs;Sb, 5Big 5. Te substitution on the anion site has been
known as an effective dopant [295-298, 317, 318], while Se and S do not have enough dopability to achieve
optimum carrier concentration [319, 320]. Recently, cation site substitutions are reported with higher
doping efficiency and thermal stability compared to the anion alternatives [304-310, 321-324].

As Mg3Sb, and Mg;Bi, make a solid solution for the entire composition range, the effect of the Sb:Bi
ratio has been studied to optimize the thermoelectric performance. In addition to a more than 50%
reduction in the lattice thermal conductivity because of alloy scattering [325], MgsBi, alloying with Mg;Sb,
was proven to be an effective way to engineer the electronic band structure [301, 303, 326]. As the Bi content
increases, the weighted mobility [245] increases with the reduced effective mass and smaller band gap. The
band gap of pure Mg;Sb; is around 0.5-0.6 eV [296, 306] and decreases with Bi content x in Mg;(Sby_,Biy)»
[296, 302, 303]. Considering the operating temperature of thermoelectric materials, the Bi 25% composition
(Mg3Sb, 5Big 5) is the most commonly studied and recognized as the highest zT' composition for mid
temperature (~700 K) [301]. The higher Bi compositions (Bi content greater than 50%) were suggested as
the optimized composition for lower temperatures including room temperature with reduced band gap
[303, 326-330]. On the other hand, alloying on the cation (Mg) site causes a significant reduction in the
performance due to the decreased carrier mobility [315]. The reason for this degraded performance is mainly
due to disruption in the conduction band because the six degenerate U* (CB1) pockets originate from Mg
orbital interaction [306, 315, 331, 332].

Grain boundaries play a significant role in the thermoelectric performance of Mgs;X,. They have been
important since the initial studies where undesirable low electronic conductivity led to low performance
(zT ~ 0.1 is reported below ~500 K [295, 317, 333]. Although often not identified as due to grain
boundaries, and sometimes suggested as due to ionized impurity scattering, [298, 317, 334], the effect is
significant in most polycrystalline samples. This thermally activated resistivity is particularly strong in
Mgz X, but can be found in other high-efficiency thermoelectric materials as well [335]. The grain
boundary effect can be described by a series circuit model including a bulk phase and a grain boundary
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phase [311, 333, 336, 337]. Highly resistive grain boundaries can be attributed to charged defects that collect
at the grain boundaries that trap and scatter the mobile charge carriers. The grain boundary charge is
screened by the dielectric response of the material making grain boundary resistance more observable in low
dielectric constant materials such as Mg;Sb, (DFT calculated relative isotropic dielectric constant of Mg;Sb,
€r = 32 [338]). This grain boundary effect can be mitigated by increasing the grain size through various
methods. Some samples optimized for lower temperature ranges possess a performance comparable to the
commercialized Bi, Te; around room temperature [302, 303, 308, 309, 327-329]. While the thermal
resistance of the grain boundaries is not very noticeable the dramatically reduced electrical conductivity of
the overall sample leads one to expect the electronic contribution to the thermal conductivity within the
grains to be much less than it actually is. This leads to a significant overestimation of the lattice thermal
conductivity that is commonly reported in systems with grain boundary effects which includes not only
Mgs X, but many other good thermoelectric materials as well [335].

Some of the recent studies coupled with p-type Bi, Tes [339] and p-type MgAgSb [340] showed a high
conversion efficiency of more than 7% under a temperature difference of ~300 K at the hot-side temperature
around 573 K. Further improvement in the performance could lead to energy harvesting and Internet of
things (IoT) thermoelectric devices. Mgs; X, may have better mechanical properties [341, 342] as well as
containing more abundant elements than commercially used Bi, Te; —Sb, Tes alloys [330]. However, as with
any new material, there will be some new challenges to overcome for making devices with n-type
Mg;Sb, —Mg;3Bi; alloys. For example, thermal stability will be one of the most important issues in this
material. With the reactive nature of Mg and its importance to the n-type behavior, the degradation of
performance has been observed. Improved stability has been reported with a chemical substitution/ addition
[306, 308, 315, 343] and use of coatings [316]; however, the fundamental mechanism of this degradation
needs to be further studied. Beyond high zT and degradation, an assessment of mechanical robustness
[302, 343] and processing cost are required to make commercial thermoelectric devices with
Mg3Sb, —Mg;3Bi, alloys.
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3.6. Clathrates
Clathrate thermoelectrics

Melis Ozen'"?, Kivanc Saglikl’2 and Umut Aydemirl’3

! Kog University Boron and Advanced Materials Application and Research Center (KUBAM), Istanbul 34450,
Turkey

% Graduate School of Sciences and Engineering, Kog¢ University, Istanbul 34450, Turkey

3 Department of Chemistry, Kog University, Istanbul 34450, Turkey

Clathrates are inclusion compounds with a three-dimensional (3D) framework of tetrahedrally-coordinated
host structure, encapsulating in large polyhedral cavities guest molecules, atoms, or ions [344]. The
classification of clathrate structures is based on packing of different building polyhedra of various sizes, e.g.
pentagonal dodecahedron (formed by 12 pentagons: [5'?]), tetrakaidekahedron (formed by 12 pentagons
and 2 hexagons: [5!26%]), pentakaidecahedron ([5'262]), or hexakaidecahedron ([5'26%]). In polyanionic
clathrates, the framework structure may bear a negative charge with cations (e.g. Na, K, Rb, Sr, Ba) residing
as the guest atoms, whereas, in polycationic clathrates, the framework has a positive charge and the anions
(e.g. Te, Cl, Br, I) are the guest atoms [345]. Inorganic clathrates crystallize mostly in two common structure
types termed as type-I and type-II clathrates (figures 6(a) and (b)). Type-I clathrates are composed of two
pentagonal dodecahedra and eight tetrakaidecahedra per unit cell leading to a general chemical formula of
G',G"3E4 (G' and G” indicate guest species in pentagonal dodecahedra and tetrakaidecahedra, respectively)
crystallizing in the primitive cubic space group Pm3n (no. 223). Type-II clathrates with composition
G'16G"3E 36 crystallize in the space group Fd3m with a framework comprising 16 pentagonal dodecahedra
and 8 hexakaidecahedra per unit cell.

The formal electronic structure of intermetallic clathrates can be in most cases adequately described by
the Zintl-Klemm concept [346, 347], in which each constituent atom achieves a closed valence shell via a
formal charge transfer from the more electropositive atoms to the more electronegative ones. Zintl-Klemm
formalism provides a guiding relationship between stoichiometry, structure, and electronic properties.
Clathrates with large and weakly bounded ions that can ‘rattle’ inside oversized cages of the rigid host
framework have been discussed in the context of the PGEC concept [348]. These compounds display low
lattice thermal conductivity as an inherent property of their complex crystal structure, which is ascribed to
the interaction of the heat-carrying phonons with the local vibration modes of guest atoms in the polyhedral
cages [349, 350]. The guest-host interactions do not substantially degrade the electronic properties. It is
possible to finely adjust the electronic properties of clathrates from metallic to semiconducting behavior by
tuning the chemical composition and forming vacancies in their crystal structures. By controlling the
concentration of guest atoms in the cages and substituting the framework atoms, the charge carrier
concentrations of clathrates can be adjusted effectively. Besides, vacancies in these materials’ crystal
structures can turn the electrical conduction from n-type to p-type even in the same material system and
thus change their thermoelectric properties [351, 352].

