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Network theory, as emerging from complex-systems science, can provide critical predictive power for mitigating the global-warming crisis
and other societal challenges. Here we discuss the main differences of this approach to classical numerical modelling and highlight several
cases where the network approach substantially improved the prediction of high-impact phenomena: (i) El Nifio events, (ii) droughts in the
Central Amazon, (iii) extreme rainfall in the Eastern Central Andes, (iv) the Indian summer monsoon, and (v) extreme stratospheric polar
vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this Perspective, we argue that network-based
approaches can gainfully complement numerical modelling.

climate-phenomena | forecasting | network theory | climate networks

If societies are able to anticipate disruptive events, they can take
measures to save thousands of lives and to avoid billions of eco-
nomic costs (1-5). A most evident, globally disruptive event is
certainly the current Covid-19 pandemia. Even though it seems im-
possible to accurately predict the emergence of such a virus itself,
the pandemia bears several characteristics that are also shared by
other disruptions: The general risk of something like this to happen
was known before, but economic and societal preparations to limit
harmful impacts are strongly dependent on a credible, science
based warning, preferably with significant time before the event
or at least before its full unfolding (the spreading in the case of a
virus) and with specifications of foreseeable impacts. Such a warn-
ing is not always possible, but there are promising new avenues.
Here, we describe our perspective on this research challenge from
the point of view of network theory and its usefulness for better
understanding and for forecasting specific climate phenomena.
Relevant climate phenomena that have the potential to pro-
duce major disruptions in societies are, for instance, the El Nifio
phenomenon, the Indian summer monsoon and extreme weather
patterns like persistent heat waves, cold spells or rainstorms as
associated with stalling planetary Rossby waves (6). For instance,
a popular saying in India - that the “true finance minister” is the
monsoon - is based on the fact that water resources are vital
for India, where the rural economy accounts for about 45% of
GDP (7). El Nifio occurrences are well known for their global im-
pacts on weather patterns and therefore societies. Floods and
heatwaves, especially concurring with droughts, directly affect hu-
mans and nature, and can wreak havoc in agriculture. Beyond
the climate system, highly challenging events of disruptive nature
are large-magnitude earthquakes, outbreaks of epidemics and,

on the individual level, physiological disasters like heart attacks.
These phenomena often emerge with little precursory signal or no
warning time at all, making effective adaptation challenging, if not
impossible. The pertinent lack of predictive power, however, is not
surprising, since most of those high-impact events are generated
by complex systems composed of many nonlinearly interacting
entities.

In the case of weather and climate, forecasting relies predom-
inantly on numerical models (8). Starting with Richardson in the
1920s (9), it has been a long way to the first successful prediction
(10) in 1950 and eventually to the highly sophisticated general
circulation and Earth system models of today (11). These simu-
lators rely on initial conditions (especially for weather forecasts,
i.e., the prediction of atmospheric dynamics for up to two weeks)
and boundary conditions (which are more relevant for seasonal
and longer-ranging forecasts, involving slower climate components
like the oceans) and deliver very good forecasts for a broad range
of physical quantities. However, their predictive power for certain
climate phenomena beyond the weather time-scale can be rather
limited: The dependence on precise initial and boundary conditions
and the necessity to simplify, inherent to any modelling approach,
as well as the chaotic nature of the system under study will hit hard
limits to further improvement (12, 13).

In spite of multiple efforts towards seamless prediction, a gap
remains in prediction skill between the sub-seasonal weather fore-
cast and the seasonal and longer climate predictions. Near-term
climate prediction is one of the Grand Challenges of the World
Climate Research Programme, WCRP (14). There have also been
other significant efforts in this domain, for instance, with the sub-
seasonal to seasonal (S2S) prediction project (15, 16). But in
many cases, numerical modelling still does, and also might con-
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tinue to leave vulnerable societies with insufficient warning time
ahead of climate phenomena, within as well as outside of the
above mentioned gap: There are types of climate phenomena that
still notoriously elude reliable long-term forecasting through nu-
merical modelling. For five specific climate phenomena examples
discussed below, network theory has led to (in some cases) con-
siderably earlier forecasts compared to state-of-the-art operational
forecasts, see (S| Appendix, Table S1).

Here we argue that the predictability limitations of existing oper-
ational forecasts are partly due to the basic intention of numerical
models: The goal of faithfully mirroring the local nature of direct
interactions in the physical world. However, the models are not
perfect mimicries of nature. Processes, e.g., turbulence, are not
resolved at all or only at a possibly insufficient resolution and tuned
parametrisations have to be employed (17). In particular, telecon-
nections present in observational data may be not well represented
or even absent within numerical models. Thus, identifying and then
analyzing the evolution of teleconnections with time can provide
an additional avenue to predicting large-scale climate phenomena.
The beginnings of this promising avenue can be traced back to Sir
Gilbert Walker into the early 20th century, when he first noticed
teleconnections (18) and has now gained a new and much broader
perspective through the advent of complex network analyses.

