

Network-based forecasting of climate phenomena

Article

Accepted Version

Ludescher, J., Martin, M. ORCID: <https://orcid.org/0000-0002-1443-0891>, Boers, N. ORCID: <https://orcid.org/0000-0002-1239-9034>, Bunde, A., Ciemer, C. ORCID: <https://orcid.org/0000-0002-4092-3761>, Fan, J. ORCID: <https://orcid.org/0000-0003-1954-4641>, Havlin, S. ORCID: <https://orcid.org/0000-0002-9974-5920>, Kretschmer, M. ORCID: <https://orcid.org/0000-0002-2756-9526>, Kurths, J., Runge, J., Stolbova, V. ORCID: <https://orcid.org/0000-0002-5574-3827>, Surovyatkina, E. ORCID: <https://orcid.org/0000-0001-5136-4988> and Schellnhuber, H. J. (2021) Network-based forecasting of climate phenomena. *Proceedings of the National Academy of Sciences of the United States of America*, 118 (47). e1922872118. ISSN 0027-8424 doi: 10.1073/pnas.1922872118 Available at <https://centaur.reading.ac.uk/101629/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1073/pnas.1922872118>

Publisher: National Academy of Sciences

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Network-based Forecasting of Climate Phenomena

Josef Ludescher^{a,1,2}, Maria Martin^{a,1,2}, Niklas Boers^{a,b,c}, Armin Bunde^d, Catrin Ciemer^a, Jingfang Fan^{a,e}, Shlomo Havlin^f, Marlene Kretschmer^g, Jürgen Kurths^{a,h}, Jakob Rungeⁱ, Veronika Stolbova^j, Elena Surovyatkina^{a,k}, and Hans Joachim Schellnhuber^a

This manuscript was compiled on September 26, 2021

1 Network theory, as emerging from complex-systems science, can provide critical predictive power for mitigating the global-warming crisis
2 and other societal challenges. Here we discuss the main differences of this approach to classical numerical modelling and highlight several
3 cases where the network approach substantially improved the prediction of high-impact phenomena: (i) El Niño events, (ii) droughts in the
4 Central Amazon, (iii) extreme rainfall in the Eastern Central Andes, (iv) the Indian summer monsoon, and (v) extreme stratospheric polar
5 vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this Perspective, we argue that network-based
6 approaches can gainfully complement numerical modelling.

climate-phenomena | forecasting | network theory | climate networks

1 If societies are able to anticipate disruptive events, they can take
2 measures to save thousands of lives and to avoid billions of eco-
3 nomic costs (1–5). A most evident, globally disruptive event is
4 certainly the current Covid-19 pandemic. Even though it seems im-
5 possible to accurately predict the emergence of such a virus itself,
6 the pandemic bears several characteristics that are also shared by
7 other disruptions: The general risk of something like this to happen
8 was known before, but economic and societal preparations to limit
9 harmful impacts are strongly dependent on a credible, science
10 based warning, preferably with significant time before the event
11 or at least before its full unfolding (the spreading in the case of a
12 virus) and with specifications of foreseeable impacts. Such a warn-
13 ing is not always possible, but there are promising new avenues.
14 Here, we describe our perspective on this research challenge from
15 the point of view of network theory and its usefulness for better
16 understanding and for forecasting specific climate phenomena.

17 Relevant climate phenomena that have the potential to pro-
18 duce major disruptions in societies are, for instance, the El Niño
19 phenomenon, the Indian summer monsoon and extreme weather
20 patterns like persistent heat waves, cold spells or rainstorms as
21 associated with stalling planetary Rossby waves (6). For instance,
22 a popular saying in India - that the “true finance minister” is the
23 monsoon - is based on the fact that water resources are vital
24 for India, where the rural economy accounts for about 45% of
25 GDP (7). El Niño occurrences are well known for their global im-
26 pacts on weather patterns and therefore societies. Floods and
27 heatwaves, especially concurring with droughts, directly affect hu-
28 mans and nature, and can wreak havoc in agriculture. Beyond
29 the climate system, highly challenging events of disruptive nature
30 are large-magnitude earthquakes, outbreaks of epidemics and,

31 on the individual level, physiological disasters like heart attacks.
32 These phenomena often emerge with little precursory signal or no
33 warning time at all, making effective adaptation challenging, if not
34 impossible. The pertinent lack of predictive power, however, is not
35 surprising, since most of those high-impact events are generated
36 by complex systems composed of many nonlinearly interacting
37 entities.