Transport properties of different clathrate families (arranged for the majority atoms forming the
framework structure) are presented in figures 6(c)—(h). Figure 6(c) shows the trend for Hall mobility (p5) vs
Seebeck effective mass (m,*) at 300 K for the clathrates tabulated in table 6. Except for three clathrate
compounds, K7 1Bajs9Gayg; 3Snes 7, CsgInyySbyg, and Bag 4La; ¢CuyeP3g, e values are almost exclusively well
below 60 cm? V™! s~1, which are relatively low compared to other families of thermoelectrics. Low effective
masses provide much higher Hall mobility values, mainly observed for the Sn and Ge clathrates. Clathrates
can be obtained both n- and p-type as illustrated in figure 6(d) even for the same family of compounds.
Clathrates with the homoatomic framework of four-bonded E14 elements do not require additional
electrons based on the 8-N rule. Such compounds containing excess electrons are generally observed for
silicon clathrates in which the electrons transferred from the guest atoms fill up antibonding conduction
bands of the corresponding empty Siss framework. Clathrates of the heavier homologous (Ge and Sn) may
accommodate excess electrons by forming vacancies. Therefore, Si clathrates show relatively low Seebeck
coefficient values due to their metallic nature. As the framework is built up of heavier (same group) elements
of Ge and Sn, the variation and the absolute values of S increase. This trend can be correlated with doping
behavior along with respective changes in the Fermi level of these clathrate families. Higher Seebeck values
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Figure 6. Crystal structures of (a) type-I clathrate and (b) type-II clathrate. Thermoelectric transport properties for selected
clathrates in table 5: (c) Hall mobility (p11) vs Seebeck effective mass (™), (d) Seebeck coefficient (S) vs electrical conductivity
(o), (e) total thermal conductivity (x) vs electrical conductivity, (f) lattice thermal conductivity (~) vs total thermal
conductivity, (g) weighted mobility () vs lattice thermal conductivity, and (h) peak zT vs temperature (T).

can be obtained with charge-balanced compositions, which in turn can be achieved more easily for the Ge
and especially Sn clathrates thanks to easier substitution with other elements and higher possibility of
vacancy formation (note that the bond strengths between the framework atoms decrease down the group for
Group 14 elements).
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All known P clathrates show p-type conduction. Sn clathrates generally show much lower o values in
comparison to those of Si and Ge clathrates due to their tendency to have charge-balanced compositions.
Figure 5(e) reveals the phonon-glass nature of the clathrates’ thermal conductivity with a majority of phases
possessing # below 3 W K~! m™! irrespective of the framework atoms. Heavier Sn clathrates with large cage
volumes display the lowest « values compared to Si and Ge homologous. Based on a linear fit analysis, i,
contributes on average ~70% to x (figure 6(f)). High p,, (calculated by equation (5)) and low r, are
desirable to achieve better thermoelectrics efficiencies. Sn clathrates satisfy this condition best among all
families of clathrates (figure 6(g)), which manifest themselves with the highest peak zT values attained at
low-to-mid temperatures (figure 6(h)). Ge clathrates show moderate i, and little higher 1 values compared
to the Sn counterparts and display high peak zT values at mid-to-high temperatures. Si clathrates have
relatively low ., and peak zT values but are the most stable phases (Tmg; > Tmg, > Tmg,; Tm: melting T)
make them attractive for high-temperature thermoelectrics applications. P and Sb cationic clathrates possess
the lowest ., values and generally show low thermoelectric efficiencies.

Widespread use of thermoelectric generators necessitates stable n- and p-type materials of almost equal
thermoelectric potential and compatibility in thermal expansion to minimize stress effects. For such module
applications, inorganic clathrates displaying both n- and p-type conduction in the same material systems
with high thermoelectric efficiencies are very suitable materials. However, in targeting large-scale industrial
applications, cheap, earth-abundant, and non-toxic raw materials should be preferred during their synthesis.
As mentioned above, Sn, Ge, and Si clathrates show the best thermoelectric performances at low, mid, and
high temperatures, respectively. Combinatorial use of these framework elements in the same clathrate
framework could lead to superior thermoelectric properties along with better thermal management. Besides,
band structure engineering through proper substitution of the framework atoms or tuning the vacancy
concentration on the framework sites and the guest atom concentrations inside the polyhedral cages with
novel synthetic techniques, e.g. low-temperature redox reactions [353, 354] melt-centrifugation [44, 314] or
liquid phase sintering [355, 356] may potentially lead to enhanced thermoelectric properties. Leveraging
high-throughput calculations and data mining [357-360], the selection process of inorganic clathrates can be
accelerated, and unexplored clathrate phases may be uncovered with high thermoelectric performance.
Exploring novel clathrate types with unique cage structures should be another motivation for discovering
high-efficiency materials for this family of compounds.
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3.7. FeGa3-type
Intermetallic compounds with crystal structure of the FeGas type

Rail Cardoso-Gil
Max-Planck-Institut fiir Chemische Physik fester Stoffe, N6thnitzer Strafle 40, 01187 Dresden, Germany

Intermetallic compounds with composition T® Trs, where T® is a TM of the group 8 and Tr being gallium
or indium, are rather unexpectedly semiconductors with narrow band gap, originated by the hybridization of
d and p orbitals of the participant atoms [465]. They crystallize in the tetragonal FeGas structure type (space
group P4,/mnm, nr.139). In the crystal structure, the Ga2 (8j) atoms form double trigonal prisms capped by
four Gal (4c) atoms and filled by two TM atoms (4f). The FeGas type considered as a simple crystal
structure, shows its complexity in its electronic structure. In FeGaj itself, the valence electron count of 17
ve/fu can be rationalized with atomic interactions isolobal to one Fe—Fe and eight Fe—Ga two-center-two
electron bonds. The detailed bonding analysis shows the presence of three-center Fe-Ga-Ga’ bonding having
simultaneously a direct influence on the Fe—Fe bonding in the dumbbell [466]. The knowledge on the atomic
interactions and bonding scenario is the key for the regulation of charge carrier and transport properties
considering chemical insights. Additionally, the presence of different bonding types (bonding
inhomogeneity) allows a reduction of the lattice thermal conductivity [467]. Thus, this particular electronic
condition offers a suitable setup to tune the thermoelectric properties via chemical substitution. The
consequent improvement of the thermoelectric properties has been accomplished tailoring the band gap
with the synthesis of partially substituted derivatives. This concerning, the data compilation (table 7) shows a
direct comparative view on the resulting thermoelectric properties of intermetallic compounds of the
FeGas-type.

The narrow band gap of the binary semiconductors ranges between 0.2 and 0.5 eV. Their electrical
conductivity increases significantly by substitution, e.g. from o(300K) = 3.2 Q! cm™! in Ruln; [468, 469]
to 0(300K) = 2128 Q' cm ™! in Ruln, g9Zng 10 [470].

Ruln; and RuGaj; are n-type semiconductors at T < 360 K and T < 468 K and p-type above these
temperatures, respectively. The n- to p-type transition is selectively suppressed in Ruln; upon electron or
hole doping, reaching || values around 200 1V K~! [468, 470]. FeGa; and OsGa; do not present this
behavior. Noteworthy, the original binary compounds show high values of Seebeck coefficients at room
temperature, e.g. S = —563 uV K~! and S = —477 uV K~ ! in FeGa; and OsGas, respectively [471].