Here we suggest that the evolving interactions (manifesting,
e.g., via correlations) between different and often rather distant
locations can provide new insights and serve as predictors for a
large variety of climate phenomena. The philosophy behind this
approach is that even in a simple system, composed for instance
of two coupled nonlinear oscillators, one will observe aleatoric
behavior providing very limited information when measuring the
motion of each oscillator individually. However, when evaluating
the coupling between them, e.g., via synchronization (as already
detected in the 17th century by Christiaan Huygens (19)) one will
obtain new and valuable information about the system (20). Analo-
gously, while one might not necessarily extract useful information
from measurements of single locations on the globe, the links, i.e.,
the interactions between the sites and their evolution in time, can
provide, as in the examples below, critical novel information for
forecasting.

Network Analysis Opens a Second Avenue

Consequently, we propose to complement the established state
of the art for predicting climate phenomena through explicit nu-
merical modelling by the maturing approach of network theory
(21-23). The idea is to obtain additional information about the
climate system by capturing the connectivity of different locations
(including long-distance ones), through measuring the similarity in
the evolution of their physical quantities. This similarity between
different locations (nodes) can be quantified by different linear and
non-linear measures like Pearson correlation, event synchroniza-
tion, mutual information, transfer entropy, partial correlations or
Granger causality. For an overview of the different methods, see
(24, 25).

The similarity is then translated into links connecting the nodes
in the network and measuring cooperativity, i.e., the property of
not acting independently of each other. Commonly, cutoff thresh-
olds are applied on these similarity measures to select only the
statistically significant links. These thresholds can be obtained by
analyzing surrogate data, e.g., shuffled versions of the original time
series or synthetic time series that match the relevant statistical
properties of the original time series. For more details on surrogate

20f10 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

methods, see (24, 25). For an illustration of a network framework,
see Fig. 1.

The final network can be represented by an adjacency (con-
nectivity) matrix A, which encodes the links between the nodes or
their absence and is defined as

A — non-zero, if there is a link from node j to node ¢
Y 0, otherwise

The value of the element A;; represents the weight of the
link. Links connecting nodes to themselves are not included, i.e.,
A;; = 0. If the links are not directed, then the adjacency matrix
is symmetric, A;; = Aj;;. However, links can also be defined as
directed links, with a starting node j and a target node i. For
instance, in the case of correlation-based links, a direction can be
defined via the sign of the time lag of the cross-correlation function.
When links are directed, A is generally non-symmetric A;; # Ajs.

The so obtained adjacency matrix allows to calculate network
quantities like in- and out-degrees, clustering coefficients or be-
tweenness coefficients of nodes. For a detailed description of these
and other network quantities, see (21, 22). Many of these quan-
tities, which represent topological features of the network, have
a physical interpretation. For example, it was found by analysing
advection-diffusion dynamics on model background flows that a
high absolute flow velocity coincides with a high node degree, i.e.,
a high number of links attached to a node (26).

While teleconnections can be emerging properties in dynamical
models, which mainly concentrate on data at specific grid cells and
their immediate neighbours, the basis of the network approach is
the direct analysis of the links between grid points of a large variety
of distances and their temporal evolution. This approach avoids
the necessity to mimic the entire climate system, enabling the
forecasters instead to pursue specific questions about particular
non-local phenomena. Since network-based prediction schemes
often rely only on assessing the current state of the regarded
system, measurement errors play a much smaller role for them than
for numerical models, where small errors in the initial conditions
can lead to exponentially increasing errors in the prediction, as it
can be the case for weather forecasting (8, 27).

In contrast to, e.g., online social networks, where the existence
of the structure is already known and subject to direct analysis, the
existence and structure of networks in the climate context is often
not obvious — they can be purely functional. In this respect, climate
networks are comparable to networks in neuroscience, where the
structural networks of synapses can be different from the functional
network derived from the connectivity of time series, e.g., EEG
measurements (28).

In the following, we focus on forecasting and highlight several
cases where the climate-network (24, 29-31) approach substan-
tially improved the prediction of high-impact climate phenomena:
1) El Nifio events (32—38), 2) droughts in the Central Amazon (39),
3) extreme rainfall in the Eastern Central Andes (40, 41), 4) the
Indian summer monsoon (42—44), and 5) extreme stratospheric
polar vortex states (45, 46).

For most of these climate network-based analyses, the initial
motivation was to better understand and describe the regarded
climate phenomena and not primarily the discovery of a new fore-
casting method, which often happens serendipitously. Generally,
there is currently no recipe to follow to surely obtain a network-
based prediction algorithm for a specific climate phenomenon or
to rule out that a network approach can address the phenomenon.
However, complex networks provide ideal tools for data exploration

Ludescher et al.
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Fig. 1. The climate-network framework as a tool for prediction. Observational data of physical quantities, e.g., temperatures, are available at different geographical locations.
These data can be used directly or via a reanalysis (numerical weather model) which assimilates and maps them onto a regular grid. Thus, for each node (observational site or
reanalysis grid point) of the climate network, a time series of the regarded physical quantity is available. Cooperativity between nodes can be detected from the similarity in the
evolution of these time series and translated into links connecting the corresponding nodes. The links or their strengths may change with time. These nodes and their links
constitute the evolving climate network, which can be represented by the adjacency (connectivity) matrix A. The analysis of this network can enable early predictions of climate
phenomena and provide insights into the physical processes of the Earth system. For example, for forecasting El Nifio, the nodes are in the Pacific and the links are between

the EI Nifio basin (full red circles) and the rest of the tropical Pacific (open blue circles).