38 In the case of weather and climate, forecasting relies predom-
39 inantly on numerical models (8). Starting with Richardson in the
40 1920s (9), it has been a long way to the first successful prediction
41 (10) in 1950 and eventually to the highly sophisticated general
42 circulation and Earth system models of today (11). These simu-
43 lators rely on initial conditions (especially for weather forecasts,
44 i.e., the prediction of atmospheric dynamics for up to two weeks)
45 and boundary conditions (which are more relevant for seasonal
46 and longer-ranging forecasts, involving slower climate components
47 like the oceans) and deliver very good forecasts for a broad range
48 of physical quantities. However, their predictive power for certain
49 climate phenomena beyond the weather time-scale can be rather
50 limited: The dependence on precise initial and boundary conditions
51 and the necessity to simplify, inherent to any modelling approach,
52 as well as the chaotic nature of the system under study will hit hard
53 limits to further improvement (12, 13).

54 In spite of multiple efforts towards seamless prediction, a gap
55 remains in prediction skill between the sub-seasonal weather fore-
56 cast and the seasonal and longer climate predictions. Near-term
57 climate prediction is one of the Grand Challenges of the World
58 Climate Research Programme, WCRP (14). There have also been
59 other significant efforts in this domain, for instance, with the sub-
60 seasonal to seasonal (S2S) prediction project (15, 16). But in
61 many cases, numerical modelling still does, and also might con-

^aPotsdam Institute for Climate Impact Research, Potsdam, Germany; ^bFree University Berlin, Berlin, Germany; ^cUniversity of Exeter, Exeter, UK; ^dJustus-Liebig-Universität Gießen, Gießen, Germany; ^eSchool of Systems Science, Beijing Normal University, Beijing, China; ^fBar-Ilan University, Ramat-Gan, Israel; ^gUniversity of Reading, Reading, UK; ^hNizhny Novgorod State University, Nizhny Novgorod, Russia; ⁱGerman Aerospace Center (DLR), Institute of Data Science, Jena, Germany; ^jETH Zürich, Zürich, Switzerland; ^kSpace Research Institute of Russian Academy of Sciences, Moscow, Russia

Author contributions: J.L., M.M., N.B., A.B., C.C., J.F., S.H., M.K., J.K., J.R., V.S., E.S., and H.J.S. wrote the paper.

¹J.L. and M.M. contributed equally to this work

²To whom correspondence may be addressed. E-mail: josef.ludescher@pik-potsdam.de or maria.martin@pik-potsdam.de

The authors declare no competing interest.

tinute to leave vulnerable societies with insufficient warning time ahead of climate phenomena, within as well as outside of the above mentioned gap: There are types of climate phenomena that still notoriously elude reliable long-term forecasting through numerical modelling. For five specific climate phenomena examples discussed below, network theory has led to (in some cases) considerably earlier forecasts compared to state-of-the-art operational forecasts, see (SI Appendix, Table S1).

Here we argue that the predictability limitations of existing operational forecasts are partly due to the basic intention of numerical models: The goal of faithfully mirroring the local nature of direct interactions in the physical world. However, the models are not perfect mimics of nature. Processes, e.g., turbulence, are not resolved at all or only at a possibly insufficient resolution and tuned parametrisations have to be employed (17). In particular, teleconnections present in observational data may be not well represented or even absent within numerical models. Thus, identifying and then analyzing the evolution of teleconnections with time can provide an additional avenue to predicting large-scale climate phenomena. The beginnings of this promising avenue can be traced back to Sir Gilbert Walker into the early 20th century, when he first noticed teleconnections (18) and has now gained a new and much broader perspective through the advent of complex network analyses.

Here we suggest that the evolving interactions (manifesting, e.g., via correlations) between different and often rather distant locations can provide new insights and serve as predictors for a large variety of climate phenomena. The philosophy behind this approach is that even in a simple system, composed for instance of two coupled nonlinear oscillators, one will observe aleatoric behavior providing very limited information when measuring the motion of each oscillator individually. However, when evaluating the coupling between them, e.g., via synchronization (as already detected in the 17th century by Christiaan Huygens (19)) one will obtain new and valuable information about the system (20). Analogously, while one might not necessarily extract useful information from measurements of single locations on the globe, the links, i.e., the interactions between the sites and their evolution in time, can provide, as in the examples below, critical novel information for forecasting.

Network Analysis Opens a Second Avenue

Consequently, we propose to complement the established state of the art for predicting climate phenomena through explicit numerical modelling by the maturing approach of network theory (21–23). The idea is to obtain additional information about the climate system by capturing the connectivity of different locations (including long-distance ones), through measuring the similarity in the evolution of their physical quantities. This similarity between different locations (nodes) can be quantified by different linear and non-linear measures like Pearson correlation, event synchronization, mutual information, transfer entropy, partial correlations or Granger causality. For an overview of the different methods, see (24, 25).

The similarity is then translated into links connecting the nodes in the network and measuring cooperativity, i.e., the property of not acting independently of each other. Commonly, cutoff thresholds are applied on these similarity measures to select only the statistically significant links. These thresholds can be obtained by analyzing surrogate data, e.g., shuffled versions of the original time series or synthetic time series that match the relevant statistical properties of the original time series. For more details on surrogate

methods, see (24, 25). For an illustration of a network framework, see Fig. 1.