The thermal conductivity of binary FeGas-type compounds is reduced to ~30% by substitutions, where
Rug 99Irp.01In3 with k = 1.55 W m ™' K1 [472], Fep.99 C0g.01Gaz.991 Gep.go with k = 1.37 Wm ™! K~! [473]
and ReGa,Ge with k = 1.1 W m~! K~! [474] are those representatives with the lowest thermal conductivity
at room temperature, attributed to the singular chemical substitutions. The ternary derivative ReGa,Ge is a
rather unusual chemical variant of the FeGas-type with a TM atom from the group 7 (Re) and Ge
substituting gallium. Its stoichiometric composition, yields likewise a defined valence electron count of 17
ve/fu. The presence of Re—Ga and Re—Re interactions is also consistent with the reported band gap
(0.23—0.4 eV) and the semiconductor behavior [474].

An essential condition for good thermoelectric materials is a reasonable electrical conductivity associated
to a low electronic contribution to the thermal conductivity, this is fulfilled by certain intermetallic
compounds with small band gap [475]. For further isostructural TTr; intermetallic compounds a theoretical
study on their thermoelectric properties has been performed [476], based on these results, the corresponding
experimental study is main part of an ongoing project. The acquired knowledge should strengthen the search
and the development of further intermetallic compounds with high potential as thermoelectric materials, as
well as the better understanding and control of their physical properties.
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3.8. Actinides and lanthanides
Actinide- and lanthanide-based thermoelectrics

E Svanidze
Max-Planck-Institut fiir Chemische Physik fester Stoffe, N6thnitzer Strafle 40, 01187 Dresden, Germany

The idea of using lanthanide- or actinide-based materials for thermoelectric applications is rather
unconventional and, perhaps, even far-fetched. On the one hand, the chemical and radiological attributes of
these materials require non-trivial experimental conditions which render scaling-up efforts questionable,
while, on the other hand, the complexity of 4f- and 5f-orbitals often makes their theoretical assessment
quantitatively challenging. However, much like other branches of fundamental research on f-electron-based
alloys and compounds, understanding their complex properties can provide a convenient avenue towards a
targeted discovery of ‘simpler’ materials containing only s-, p-, and d-electrons.

Previous work on lanthanide- [65, 495-550], thorium- [551-568], and uranium-based
[521, 551, 557, 560, 564, 569—-594] systems is summarized in table 8 and figures 7-9. Some variations in the
reported data can probably be attributed to the fragile ground states of f-electron materials and,
consequently, sample quality issues [467]. Moreover, for the majority of these systems, values of the thermal
conductivity k, are missing. In order to estimate the value of zT for those compounds, a value of
% =10 W m~! K~! was used. Based on the existing data, this estimate of  is comparable to what has been
observed in these materials, with average values Kaye(R) = Kave(Th) = 6.7 Wm~! K71,

Kave(U) = 10.6 W m~! K™, but, of course, experimentally determined values of  are highly desired in order
to properly assess the thermoelectric potential of these systems. As for the values of the effective mass, a
distinction must be made between those obtained from the low-temperature specific heat, ARPES, or de
Haas-van Alphen measurements and those extracted from room-temperature Hall or specific heat data. In
the case of heavy-fermion lanthanide- and uranium-based systems, it was previously noted [595] that the
assumption of a spherical Fermi surface, that is needed for this analysis, is quantitatively not accurate.
Moreover, experimentally obtained values of the lattice thermal conductivity, weighed mobility, bandgap,
mobility parameter, as well as static dielectric constant are currently lacking. Filling such gaps will enable
deeper insight into thermoelectric properties of lanthanide- and actinide-based compounds.

Among lanthanide-containing compounds and alloys, the majority of previous reports have focused on
the introduction of large lanthanide atoms into existing materials which show good thermoelectric
properties; see, for example, section 3.2 covering skutterudite materials and section 3.9 covering oxide
systems. In the current section, we focus on materials for which the starting compound is based on a
lanthanide element. As evident from figure 7, room-temperature values of the thermoelectric figure of merit
are rather modest, with zT ,x ~ 0.5 for the HH compound TmNiSb. Interestingly, the high-temperature
region shows that more promising materials are likely to be compounds with the Th;P, structure type
(65, 506, 511, 525], Zintl phase Yb;4(Mn,Y,La)Zn,Sb,; [541, 542], skutterudite compound CeFe,_, Co,Sb;,
[522], as well as lanthanide-based dichalcogenides [504, 519].

When it comes to actinide-based materials, some work has been done for compounds and alloys
containing uranium and thorium. Among Th-based materials, very little has been published regarding
investigations of their thermoelectric properties. In particular, for the majority of materials provided in
table 8, even their thermal conductivity values are missing. Overall, the values of thermoelectric figure of
merit, summarized in figure 8, appear to be rather modest (notice a three-fold vertical axis decrease in
figure 8 compared to figure 7). For both room temperature and high-temperature regions, two groups of
Th-based materials appear to be promising—ThC [562, 563] and compounds with the Th;P, structure type
[553-555, 568]. However, more Th-based materials need to be examined in order to evaluate the viability of
using these materials for thermoelectric applications.

While the possibility of using uranium-based materials for thermoelectric applications has been
proposed over half a century ago [569], very little work has been done in this field in the meantime
[582, 593]. The stagnation of this topic is probably due to several factors: the limited number of facilities that
carry out uranium work, possible health concerns, as well as the inability to predict new thermoelectric
materials using computational means. Nonetheless, given the low cost and abundance of depleted uranium,
development of functional uranium-based materials can perhaps contribute to the solution of the nuclear
waste problem. Moreover, toxicity and radiological danger of these materials can be avoided if they are used,
for example, for aerospace applications [582].

As evident from figure 9, more experimental studies are needed in order to adequately enhance the
current maximum value of the thermoelectric figure of merit in uranium-based materials. Given the
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Figure 7. Thermoelectric figure of merit zT of lanthanide-based compounds for various temperatures [65, 495-550].
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Figure 8. Thermoelectric figure of merit zT' for Th-based compounds for various temperatures. Given the toxicity and mild
radioactivity of Th compounds and alloys, a possible application domain is the aerospace industry, with the yellow region

marking the suitable temperatures range [551-568].
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Figure 9. Thermoelectric figure of merit zT for U-based compounds for various temperatures. Given the toxicity and mild
radioactivity of U compounds and alloys, a possible application domain is the aerospace industry, with the yellow region marking
the suitable temperatures range [521, 551, 557, 560, 564, 569-594].

currently available data, the most promising systems appear to be compounds with the Th;P, structure type
[560, 593], AuCus structure type [578, 584, 593] as well as the skutterudite compound Uy ,FeCo3Sb,, [586].
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3.9. Oxides
Oxide thermoelectrics
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Oxides, developed from earth abundant materials, having structural/chemical flexibility and high
temperature stability, are well suited to medium and high temperature thermoelectric applications. Today
there is a wide variety of oxide thermoelectrics (table 9) [596-668], but work on oxide thermoelectrics only
began in the 1990s after the discovery of a high PF (5000 uW m~! K™?) in single crystal Na,CoO, (NCO)
combined with both high y (~13 cm? V=! s7! at 300 K) and a large S (~100 VvV K~ at 300 K). Whilst
polycrystalline NCO presents additional processing challenges and the presence of microstructural features
can seriously degrade the transport properties, resulting in very modest zT in the pure material [653], the
performance of these p-type materials can, under ideal conditions, reach zT.x of 0.92 at 960 K, particularly
when prepared as a composite containing 10%Ag [655]. NCO tends to physically degrade at elevated
temperatures, but the related p-type, layered compounds Ca3;Co4O9 (CCO) and Bi,Sr,Co,0, do not suffer
in the same way and have been exploited in prototype modules [669]. Once again the highest thermoelectric
performance has been reported for single crystals, but polycrystalline CCO has achieved 2T, of ~0.43 at
1073 K for Bi or Ba doped ceramics [640, 641]. For the closely related misfit layered cobaltite Bi,Sr, Co,0,,
the orientation-dependent properties mean that texturing of ceramics is essential to maximize performance.
By use of partial melting and/or doping of Bi,Sr, Co,0y, 2T max of 0.27 has been achieved at 973 K

[649, 650].