The rising of the network’s mean link strength .S (red curve) above a certain threshold ©

serves as a precursor (green arrows) for the start of an El Nifio event (blue areas) in the subsequent calendar year (32). Parts of the figure are from: NASA, adapted from (32),

created by Norbert Marwan.

to uncover spatial and temporal patterns in the data that can later
potentially be explained with domain knowledge about the phe-
nomenon leading to new physical insights. When this is the case,
as for some of our examples below, then the discovered relation-
ships may enable the development of new forecasting methods,
which at this point could be entirely detached from the original
climate network-based analyses that led to their discovery. How-
ever, network-based quantities can potentially also serve as direct
predictors in a forecasting algorithm if the underlying processes
are not yet identified, as is the case in our first example.

El Nifo

El Nifio-events (49-51) are part of the El Nifio-Southern Oscillation
(ENSO), the most important driver of interannual global climate
variability. ENSO can be perceived as a self-organized dynamical
see-saw pattern in the tropical Pacific Ocean-atmosphere system,
featured by rather irregular warm (“El Nifio”) and cold (“La Nifia”)
excursions from the long-term mean state.

The existing operational El Nifio predictions have been es-
pecially limited by the so-called spring barrier, obscuring the
anomaly’s onset until about six months before its beginning (51, 52).
In contrast, the climate network-based prediction method can cross
this barrier and roughly double the pre-warning time to about 1y
ahead (32). For example, in September 2013, the method fore-
casted the onset of an El Nifio event in 2014 with 75% probability
and based on this, a warning was issued (33). The forecast turned
out to be correct as an extreme El Nifio event has started in 2014
(53) and ended in 2016. For comparison, in December 2013, i.e.,
3 months after the network-based forecast, the most far-reaching
plume-based forecast of the International Research Institute for
Climate and Society/Climate Prediction Center (IRI/CPC) predicted
a neutral event with 46% probability, an El Nifio with 44%, and a
La Nifia with 10% for August-September-October 2014 (54).

Ludescher et al.

This successful prediction was based on a detailed analysis of
the meteorological connectivity of locations inside the so-called El
Nifo-basin with locations distributed across the rest of the Pacific
(32). This analysis area was chosen since the evolution of the
ENSO takes place across the Pacific. Previous studies (30, 55)
had found that the connectivity usually drops strongly during an El
Nifio event. Accordingly, the cooperativity has to increase before an
event, and this feature serves as the basis for the early prediction.

To obtain a measure for the cooperativity, the approach builds
on daily surface atmospheric temperatures at grid points (“nodes”)
in the tropical Pacific (see map in Fig. 1), obtained from a reanaly-
sis (56). The time evolution of the links between the temperature
nodes inside the “El Nifio basin” (14 nodes) and the nodes out-
side the basin (193 nodes) is analyzed. The strengths of these
2702 links are derived from the magnitudes of the lagged cross-
correlation functions between the temperature time series at the
corresponding sites. For further details, see the original publica-
tions (32, 33). The rising of the network’s mean link strength S
above a certain threshold © serves as a precursor for the start of
an El Nifio event in the subsequent calendar year. This empirical
threshold was optimized using a learning phase (1950-1980) and
the approach’s skill was tested in a hindcasting phase (1981-2011),
see Fig. 2A, B. Figure 2C compares the prediction accuracy of the
network approach via a receiver operating characteristic (ROC)-
analysis with the 6- and 12-month forecasts based on dynamical
climate models (57, 58). Based on this analysis, the network ap-
proach considerably outperforms conventional 6-month and 1-year
forecasts through dynamical modelling. The method was tested
and validated, e.g., by discarding 80% of the nodes outside the
El Nifio basin randomly, leading to about the same prediction per-
formance and by randomly (block) shuffling the data to obtain
statistical error estimates for the observed performance of the
method (32).

The network approach has proven its operational skill not
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Fig. 2. The El Nifio forecasting algorithm, updated figures from the original publication (32). (A, B) The mean link strength S(t) (red curve) of the climate network (see Fig. 1) is
compared to a decision threshold © (horizontal line, here © = 2.82) (left scale) with the Oceanic Nifio Index (ONI) (right scale). The ONI is defined as the 3-month running
mean of the sea surface temperature anomalies in the Nifio3.4 area in the Pacific (pink rectangle in Fig. 1). When the link strength crosses the threshold from below outside of
an El Nifio episode, an alarm is given and the start of an El Nifio in the following calendar year is predicted. El Nifio episodes (when the ONI is above 0.5°C for at least 5
months) are shown by blue areas. (A) shows the learning phase 1950-1980, where the decision threshold was optimized. In (B), the threshold obtained in (A) is used to
hindcast and forecast El Nifio episodes. The hindcasting and forecasting phases are separated by a dashed vertical line. Correct predictions are marked by green arrows, false
alarms by dashed arrows. The index n marks unpredicted El Nifio episodes. The lead time between a correct alarm and the beginning of the El Nifio episodes is 1.01 £ 0.28 y,
while the lead time to the maximal Nifio3.4 value is 1.35 + 0.47 y (32). (C) The prediction accuracy [Receiver Operating Characteristic (ROC)-type analysis]. In a ROC analysis,
the hit rate (the number of correctly predicted events divided by the total number of events) is plotted against the false alarm rate (the number of false alarms divided by the
number of non-events). The figure compares the performance of the network-based method (forecasting and hindcasting phase, 1981-2020, see (B)) with the 6- and 12-mo
forecasts based on climate models (57, 58). In contrast to ensemble methods, the network-based “ROC-curve” is a single point since, by construction, the method does not

allow to arbitrarily increase the hit rate at the expense of increasing the false alarm rate. The black dashed line shows the diagonal corresponding to random predictions.

merely in hindcasting but also in forecasting since it was intro-
duced in 2012: Between 1981 and 2020, i.e., after the learning
phase, the El Nifio-onset predictions are correct to 73%, and the
no-show predictions are correct even to 89%, see Fig. 2. Based
on random guessing with the climatological average EIl Nifio occur-
rence probability, the corresponding p-value is 5.8 - 10~° and for
the forecasting phase alone p = 0.029 (8 out of 9 forecasts were
correct).

The question of which physical processes generate the cooper-
ative mode and how they are related to the El Nifio-buildup is still
open and offers interesting new research opportunities. Possible
answers lie in an understanding of the Walker circulation as a syn-
ergetic phenomenon, of slow oceanic Rossby waves or of oceanic
turbulence structures. The relationship between the cooperative
mode and the El Nifio-buildup should be also present in dynamical
models, which makes this relationship a useful test criterion for a
model’s ability to accurately reflect the underlying mechanisms.

Climate network derived quantities have also shown predictive
skill for EI Nino/ENSO in other studies (34—38, 59) and show that
an upcoming El Nifio provides early warning signals, which can be
picked up by suitable climate networks.

Predicting Droughts in the Central Amazon

Droughts have severe impacts on ecosystems all around the globe.
They increase tree mortality and the risk of wildfires, which threaten
forests in addition to ongoing large-scale deforestation. The Ama-
zon rainforest has experienced several extreme droughts in the
last decades, during which the rainforest temporarily turned from
a carbon sink to a carbon source (60). More persistent and more
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frequent droughts in the Amazon increase the risk of a large-scale
transition from rainforest to savanna (61). A dieback of the rainfor-
est would shift this ecosystem from a carbon sink into a carbon
source (62).

Although the tropical Atlantic Ocean is the main source of mois-
ture inflow into South America (63), it has long been thought that
droughts in the Amazon basin are dominantly caused by EIl Nifio
events and associated longitudinal displacements of the atmo-
spheric Walker circulation. Only more recently, it has been sug-
gested that sea surface temperature (SST) anomalies in the trop-
ical Atlantic Ocean could provoke hydrological extremes in the
Amazon as well (64).

Based on this hypothesis, a complex network was applied to
identify oceanic regions with a strong impact on Amazon rainfall.
By introducing a bi-variate network approach (39), it was possible
to reveal the two regions in the tropical Atlantic ocean where SST
anomalies have the strongest impact on seasonal-scale rainfall
anomalies in the central Amazon (Fig. 3a,b). The spatial pattern
revealed with this network-based data analysis is then explained
in terms of the relevant atmospheric and oceanic processes. It
was shown in (39) that the development of an SST dipole between
these regions in the northern and southern tropical Atlantic and
associated latitudinal shifts of the Intertropical Convergence Zone
lead to large-scale droughts in the central Amazon.

The analysis of the correlation structure between SST anoma-
lies in the two identified tropical Atlantic regions reveals clear early-
warning signals for droughts in the Amazon (Fig. 3c). A drought
warning is issued once the correlation turns significantly negative,
indicating the beginning of the development of the tropical Atlantic
SST dipole. Based on this scheme, six out of the seven most se-
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Fig. 3. Drought prediction analysis based on correlation structure of SST anomalies in the northern and southern tropical Atlantic Ocean. a,b) Cross degree between SSTs and
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Amazon Basin. The time evolution of the average cross correlation of the Northern and Southern Tropical Atlantic Ocean (blue) is compared with the standardized precipitation
index (SPI, orange) of the Central Amazon Basin. Negative SPI anomalies with SPI < -1.5 (red dotted line) indicate severely dry periods. A drought event is predicted within the
following one and a half years whenever the average cross correlation between the SST anomalies falls below an empirically found threshold of -0.06. Green circles indicate a
matching prediction, with one false alarm in 2002 indicated by a grey circle, where the threshold is crossed but no drought took place in the direct aftermath. The temporal
evolution of the average cross correlation shown here is smoothed using a Chebyshev type-I low-pass filter and cutoff at 24 months. Figures from (39) (CC BY).

vere droughts in the central Amazon that occurred during the last
four decades were successfully hindcasted at lead times between
12 and 18 months.