Whilst p-type oxides have been predominantly limited to cobalt-based, layered structured compounds,
the n-type materials include a number of different structural families, amongst which, the perovskites have
attracted considerable attention. CaMnO; (CMO) was one of the first n-type perovskites explored and like
many oxides, the undoped material suffers from inherently high thermal conductivity. There is also a
metal-insulator transition at high temperature due to a change in the spin state of Mn ions. Substituting Ca
with heavy rare earths has been particularly successful in reducing thermal transport [613]; dual doping on
both Ca and Mn sites can also enhance charge transport [614, 616]. Theoretical work suggests that zT .y of
greater than 1.0 can be achieved in CMO [670], but to date the use of soft chemistry processing to develop
sub-micron grains with nanosized twinned domains, has produced the best performing CMO with a zT'yax
of 0.32 at 1060 K [613].

The transport properties of perovskite SrTiO5 (STO) depend critically on processing conditions and
composition. Undoped STO processed in air is an insulator, exhibiting a high Seebeck coefficient (S
—380 1V K~! at 300 K), but also exceptionally high thermal conductivity (9-12 W m~! K~!) at room
temperature [596]. By processing under reducing conditions a high PF, comparable with that of Bi, Te; can
be achieved, but reducing thermal conductivity is much more of a challenge as nanostructuring is less
effective than in many other materials. Doping on the cation A site, with La in place of ~10% of the Sr has
been popular and effective, which under reducing conditions leads to the formation of oxygen vacancies,
which enhance electrical conductivity and reduce thermal conductivity [596—-612]. On the cation B site,
doping with higher valent Nb leads to metallic conduction and simultaneously increases S because the
effective mass m_ is increased; consequently, the PF 0S? is enhanced, with values of ~1500 uW m~! K=2 at
1000 K recorded for SrTipgNbg O3 epitaxial films and a zT 'y, of 0.37 [596].

By optimized doping of A and or B sites of STO, 2T,y values at high temperatures have remained
stubbornly around 0.38 [597-599, 603, 604, 610]. There have been isolated reports of 2T,y values above 0.5
for STO-based materials [602, 608, 611], but an interesting development in recent years has been the
enhancement of transport properties at lower temperatures through additions of carbon-based species. Lin
et al [600] showed that incorporation of small amounts of graphene (<1 wt%) into STO enabled single
crystal-like electronic transport behavior, with high electrical conductivity at temperatures of 373 K or less.
The presence of the graphene at the grain boundaries promoted oxygen deficiency, increasing charge
transport through an increase in the weighted mobility; at the same time the graphene helped reduce
thermal transport. Increased zT values, around 0.4 were achieved over a wide temperature range up to 873 K,
thereby greatly enhancing the operational thermal window. Other studies with graphene/graphene oxide
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support the enhancement behavior [605-607, 609]. It is predicted that zT values above 0.5 could be achieved
for STO-graphene composites by optimizing the grain boundary structure [671].

Semiconducting zinc oxide, ZnO (ZO) is a further oxide having considerable potential because of its high
mobility and high PF, but again there is the disadvantage of high thermal conductivity (~5W m~! K™1).
Doping with trivalent elements is usually employed to increase thermoelectric performance; a zT'max of 0.30
at 1273 K was achieved with 2% Al doping [618], whilst dual doping with Al and Ga (the latter preventing
second phase formation, which limits electrical conductivity) enabled one of the highest zT values to be
achieved for an oxide—=zT 5 0.65 for Zng 96Alp 02 Gag 02O at 1273 K [620].

The success with improving the properties of ZnO led to work on the related homologous compounds
In,03(Zn0),, (1ZO) and Ga,03(Zn0),, (GZO), having structures comprising layers of ZnO separated by
integer numbers of layers of gallium or indium oxide. The attraction of these materials is that by changing
the number of layers the PF can be adjusted whilst maintaining low thermal conductivity. For many of the
simple binary compounds, the zT ', is still quite modest, but for In,03(Zn0); and Ni coated In,O03(Zn0O)s
very useful zT ¢ values of 0.24 and 0.39 at 973 K respectively have been reported [623, 622]. Increasing the
value of m can be beneficial for developing superlattice and twin structures for reducing thermal
conductivity, but unfortunately there is often a concomitant reduction in electrical conductivity as well.

Non-stoichiometric titania, specifically the Magnéli phases Ti,0,,_1 (n =2, 3,...) have significantly
better thermoelectric properties than TiO,, as a result of the presence of planar shear defects and oxygen
vacancies acting as effective phonon scatterers. With increasing non-stoichiometry electrical conductivity
increases and S reduces, but there is often a beneficial reduction in thermal conductivity as well; in TiO; 74
the highest zTmax 0f 0.35 was achieved at 973 K [630]. Simultaneous co-doping by Nb and N has the double
benefit of increasing the PF and reducing x for Magnéli phases, leading to zTm,y of 0.35 at 973 K for
Tio.53Nb.17(O,N)246 [629].

There have also been investigations of materials with the complex tungsten bronze structure based on
(Sr,Ba)Nb,Og. With the more complex crystal structure they are expected to have inherently low thermal
conductivity; structural anisotropy means that they need to be textured to optimize performance. Both cation
and anion doping has been explored; replacing oxygen by fluorine increases the PF through increases in
carrier concentration, and helps to reduce k, leading to a zT 5, 0f 0.21 at 1073 K for Srg 61 Bag 30Nb,Os5.95F o5
[624]. Somewhat surprisingly, ferroelectric Bag_Nds2,Ti;sOs4 has both a high Seebeck coefficient
(—210 2V K1) and an exceptionally low thermal conductivity (~1.45 W m~! K™!); indeed this & value is
one of the lowest for an oxide. With modest electrical conductivity the 2T, was limited to 0.16 at 1000 K
for Bas 19Ndg 54 Ti;sOs4 [626]. Nevertheless, it is clear that oxides offer considerable opportunities for
medium and high temperature thermoelectrics if the natural advantages of oxides can be exploited to the
full. Indeed, the recent work on composites including carbon species [600] suggests that oxides could
potentially be used over very much wider temperature ranges, in principle from room temperature.

Finally, new materials from the oxyselenide family, mainly BiCuSeO, have attracted a lot of attention as
p-type material candidates due to their intrinsically low thermal conductivity and moderate PF values [657].
These materials have a complex crystal structure consisting of alternating insulating (Bi,O,)> layers and
conductive (Cu,Se;)>~ layers along the c-axis [672]. The occurrence of low thermal conductivity is linked to
the layered crystal structure with low Young’s modulus and speed of sound [673]. BiCuSeO exhibits a large
Seebeck coefficient varying from 353 £V K~ at 300 K to 420 uV K~ at 923 K [657]. The high S values is
linked to the two dimensional confinement of charge carriers due to the layered crystal structure and
alternated stacking of insulating and conductive layers [658]. BiCuSeO has typically low electrical
conductivity and exhibits semiconductor-like conduction behavior with temperature [657-659]. PF values
generally improved with doping at the Bi site as a result of the significant increase in electrical conductivity;
reasonable values were obtained for compositions containing Bi and/or O vacancies. Moreover, co-doping
strategies generally resulted in further improvement in PF values due to the increased contribution of charge
carriers; thermal conductivity generally increased with doping. However, the increase in the PF with doping
compensates for relatively small increase in thermal conductivity, which leads to higher zT values. For
example, a zT .« value of 1.46 at 873 K is reported for Big 94Pbg g6 Cug.99Feg 01 SeO [664].