Extreme Rainfall in the Eastern Central Andes

During the core season of the South American monsoon from
December through February, the eastern slopes of the Central
Andes are frequently affected by extreme rainfall events. These
events can lead to floods and landslides with devastating socioeco-
nomic impacts, but until the development of the network approach
(40, 41), no early-warning scheme had been proposed.

Complex networks were again used as a data-exploration
method to reveal patterns that might be useful for prediction when
combined with mechanistic insights. The spatiotemporal structure
of those extreme rainfall events (above the 99% percentile), as
inferred from high-resolution satellite data, can be mapped onto
a directed and weighted network: The link weights between two
grid points are a measure for how often two grid points show a
time-delayed, significantly similar precipitation event pattern, and
the direction is determined by the temporal sequence of the events.
The resulting network allows for identifying the source and the
sink regions of extreme precipitation across the South American
continent. S| Appendix Fig. S1 shows that the Intertropical Con-
vergence Zone and the northern Amazon are a source of extreme
events, while the central parts of South America are sink regions
of extremes.

Surprisingly, the network approach reveals that the exit region of
the low-level monsoonal wind flow in southeastern South America
turns out to be a source area of extreme rainfall events. The di-
rected network structure allows to infer that events occurring there
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tend to be followed by further events along a narrow band extend-
ing northwestward to the Bolivian Central Andes, and thus in the
opposite direction of the low-level monsoon circulation. Combining
the results of this data exploration with process knowledge reveals
the mechanisms underlying these extreme events and opens the
door for prediction. A detailed analysis of the atmospheric condi-
tions exhibits that not the rainfall systems themselves, but rather
the atmospheric conditions that favor the development of large
convective systems and thus lead to extreme rainfall, propagate
against the direction of the monsoon circulation (41). These atmo-
spheric conditions are determined by westward moving Rossby
wave trains that originate from the southern Pacific Ocean and turn
northward after crossing the southern tip of the continent. The
interaction of the pressure anomalies embedded on these Rossby
wave trains with the warm, moist monsoon flow from the tropics
leads to the propagation of extreme rainfall from southeastern
South America northwestward to the Central Andes.

The so-gained knowledge establishes a forecasting rule for
extreme rainfall in the eastern Central Andes based on two precon-
ditions, namely (i) strong rainfall in southeastern South America,
and (ii) an anomalously deep low-pressure system over northwest-
ern Argentina. With a lead time of two days, this forecast rule
correctly predicts 60% (and 90% during El Nifio conditions) of the
extreme rainfall events in the eastern Central Andes (41). Note
that these 60% true positives correspond to a Heidke Skill Score
of 0.47 and thus clearly outperform a random forecast, for which
this score would yield a value of zero. The better prediction skill
during El Nifio conditions can be explained by the fact that the
atmospheric pattern described above, based on which the forecast
rule has been established, occurs more often, and more concisely,
during these episodes.
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Teleconnections for extreme rainfall do not only operate at re-
gional to continental, but also at global scales (65). In particular,
atmospheric Rossby waves can be identified as dominant transcon-
tinental processes. The forecasting potential of continental and
global synchronization patterns for extreme rainfall has so far only
been systematically assessed in a few cases and should be ex-
ploited for other regions. Moreover, extreme-rainfall teleconnection
patterns determined from observational data can, in principle, yield
a methodological framework to benchmark and constrain atmo-
spheric general circulation models with respect to their capability
to reproduce these patterns.

Indian Summer Monsoon

The Indian summer monsoon is an intense rainy season lasting
from June to October. The monsoon delivers more than 70%
of the country’s annual rainfall, which is the primary source of
freshwater for India. Although the rainy season happens every
year, the monsoon onset and withdrawal dates vary within a month
from year to year. Such variability greatly affects life and property
of more than a billion people in India, especially those living in
rural areas and working in the agricultural sector, which employs
70% of the entire population. Only Kerala in South India receives
an official monsoon forecast (47) two weeks in advance, while
the other 28 states rely on the operational weather forecast of
about 5 days (47). The demand for an earlier monsoon forecast is
highest in central India, which is most exposed and vulnerable to
droughts before the monsoon onset. Moreover, while under climate
change, severe storms and floods during the monsoon withdrawal
are becoming more frequent, there is currently no official forecast
for the withdrawal date.

Exploratory network-based analyses of extreme rainfall across
the Indian subcontinent (42, 43) enabled the identification of geo-
graphical domains displaying far-reaching links, influencing distant
grid points. Especially North Pakistan and the Eastern Ghats
turn out to be crucial for the transport of precipitation across the
subcontinent (43).

The combination of the network-based analysis and nonlinear
dynamics in the tipping-elements approach (44) allowed to uncover
the critical nature of the spatiotemporal transition to the monsoon.
It was found that the temporal evolution of the daily mean air
temperature and relative humidity exhibit critical thresholds on the
eve and at the end of the monsoon. The spatial analysis of the
critical growth of the fluctuations (66) in the weekly mean values
of the same variables revealed the same two geographical areas
with maximum fluctuations (Fig. 4a-c): the Eastern Ghats (EG)
and North Pakistan (NP). A highly developed instability occurring
in these regions creates the conditions necessary for the spatially
organized and temporally sustained monsoon rainfall. Thus, the
two critical regions appear to play the role of the tipping elements
of the monsoon system. The most interesting feature is how the
tipping elements are connected: on the eve of the onset and
the withdrawal of the monsoon in the central part of India, the
temperature and relative humidity in two tipping elements equalize
(Fig. 4d). This insight creates the foundation for predictions of the
monsoon timing.

Based on this knowledge, a scheme was developed for fore-
casting the upcoming monsoon onset and withdrawal dates in the
central part of India 40 and 70 days in advance, respectively, thus -
considerably improving the time horizon of conventional forecasts
(44). The new scheme has proven its skill (73% of onset and 84%
of withdrawal predictions correct) not only in retrospective (for the
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years 1951-2015) but showed to be successful in the prediction of
future monsoons already five years in a row since its introduction
in 2016 (68). The methodology appears to be robust under climate
change and has proven its skill also under the extreme conditions
of 2016, 2018 and 2019.

The approach creates new monsoon-forecasting possibilities
around the globe, for instance, for the African, Asian and American
monsoon systems. In particular, it also offers the possibility for
regional monsoon forecasting schemes, like the above one for the
central part of India.

Stratospheric Polar Vortex

The Nothern Hemisphere extratropical stratosphere in boreal winter
is characterized by a westerly circumpolar flow, the stratospheric
polar vortex (SPV) (69). The strength of the SPV can influence the
tropospheric mid-latitude circulation and a weak SPV increases
the chances of cold air outbreaks there. Thus, extremely weak
SPV states can lead to cold spells in parts of North America and
Eurasia. Given the rather persistent surface impacts, the SPV
is also an important source of subseasonal to seasonal (S2S)
predictability for winter weather (70). To predict extremely weak
and strong SPV states, a climate network was constructed via
the Peter Clark Momentary Conditional Independence (PCMCI)
algorithm (45, 71) and has been successfully applied to identify
the precursor processes of these states.

While in the previous climate network examples, nodes were
single grid points on the globe, in this approach, each node of the
network stands for an individual sub-process and the links, derived,
for instance, from partial correlations, have a causal interpretation
(45, 46, 71, 72). A quantitative representation of a sub-process
(node) might be, for instance, the mean value of a physical quantity
over a particular spatial area (e.g., sea level pressure anomalies
over the Ural Mountains region).

Then the aim is to estimate a directed network representation
of the regarded system’s sub-processes, i.e., to identify which
sub-processes causally influence which other sub-processes (for
details, see (71)). This goal is addressed by discriminating between
the direct causal connections between the sub-processes and
spurious, non-causal correlations (71, 72). The latter can arise due
to common causes of two regarded sub-processes, intermediate

mediating processes or autocorrelations in the sub-processes.

The PCMCI algorithm identifies those spurious correlations and
removes them from the network.

At the start of the SPV analysis, potential relevant variables
affecting vortex variability were expected in variables such as sea
surface temperatures, sea level pressure and lower stratospheric
poleward eddy heat flux. From these fields, regional precursors
indices were first formed by cross-correlating the fields against the
polar vortex time-series and then averaging over the significantly
correlated regions. In the next step, these precursors indices
were then evaluated using the PCMCI algorithm for their causal
interactions. Thus, while domain knowledge was crucial to choose
the input variables, selecting the exact precursor regions as well as
identifying and quantifying the involved causal processes was done
using the algorithm described in (46, 72), which yields statistically
more reliable estimates than relying on Granger Causality (71).