Transport properties for the various oxides (based on data collected for 300 K) are summarized in
figure 10. Currently, there are considerably more n-type oxides than p-type materials available and this is
reflected in figure 10(a), showing the relationship between Seebeck coefficient and electrical conductivity.
Materials such STO and BiCuSeO which inherently have exceptionally low electrical conductivities exhibit
the highest Seebeck coefficients (above 300 1V K~!). However, by doping, electrical conductivity can be
increased for all oxides, and indeed by careful processing, very high o values (towards 4000 S cm™!) and
single-crystal like electrical conductivity have been achieved in STO.

Whilst there is a desire for phonon-glass behavior, and high thermoelectric performance in oxides, it is
clear from figure 10(b) that whilst high electrical conductivity can be achieved (e.g. for STO), the problem
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Figure 10. Thermoelectric transport properties for selected oxides in table 9: (a) Seebeck coefficient (S) vs electrical conductivity
(o), (b) total thermal conductivity (k) vs electrical conductivity, (c) weighted mobility (z.) vs lattice thermal conductivity and
(d) peak zT vs temperature.

continues to be high thermal conductivity, exceptionally high in some cases with the exception of BiCuSeO.
However, by selective doping and nanostructuring there has been progress in recent years, and many of the
layered structured compounds and the complex tungsten bronze structured materials do exhibit low thermal
conductivities (down to 1.45 W m~! K™!). Alternatively, intrinsically low thermal conductivity (as low as
0.6 W m~! K~!) and moderate electrical conductivity of oxyselenides leads to relatively high zT values.
Figure 10(c) shows the weighted mobility (which was calculated via experimental S and o values using
equation (4)) as a function of lattice thermal conductivity for eight oxide families. As noted earlier (in
sections 1.4, 3.4 and 3.6) the ratio of weighted mobility to lattice thermal conductivity (denoted by m) is
directly proportional to the thermoelectric quality factor, B (equation (3)), which in turn is proportional to
the thermoelectric figure of merit, zT. The highest value of m (i.e. high p and low ) is observed for
BiCuSeO materials (the highest m = 330) whilst it is approximately 160-180 for STO and CMO materials.
These values are broadly comparable with many of the metallic counterparts, although the best Zintls reach m
values in excess of 350 (figure 5) similar to that for BiCuSeO. Finally figure 10(d) summarizes peak zT values
as a function of temperature. Several oxide materials have peak zT values above 0.6 at temperatures above
800 K whereas zT max values are typically >0.8 and even reaching to ~1.5 for oxyselenides around 900 K.

With the advances in computational material science [674, 675], many materials can first be theoretically
screened and then the promising compositions can be evaluated experimentally. Such studies suggest that
oxides with zT values above 1 are possible and the utilization of new material design concepts, such as
introducing/controlling interfaces at both atomic [676] and micro [677] scales, will allow control of both
phonon and charge carrier transport in oxides. This will enable oxides to be competitive with more
established materials, since they can offer much more once they can be utilized to full capacity, including
their stability over a wide temperature range, lower density, lower toxicity, and cheaper material production.

The mobility data in table 9 are predominantly obtained from Hall measurements; only one entry has
been obtained by SPB method; both types of entry are clearly identified.
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3.10. Sulfides and selenides
Sulfide and selenide thermoelectrics

Anthony V Powell, Shriparna Mukherjee, Sahil Tippireddy and Paz Vaqueiro
Department of Chemistry, University of Reading, RG6 6DX Reading, United Kingdom

The terrestrial abundance of both sulfur (3.5 x 10° ppb) and selenium (50 ppb) exceeds that of tellurium

(1 ppb), making metal sulfides and selenides attractive candidates for large-scale thermoelectric applications.
While the higher vibrational frequencies associated with the lighter chalcogens are expected to result in a
higher thermal conductivity than in the tellurides, a number of materials-design strategies [678] have been
applied to generate high-performance materials. The decrease in electronegativity on progressing down the
chalcogen group raises the energy of the anion valence orbitals, thus reducing the bandgap (E,) between the
predominantly anion-based orbitals of the valence band and the cation-derived conduction band. The
reduced separation between anion- and cation-derived orbitals leads to more effective orbital overlap and
broadening of the bands. This is exploited in partial substitution of sulfur by selenium to fine-tune the
electronic structure through band broadening, thereby reducing the carrier effective mass (™) and
increasing the mobility (4). Sulfide and selenide thermoelectrics are not without challenges. In particular,
volatilization of the chalcogen during preparation or processing may occur, producing compositional
changes and the formation of inclusions of secondary phases. In favorable cases, the resulting interfaces may
increase phonon scattering and reduce thermal conductivity. The majority of metal sulfide and selenide
thermoelectrics are p-type semiconductors; n-type conduction generally occurring in low-dimensional
structures and amongst chalcopyrite-related phases.

In seeking to translate the high-performance of metal tellurides into the more abundant sulfides and
selenides, attention has focused on the lighter congeners of tellurides of proven thermoelectric performance.
This includes the rocksalt-structured phases PbQ (Q =S, Se) for which both n- and p-type derivatives can be
created through appropriate doping, and figures of merit, zT > 1. Increasing concerns over the toxicological
and environmental impact of lead has prompted investigation of the analogous tin and germanium sulfides
and selenides, the layered structures of which arise from distortion of the rocksalt structure. The figure of
merit, zT > 2.4, achieved in single crystalline SnSe [679], has motivated a wider investigation of tin
chalcogenides. Although the corresponding sulfide, SnS, adopts a similar structure, the maximum figure of
merit is somewhat lower at zT' = 0.8 at 873 K [680]. While conventional doping of GeSe leads to modest
improvements in performance, alloying with AgSbSe; results in a p-type material with a figure of merit,
zT'=0.9 at 710 K [681] while alloying with AgBiSe, produces an n-type variant which exhibits a maximum
figure of merit, zT' = 0.44 at 677 K [682].

The more structured DOS associated with a low-dimensional structure has stimulated efforts to increase
the Seebeck coefficient by tuning the Fermi level to sharp discontinuities in the DOS [683], although
reductions in thermal conductivity due to interface scattering of phonons appears to play a more dominant
role. One-dimensional chain structures [684] and two-dimensional structures, including intercalates of
dichalcogenides, A, TiS, (A = Co, Cu, Ag) [685—687] and a variety of pavonite-related materials [688, 689],
have been investigated, together with materials possessing low-dimensional structural motifs within a 3D
structure, as exemplified by the derivatives of shandite, Co3;Sn,S,.

The high polarizability of the sulfide and selenide anions favors cation diffusion, which at high
temperatures can induce the cation sub-lattice to enter a liquid-like state. The term phonon-liquid
electron-crystal (PLEC) has been applied to such phases. The PLEC-type phases Cu; 97S and Cu,_,Se exhibit
an exceptional thermoelectric performance, with figures of merit reaching zT" = 1.7 [690] and zT = 1.5 [691]
respectively (figure 11). The cation mobility that promotes PLEC behavior introduces an instability into the
materials, due to copper migration and deposition, resulting in compositional changes that cause cracking
and mechanical degradation. Efforts to overcome stability problems have motivated investigation of
alternative structure types, in which a proportion of the tetrahedral sites are occupied by other cations. A
wide range of cation-ordered derivatives of zinc blende, including chalcopyrite, kesterite and stannite, has
been investigated, along with structurally more complex phases such as bornite, in which antifluorite- and
zinc-blende-type sub-cells alternate. A combination of hole doping and the creation of cation vacancies in
bornite, leads to a figure of merit, zT ~ 0.8 [692], at 550 K, with no significant degradation in performance
on thermal cycling.