The algorithm enabled the prediction of stratospheric polar
vortex behavior with predictive skill up to 45 days for extreme
15-day-mean events (46). For instance, the scheme hindcasts
58% of the extremely weak polar-vortex states with a lead time
of 1-15 days and a false alarm rate of only about 5%. Dynamical
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Fig. 4. Tipping elements of the Indian summer monsoon (ISM): forecast of onset and withdrawal dates for 2019 (based on the methodology in (44)). The Tipping elements of
the ISM are geographical regions in North Pakistan (NP) and the Eastern Ghats (EG), which are revealed by the pre-monsoon growth of the variance a% of fluctuations of the
weekly mean values of the near-surface air temperature T', (A) 21 days, (B) 7 days, and (C) 1 day before the monsoon onset in the EG. Two boxes, where a% is maximal, show
the location of the tipping elements. The composites of o% and the 700 hPa winds (indicated by the blue lines) for the period 1958—2001 from the ERA40 reanalysis data set
(73) are shown in A-C. (D) Forecasting scheme of the onset and withdrawal dates for central India in the EG-region for 2019 based on daily mean near-surface (1000 hPa) air
temperatures (NCEP/NCAR) (56, 74) in 2019 in the EG (red) and NP (blue), and the previous 5-years average temperature in the EG (purple) and NP (gray). Vertical grey lines
represent the forecasted monsoon onset and withdrawal dates, which we call the tipping points of the monsoon. The tipping points occur when the temperatures in the EG and
NP (the tipping elements of the monsoon) become equal, which happens twice during a year. At the end of May, the temperature in the EG decreases from its maximum value;
then, it reaches a critical threshold (T,nset), @nd an abrupt transition occurs - the temperature inevitably falls, and the rainy season begins in the EG region. At the same time,
the temperature in NP increases, and the two time-series intersect at Toy,set at the onset date of the monsoon in the EG. In October, when the temperature in NP falls below at
the second intersection of the two time-series, the monsoon withdraws from the EG. This feature allows to estimate the dates when the two critical temperatures (Tonset
and Tmonsoon) are reached and to forecast the onset and withdrawal dates of the monsoon. (See details in (44)). The daily precipitation in the EG region obtained from
NOAA (67) is shown superimposed in light blue. The sudden increase and decrease in precipitation coincide with the monsoon period defined by the light blue band. The
results of forecasts for the period 2016-2020 are presented in (68). Parts of the figure are from (44), reprinted with permission from John Wiley and Sons, copyright American
Geophysical Union.

forecast methods can provide predictability up to 30 days for daily  statistical methods.
events, so-called sudden stratospheric warmings, but the prediction
lead time varies strongly for individual events and is usually much

shorter (48).

The PCMCI algorithm is particularly useful if the main goal is
understanding the underlying mechanisms of different processes
by reconstructing causal relationships hidden in correlations of
observed data. The algorithm requires sufficient domain expertise
to optimally pre-select the variables and processes of the phenom-
ena one is interested in and can be sensitive to different parameter

This approach of reconstructing causal interactions is a pow-
erful tool in Earth system sciences (72): It can be applied to test
specific hypotheses about interaction mechanisms or to weigh

the importance of components as gateways for spreading per-
turbations in the network. But it also offers a novel approach to
prediction: For prediction targets as different as the amount of
Indian summer monsoon rainfall (75) and seasonal Atlantic hur-
ricane activity (76), precursors with lead times of several months
could be identified. Additionally, the algorithm also allows more
process-based model evaluations (77) beyond simple correlation
analyses to understand potential biases in representing telecon-
nection pathways. This might, in particular, be useful in the form
of hybrid forecasts (78) which combine numerical models with
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settings. Although causal discovery algorithms have been success-
fully applied to high-dimensional settings as well (including the here
discussed SPV case, see also (71, 79)), a low-dimensional, parsi-
monious set of variables representing the considered mechanisms
is often beneficial to reduce the number of statistical independence
tests in order to assure interpretability of results. In contrast, com-
plex correlation networks provide a more explorative approach,
helping to detect patterns in large high-dimensional data, which
can give rise to new hypotheses, which could, in turn, be tested
with the PCMCI approach.
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Climate Networks and Artificial Neural Networks

Extending the avenues for climate-phenomena forecasting beyond
numerical modelling is not limited to climate network theory. Artifi-
cial neural networks (ANNs), and especially their currently most
popular application, deep learning (80, 81), are inspired by the
functioning of the brain and are also composed of nodes ("neu-
rons"), which are connected (linked) to other nodes. However,
the similarity to climate networks is primarily structural: In climate
networks the individual nodes represent grid locations or physi-
cal processes, thereby creating an alternative description of the
physical world. By contrast, the nodes in ANNs and their links
(the ANN'’s architecture) have generally no physical meaning and
the link (and bias) weights, trained on the data, create an internal
representation of useful aspects of the physical world. If enough
training data have been presented to a suitable ANN, it is able to
capture characteristics of the underlying system and make pre-
dictions. For instance, deep learning has been recently proposed
to forecast the El Nifio-Southern Oscillation (82) and the amount
of Indian summer monsoon rainfall (83). Furthermore, ANNs and
other machine-learning techniques have been successfully applied
to a wide range of weather and climate questions and can be
powerful tools for tackling climate change; see (84) for a detailed
review. However, an issue at the forefront of research remains the
black-box character of ANNs (85), although promising advances to-
ward explainable or interpretable artificial intelligence have recently
been made (86).

We believe that climate-network analyses and ANNs can gain-
fully combine (37, 87). The ANNs’ strength of being able to learn
complex non-linear relationships in the presented data and the
climate networks’ ability to identify and compress/merge spatially
dispersed information about cooperativity and their potential to pro-
vide a physical interpretation makes them well-fitting complements
for climate-phenomena forecasting.