The beneficial effect of increasing structural complexity is exemplified by tetrahedrite, the structure of
which may be considered as a defective derivative of zinc-blende containing transition-metal cations in both
tetrahedral and trigonal-planar sites. The parent sulfide Cu;,Sb4S;3 is a p-type metal, with a low thermal
conductivity, associated with anharmonic localized vibrational modes. Reduction of the hole carrier

89



10P Publishing

J. Phys. Energy 4 (2022) 022002 R Freer et al

2.0

a0tk @1000 K

@873K

1.5
N
1.0
0.5
0.0 @0 = 22 @ S
) el
o2 AN < b K
&EJ %o@ 0@},\‘ \@/(\0 eo* o
oou-@ o),ﬁ" GV o C}WP
o
N &

o

Figure 11. The maximum thermoelectric figure of merit, zT of various sulfides and selenides: Cug.05TiS15Seq5 (n-type) [699],
Cuy972Fep.068S4 (p-type) [692], [CuzsCraGes]1.024S32 (p-type) [700], AgooInZng,;Se; (n-type) [701], Cuys5SbaS12Se (p-type)
[702], Cu1.85A80.155n0.9In0.1Ses (p-type) [703], SnSo.o1Seo.00 (p-type) [704], Pbo.o3Sbo.osSo.5Se0s (n-type) [695], Curg7S (p-type)
[690].

concentration through chemical substitution of copper, increases the figure of merit to zT ~ 1.0 at relatively
modest temperatures (575 < T/K < 725). Tuning the electronic structure through the partial replacement of
sulfide with selenium decreases the resistivity, without a significant impact on the Seebeck coefficient. This
appears to have the greatest impact on performance at temperatures close to ambient.

The structure of colusite (CuysV,GesS3,) may also be considered to be derived from an ordered variant
of zinc blende. The complex structure and large unit cell contribute to a low thermal conductivity,

K~ 0.5 Wm™! K. Substitution of copper in colusite and its congeners, with dipositive transition-metal
cations, decreases the hole carrier concentration and improves the Seebeck coefficient, leading to figures of
merit at elevated temperatures in the range 0.6 < zT < 0.9. Colusite provides a striking example of the
impact of consolidation conditions on thermoelectric properties [693]. Hot pressing (HP 1023 K)

Cuy6 V251653, results in sulfur loss and the formation of intergrowths that help reduce the thermal
conductivity to s ~ 0.66 W m~! K™!, increasing the figure of merit by a factor of three (zT = 0.93 at 675 K
[693]) over that of the same material subjected to spark plasma sintering (SPS 873 K) at a lower temperature.

As illustrated in table 10, there has been considerable progress in the discovery of sulfides and selenides
for thermoelectric applications. There are now several families of p-type sulfides containing Earth-abundant
elements, with figures of merit approaching or exceeding unity at moderate temperatures, including
tetrahedrites and colusites. Among p-type selenides, Cu,Se and SnSe, with maximum figures of merit of
zT = 1.54 and zT = 2.6 at 1000 and 923 K respectively, stand out [679, 691]. Furthermore, it has been
demonstrated very recently that exceptional thermoelectric performance (zT = 3.1 at 783 K [694]) can be
achieved in polycrystalline SnSe when feedstock reagents are purified to remove all traces of oxides. By
contrast, it is evident from table 10 that there are few examples of n-type sulfides and selenides with
comparable performances. The few exceptions including Pbg 93Sb.0550.55€0.5, with a maximum figure of
merit of zT' = 1.65 at 900 K [695] and Ag,Se, with zT = 1.2 near room temperature [696]. The discovery of
environmentally friendly n-type sulfides, containing abundant elements and with good thermoelectric
performance, remains a challenge to be addressed.

As noted above, stability problems, due to cation migration, are a concern for PLEC-type phases such as
Cu,Se and Ag,Se. In a thermoelectric device, electromigration of the mobile cations occurs when an
electrical current flows through the PLEC material. This results in a compositional gradient along the
thermoelectric leg, together with cracking and loss of performance [697]. Possible approaches to minimize
degradation due to ionic diffusion, which need to be fully investigated, include the introduction of additional
cations to block the migration path of the mobile cations, or tuning the geometry of the thermoelectric legs
to ensure that the voltage applied to the PLEC material remains below a critical threshold [698].

In the case of sulfides or selenides, volatilization of the chalcogen at the elevated temperatures at which a
device operates, may result in materials degradation and hence deterioration of the thermoelectric
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performance. Development of protective coatings may be required to address this issue. Device construction
will also require the identification of suitable diffusion-barrier materials and solders, for these new families
of materials. Matching the coefficients of thermal expansion of the different device components will be also
essential, to avoid the possible fracture of the thermoelectric device during operation. To achieve progress in
the implementation of thermoelectric technology, the research efforts that have led to the discovery of new
sulfides and selenides should be followed by work that addresses the device level challenges.
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3.11. Silicides
Silicide thermoelectrics

Franck Gascoin' and Theodora Kyratsi®
! Laboratoire CRISMAT UMR 6508 CNRS ENSICAEN, 14050 Caen Cedex 04, France
2 Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus

Since the 1960s, a multitude of silicides based thermoelectric materials have been studied for their potential
or promising thermoelectric properties. Indeed, their combination with virtually any other metal provides
an ideal playground for thermoelectricians [783]. The alloys Si-Ge certainly stand out from the crowd as
they have been used in the fabrication of radio-isotope thermoelectric generators and thus utilized by NASA
for powering a large number of space missions. Their stability over time is undeniable and that makes up for
their high cost and rather poor efficiency. If Si-Ge could be seen as a model compound for high temperature
applications, other silicides are now scrutinized against them.

Amongst the different class of silicides, present and probable future investigations focus on the cheap and
non-toxic Mg,Si and MnSi, based materials. Evidently, cost and environmentally friendly materials are today
crucial parameters as they largely compete with efficiency. Moreover, silicides are often low-density materials,
another key aspect of their potential for industrial applications. Therefore, combining the n-type Mg,Si and
p-type MnSi, into a thermoelectric module is indeed very appealing and would represent a major
achievement. All these positive arguments have resulted in a myriad of investigations that focused first on the
improvement of the thermoelectric figure of merit of these two materials.

Magnesium silicide Mg, Si and the related solid solutions Mg, (Si,Ge;_) and Mg, (Si,Sn;_) were first
identified as promising by Nicolau during the first international congress on thermoelectric energy
conversion in 1976 [784] and these predictions were quickly confirmed by the experimental results of
different groups in the early 1990s [785-787]. Since then, efforts have been devoted to optimize materials in
terms of synthesis, performance, and stability over time. The best results are obtained using multiple
substitutions on both the magnesium and the silicon sites. These have led to materials with zT often
exceeding 1.3 at 700 K with a record high zT of 1.7 for Mg; 95 Cro.2(Sip.3S1n0.7)0.9sBio.02 at 680 K [788],
although the stability, at the operating temperature, of the silico-stannides still being under investigation.

Higher manganese silicides (HMS) have been considered as promising p-type thermoelectric materials
because they are ecologically benign but also because they possess high mechanical strength and they are
stable in air up to 1023 K. HMS exist as several incommensurate phases with chemical formulae of Mn,Siy,
Mn;; Sij9, Mn5Siz6, and Mny7Siyy, all crystallizing in the Nowotny chimney-ladder structures. These
structures are constructed by the two Mn and Si sublattices, where the Mn atoms form the chimneys in
which the Si atoms spiral as ladders. The tetragonal unit cells of different HMS compounds have similar a
parameter, and different ¢ parameter, depending on the ¢Si/cMn ratio of the two sublattices.

Despite all the efforts undertaken to improve the thermoelectric efficiency, most of the HMS have
relatively mediocre zT, typically between 0.4 and 0.5 at the most, which is detrimental to a module
hypothetically made of an n-type Mg, Si counter leg. Only recently, via addition of rhenium or introduction
of high density dislocation, zT's reaching the unity value at 825 K have been found [789, 790].

Only a few investigation and projects have tried to tackle the design and construction of an all silicide
thermoelectric module. Not surprisingly, the major issue is the difference between the coefficients of thermal
expansion of HMS and Mg, Si, which often leads to violent breakage of the module upon cycling over the
operating temperature range. This inescapable problem might necessitate the use of buffer layers or other
engineering tactics that remain to be proven efficient but also triggered efforts toward discovering an efficient
p-type Mg, Si that could therefore advantageously replace HMS [791, 792]

A summary of the best zT values as a function of temperature for magnesium silicides and manganese
silicides is presented in figure 12 (p-type) and figure 13 (n-type).
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Figure 12. The maximum thermoelectric figure of merit, zT, of selected p-type magnesium silicides and manganese silicides:
MnSiy 73 [793], Vo.04Mng.96Si1.74 [794], MnSiy 74 [794], MnSi, 73Geo.02 [795], MnSiy 75 [796], Ming.9sVo.04Si1.73 [797],
Mgi.98Lio.02Si0.4Sn0.6 [791], Mno.99Ago.o1Sit.s [798], Reo.0aMno.gsSirs [799], Mn(Sio.992Geo.008)1.73 [800], Mng.95Cro5Si1.74 [801],
MnSil_75 [802], MnSil_73 + 5 at% Al [803], MgzLi0_025SiQ_4Sn0_5 [792], MnSi1_745Te0_o3 [804], 5% Al doped MnSil_73 [805],
Mny.g9Re 015i1.75Geo.025 [789], Mn3o36ResSiss.64 [790].

Figure 13. The maximum thermoelectric figure of merit, zT, of selected n-type magnesium silicides: Mg, Sig.97Bio.03 [806],
Mg>Si.58755n0.4Sbo.0125 [807], Mg1.995L20.005Si0.58Sn0.42 [808], Mg2.10Si0.38 Sn0.6Sbo.02 [809], Mg2Sio.487Sn0.5Sbo.o13 [810],
Mg; (Sio.3Sn0.7)0.975Sbo.025 [811], Mg Sio.sGeo.aBio.o2 [812], MgaSio.385Sn0.6Sbo.015 [813], Mg Sio.3925Sn0.6Sbo.007s [814],
Mg; (Sio.4Sno.6)0.97Bio.03 [815], Mg2Sio.57Sn0.4Bio.03 [816], Mg2.2Si0.49510.5Sbo.o1 [817], (Mg2.06Si0.3Sn0.68Bio.02 [818],

Mg, Sio.355n0.62Bi.03 [819], Mg (Sio.4Sno.6)0.82Sbo.18 [820], Mg, Sio.535n0.4Geo.05Bio.o2 [821], Mg2.08Si0.364Sn0.6Sbo.o3s [789],
Mg2.08Si0.375n0.6Bio.03 [822], Mg1.98Cro.02(Sio.3Sno.7)0.98Bio.o2 [788].
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3.12. Borides and carbides
Boride and carbide thermoelectrics
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A couple of notable application directions for thermoelectric materials are: thermal energy harvesting, to
power innumerable sensors and mobile devices expected to be utilized in future society [856-859], and high
temperature waste heat thermoelectric conversion for energy saving and carbon reduction [860, 861]. For
the latter to be serviceable, the thermoelectric materials themselves need to be high temperature stable
refractory materials such as oxides [601, 862—-864], silicides [865-868], nitrides [869, 870], borides and
carbides. The latter two classes of materials are gathered in this section. Thermoelectric properties of boride
and carbide compounds collected from the literature are shown in table 12.

In general, borides have excellent mechanical properties including high temperature stability, chemical
stability, and low compressibility due to the strong covalent bonding of boron. It is a particularly refractory
class of materials with borides like RBg¢ typically having melting points above 2400 K. In addition, boron
cluster compounds, formed with the boron icosahedron as a structural unit, have been found to exhibit
intrinsic low thermal conductivity, which is advantageous for thermoelectrics, despite the compounds
possessing strong bonding and generally high speed of sound. Many of the compounds exhibit large Seebeck
coefficients, and electrical conductivities that increase with an increase in temperature due to hopping
conduction. Therefore, despite their relatively low zT at lower temperatures, they are considered a promising
system as ultra-high temperature thermoelectric materials [871-879].

We first briefly cover the very boron-rich compounds, namely, those which possess the By, icosahedron
as main building block of the boron cluster atomic network. The thermoelectric properties of the most
common form of elemental boron, beta-boron, have been extensively studied through modification of
properties via TM doping [880-887]. As the excellent properties of p-type boron carbide became clear
[888—890], effort was focussed on the search for a viable n-type counterpart. We mention here that because
of the electron deficient nature of the boron atomic network as reviewed previously [871, 873], the boron
icosahedral borides are predominantly p-type. The n-type characteristics, in even a limited range of
temperature, in boron cluster compounds were first found by Werheit with Fe doping [881] and Slack with V
doping [884]. Later both p-type and n-type characteristics with very large absolute values of Seebeck
coefficients were found for Zr doped beta-boron with variation of the Zr content [887]. Boron carbide has
been reported with the highest performance of zT ~ 1 for boron carbide and TiB, composites [891, 892]. In
addition to the wide range of compositions of boron carbide [888-890], there has also been extensive work
investigating the thermoelectric properties of boron carbide in different forms like single crystals, thin films,
nanowires, and various composites [893—-901]. Boron carbide belongs to the alpha-boron rhombohedral
structure type, and various compounds of this family such as boron phosphide, boron arsenide, boron oxide,
boron sulfide, in addition to alpha-boron itself, have been investigated [882, 902—908]. Amongst the boron
cluster compounds, Si doped B, P, has been reported to have high mobility because of the hole carriers
[903], although mobility has not been measured for many of these borides, presumably due to low mobility.
Amorphous boron also has been measured with low electrical conductivity as would be expected [880]. The
RBgs compounds are found to have amorphous-like behavior of thermal conductivity; relatively high
thermoelectric performance has been observed for some rare earths like SmBgs and compounds with
relatively high metal content [882, 909-915]. The RB44Si, compounds have also been investigated and shown
to have moderate thermoelectric performance [528, 910, 916-920], behavior of general interest, the
possibility to control morphology through addition of volatile element [919], anisotropic properties related
to interesting crystal structure channels [920], and insight into the importance of disorder as the origin of
amorphous-like behavior of thermal conductivity in such crystalline compounds [917]. It should be
mentioned that for most of the boron icosahedral compounds, the measurements with conventional facilities
were typically limited to a maximum of 1100 K, but thermoelectric performance of compounds like RBgg
and RB44Si, were showing steep increases in thermoelectric properties toward higher temperatures, with
melting points of these compounds above 2400 K and 2300 K, respectively,

In the aluminoborides [882, 921, 922], a striking discovery was made for Al,YB,4, in that, unusually, it
was found to be possible to vary the Al content in a relatively wide range and as a result, both p-type and
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n-type characteristics could be obtained with relatively high performance for a boride [923]. Liquid phase
sintering was also recently discovered for this important compound, simplifying processing and reducing
synthesis time [924]. The RB,,C,N and homologous series of compounds has also attracted interest with its
structural similarities and as the n-type counterpart compounds to boron carbide [925-928]. The synthesis
process for this compound has also been radically improved by using a gaseous reaction which may also be
useful for the synthesis of nitride compounds [929].