Outlook

The above (incomplete) list of successful applications of network
theory to climate phenomena demonstrates the potential of this
approach. We argue that it complements established concepts and
schemes with a new possibility to reveal precursor processes or
even entire causal chains of climate phenomena. Network theory
applied to climate science is still in its infancy and the subject of
ongoing research. The analyses of complex climate phenomena
such as the ones discussed above require individual case-by-case
approaches and there are no simple general recipes yet. Climate
networks are versatile tools for exploratory analysis to uncover
spatial and temporal patterns in the data, which may potentially
lead with domain expertise to new forecasting methods.

The examples highlighted in this Perspective can, however,
serve as useful analogies/templates for a network-based forecast-
ing of climate phenomena that are similar to them. For instance,
the example of El Nifio can serve as a template to forecast other
large-scale cooperative phenomena like the Indian Ocean Dipole
or the Atlantic El Nifio. As in the case of the Amazon droughts, the
quantification of the impacts of SST patterns on rainfall anomalies
over adjacent continents should be possible also for other tropical
regions where land-ocean temperature gradients drive moisture
flow and hence rainfall anomalies. The approach developed for
the extreme rainfall prediction in the Central Andes should be
applicable also to other regions where interactions between sub-
tropical and extratropical weather phenomena are relevant, such
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as in North America or eastern Asia. Developed for forecasting
the Indian summer monsoon, the tipping elements approach is
applicable to other climate and weather phenomena that exhibit
a critical transition. In particular, it could be applied to other mon-
soon systems in West and East Africa, and also North and South
America. Finally, the PCMCI algorithm is particularly useful if the
primary goal of an analysis is an understanding of the underlying
mechanisms of a regarded phenomenon.

Network theory applied to climate science is rapidly developing,
but there are still open challenges in the realm of application, as
well as challenges of methodological nature:

Since climate networks are constructed from observational data
via similarity measures, e.g., correlations, their underlying physi-
cal processes may not be immediately apparent. Uncovering the
physical processes can lead to a better understanding of the re-
garded system, which could translate into better predictions within
the network framework or improved numerical models. Causally
interpretable networks and machine learning techniques could be
instrumental in uncovering the underlying processes. As recently
argued regarding the role of theory in modelling-dominated climate
science (88), a delicate balance between, and a skillful combina-
tion of, observations, theory and application-driven simulations (be
it through numerical modelling or network methods, or rather both)
may provide the best path forward.

Then, there are some challenges related to the data itself: First,
as an entirely data-dependent approach, network analysis may
be subject to the underlying uncertainty in the data. Based on
experience, the network-based schemes appear to be robust, see,
e.g., (32) and in practice data uncertainty might not be a significant
issue. However, this remains to be studied systematically.

Another question is, how to incorporate multi-variate data sets?
Most current approaches construct climate networks by relying on
a single physical quantity, e.g., temperature or precipitation data.
For instance, reanalysis data sets offer a wide range of physical
quantities at each grid point. Exploiting multi-variate networks,
also called multi-layer networks, can enable new ways for both un-
derstanding the underlying phenomena and also finding improved
prediction schemes.

New reanalysis data, e.g., ERA5 (89), which create ensembles
of plausible trajectories instead of only a single one, as previous
products mostly did, may improve predictions, e.g., when uncertain
input data can be identified and possibly omitted or down-weighted.
Also, robustness-tests for the prediction methods to intra-ensemble
uncertainties are now becoming feasible. Climate networks are
often constructed only based on one assimilation product, often
due to the lack of viable alternatives, and in the future, systematic
inter-data-set comparisons would be desirable.

Apart from these “data uncertainty problems”, there is also
the case where there is not enough data available: for instance,
how can the often short observational records be dealt with? This
is especially relevant for extreme events, which are by definition
rare, and only a few extreme events might be on record to validate
more complex prediction models based on network characteris-
tics. Possible solutions could be applying the prediction methods
from network theory to the output of GCM runs or validating on
corresponding phenomena at different geographical locations. Ad-
ditionally, long paleoclimatological records, for instance, tree-ring
or coral-based reconstructions, could provide opportunities to val-
idate complex prediction models. Finally, when looking into the
future of the method itself: Does climate change impact a fore-
casting scheme and does it need to be extended accordingly, e.g.,
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by evolving networks? Statistical prediction methods in general
entail stationarity assumptions, which may or may not be fulfilled
in a changing climate, where unprecedented configurations could
appear. Applying the prediction schemes to GCM future scenario
outputs or an understanding of a method’s underlying processes
could reveal if and how schemes should be modified.

Most importantly, and in spite of all these standing challenges,
network analysis can serve both as a toolbox to develop early-
warning schemes as well as concrete leads or as a scientific in-
spiration for identifying physical mechanisms that relate spatially
and/or temporally distant observations, where no connection was
suspected before.

These first successes encourage us to invite the research com-
munity to intensively investigate the applicability of the network
approach to climate dynamics, but also to other data-rich problems
of non-local nature. We are confident that based on network ap-
proaches, critical advances are possible in the understanding and
prediction of emerging phenomena, with topics ranging from jet-
stream dynamics, sea-ice melting and earthquakes to epidemics
containment and physiological-systems collapse.

Data Availability. There are no data underlying this work.
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