Silicon boride compounds have also been investigated as potential high temperature thermoelectric
materials [882, 930, 931]. For a SiB,, (n = 15-49)/SiBs composite prepared by SPS a remarkably high Seebeck
coefficient close to 900 1V K~ ! and a zT approaching 0.2 at 1100 K with an upwards trend with increasing
temperature have been reported [931]. Unlike the boron-rich compounds discussed so far, diboride,
tetraboride and hexaboride compounds are not built from B, icosahedra and generally show n-type
behavior [577, 894, 921, 932-937]. TM diborides, e.g. TiB, [894] and ZrB, [932] show metallic behavior and
while PFs >1 mW m~! K=2 have been observed in ZrB,-SiC composite materials [932], very high thermal
conductivity values limit the overall thermoelectric performance. Layered REMB4 compounds (RE = rare
earth element, M = transition metal) have been studied by applying the mmno electron counting rule to find
semiconducting compounds. REMB, (RE =Y, Gd, Ho; M = Cr, Mo, W) compounds of the YCrB,-type were
found to be n-type semiconducting materials [577]. TM hexaborides MBs (M = Ca, Sr, Ba) are among the
best performing boride thermoelectric materials with zT values of 0.3 around 1000 K [934, 935]. To reduce
thermal conductivity of these compounds thin films have been deposited for YbBg and SrBg [936, 937].

Besides borides, another group of materials which has been investigated for the use as high temperature
thermoelectric applications due to their good thermal stability are carbides [938-951]. Efforts have been
focused on the compound SiC which exists in several different modifications, the most prominent being the
hexagonal 6-H «-SiC [938, 939, 947] and the cubic 3-C 3-SiC [938, 939, 944-946, 948-950]. Depending on
the synthesis conditions both p-type and n-type behavior have been reported. Strategies for improving the
thermoelectric properties have included the addition of secondary phases for the fabrication of composite
materials, e.g. B4C [947], C [945, 947], AL, O3 [947], SizNy4 [944], Si [948] and Si/Au/polysilastyrene [948].
Thermoelectric properties of carbide materials in addition to SiC have been reported for layered Mo-based
MZXene carbides [951], TiCy7Cy 3 [940], flexible WC/polylactic acid composites [941], VC/Cr,3_Fe,Cg
containing Fe-2.3C-Si-5Mn-7V-8Cr alloy [942] and Zr;[Al3 56Si9.44]1Cs [943].

Boride and carbide thermoelectric materials have great structural and chemical variety and have been
studied thoroughly from a fundamental point of view. Their thermoelectric performance compared to the
established thermoelectrics is however relatively low. Many of the borides have very large Seebeck coefficients
and relatively low electrical conductivities. Compositing partial metallic networks has been shown to largely
enhance the performance for several cases, like YB»,C,N [952] and boron carbide [891, 892], and this should
also be attempted in future with other borides with relatively high performance. Besides necessary
improvements in the thermoelectric performance, in order to exploit the advantages of this class of
thermoelectrics, i.e. high thermal and chemical stability and generally increasing performance with
increasing temperature, appropriate evaluation and application systems need to be established; these are
currently limited to fairly moderate temperature ranges. For example, most commercial thermoelectric
facilities used to measure Seebeck coefficients and electrical conductivity typically have a maximum
measuring temperature of 800 °C or 1000 °C at most. Whereas, for example, most of the borides presented
in this work have zT values showing a large increasing trend at these temperatures and possess melting points
above 2000 °C. Thereby, for ultra-high temperature applications in the range 1000 °C-2000 °C, such as
occurring in jet engine exhausts, topping cycle for fusion power generation, etc, borides are one of the few
thermoelectric materials which are actually stable at these temperatures and may potentially possess higher
zT values than has been given so far in the literature. As two prominent refractory thermoelectric material
systems, consideration and investigations of these two materials should continue.
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4. Challenges and future perspectives

In this compilation we have sought to provide an overview of the thermoelectric properties of a wide range
of inorganic materials. These include current state-of-the-art thermoelectric materials but also a number of
more ‘exotic’ materials which could become important in the coming years or provide insights into routes to
improve the more established materials. Whilst many publications in the field perhaps give undue attention
to the maximum figure of merit, zTay, as the critical parameter, we have tried to stress the importance of the
average zT, particularly over the intended temperature range for the application, and indeed the other
important thermoelectric parameters (documented here) which indicate the strengths and potential
limitations of the material.

With the advances in modeling and experimental instrumentation over the past decade there are
considerable opportunities in the development and discovery of new materials and understanding the
structures and mechanisms controlling properties from the atomic to the macroscopic level. Materials
discovery through data mining, machine learning or high throughput calculations can point the way in the
selection of potential new materials with high thermoelectric performance, enabling candidates to be
screened theoretically, and the most promising evaluated experimentally. A further constraint here is that the
work should target Earth-abundant, non-toxic starting materials to minimize cost and environmental
impact. Atomistic and Density of States calculations along with band structure engineering can be used to
define the most effective additives for enhancing electrical conductivity or reducing thermal conductivity
and ways to induce band convergence, thus improving the PE.

Whatever new materials appear in the coming years there are many important challenges that will need
to be addressed if the thermoelectrics are to reach their full potential at the material and device level and be
fully exploited in a growing range of applications. For maximum output from a thermoelectric module the
n-type and p-type materials should exhibit comparable performance. Many of the existing materials have
significant imbalance between their best n-type and p-type candidates; for example, for Tellurides and Zintls
the p-type performance is much better than the n-type, whilst for Skutterudites it is the reverse. Work is
necessary to develop more, better matched thermoelectric materials in the different systems, but also to
extend the temperature range of operation through enhancing performance away from the peak
temperature. In many cases this is particularly desirable at lower temperatures, even down to room
temperature; for example with HHs, skutterudites and oxides, a reduction in thermal conductivity is highly
desirable to help improve the average zT.

Looking beyond zT and PF performance, another very important challenge to be addressed is the
mechanical properties and stability of the materials. To avoid serious mechanical stresses in the modules, the
p-type and n-type materials should have similar coefficients of thermal expansion, but greater attention also
needs to be paid to a variety of mechanical properties including brittleness and mechanical strength at
elevated temperatures. This is especially true of the metal-based thermoelectrics. A closely related, more
general challenge is that of controlling degradation at elevated temperature, or as a result of thermal cycling.
Materials that contain volatile species (e.g. Na, Sb, S, Pb) tend to degrade via the physical loss of material or
via electromigration when a current flows. The former can be addressed by some form of coating or
encapsulation, and the latter by cation doping to block migration pathways, but greater understanding of
corrosion and degradation mechanisms are essential if viable, long-lasting solutions are to be achieved.

As the construction of thermoelectric modules involves multiple interfaces, between dissimilar materials
in many cases, greater understanding of these interfaces and transport processes across them is essential to
avoid physical degradation and unnecessary power losses in device operation. Identification of most suitable
diffusion-barrier materials and solders, for the various families of materials will be important.

In order to ensure that thermoelectrics become more competitive in the market place, a detailed analysis
of processing costs at each step in module production, and the development of cheaper material-processing
and manufacturing routes are critical. The availability of cost-effective thermoelectrics, with increased
conversion efficiencies, covering wider temperature ranges would open up new markets from the room
temperature IoT to ultra-high temperature engineering systems.
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