The final network can be represented by an adjacency (connectivity) matrix A , which encodes the links between the nodes or their absence and is defined as

$$A_{ij} = \begin{cases} \text{non-zero, if there is a link from node } j \text{ to node } i \\ 0, \text{ otherwise} \end{cases}$$

The value of the element A_{ij} represents the weight of the link. Links connecting nodes to themselves are not included, i.e., $A_{ii} = 0$. If the links are not directed, then the adjacency matrix is symmetric, $A_{ij} = A_{ji}$. However, links can also be defined as directed links, with a starting node j and a target node i . For instance, in the case of correlation-based links, a direction can be defined via the sign of the time lag of the cross-correlation function. When links are directed, A is generally non-symmetric $A_{ij} \neq A_{ji}$.

The so obtained adjacency matrix allows to calculate network quantities like in- and out-degrees, clustering coefficients or betweenness coefficients of nodes. For a detailed description of these and other network quantities, see (21, 22). Many of these quantities, which represent topological features of the network, have a physical interpretation. For example, it was found by analysing advection-diffusion dynamics on model background flows that a high absolute flow velocity coincides with a high node degree, i.e., a high number of links attached to a node (26).

While teleconnections can be emerging properties in dynamical models, which mainly concentrate on data at specific grid cells and their immediate neighbours, the basis of the network approach is the direct analysis of the links between grid points of a large variety of distances and their temporal evolution. This approach avoids the necessity to mimic the entire climate system, enabling the forecasters instead to pursue specific questions about particular non-local phenomena. Since network-based prediction schemes often rely only on assessing the current state of the regarded system, measurement errors play a much smaller role for them than for numerical models, where small errors in the initial conditions can lead to exponentially increasing errors in the prediction, as it can be the case for weather forecasting (8, 27).

In contrast to, e.g., online social networks, where the existence of the structure is already known and subject to direct analysis, the existence and structure of networks in the climate context is often not obvious – they can be purely functional. In this respect, climate networks are comparable to networks in neuroscience, where the structural networks of synapses can be different from the functional network derived from the connectivity of time series, e.g., EEG measurements (28).

In the following, we focus on forecasting and highlight several cases where the climate-network (24, 29–31) approach substantially improved the prediction of high-impact climate phenomena: 1) El Niño events (32–38), 2) droughts in the Central Amazon (39), 3) extreme rainfall in the Eastern Central Andes (40, 41), 4) the Indian summer monsoon (42–44), and 5) extreme stratospheric polar vortex states (45, 46).

For most of these climate network-based analyses, the initial motivation was to better understand and describe the regarded climate phenomena and not primarily the discovery of a new forecasting method, which often happens serendipitously. Generally, there is currently no recipe to follow to surely obtain a network-based prediction algorithm for a specific climate phenomenon or to rule out that a network approach can address the phenomenon. However, complex networks provide ideal tools for data exploration

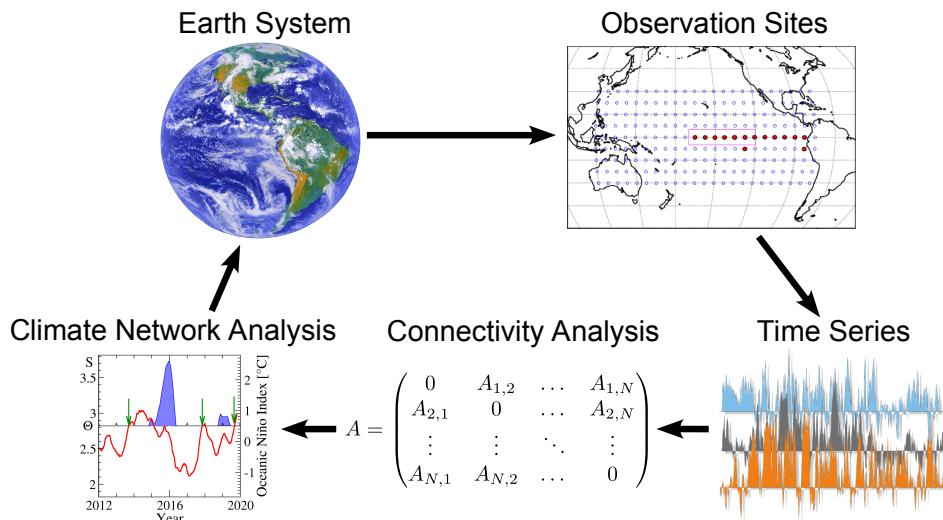


Fig. 1. The climate-network framework as a tool for prediction. Observational data of physical quantities, e.g., temperatures, are available at different geographical locations. These data can be used directly or via a reanalysis (numerical weather model) which assimilates and maps them onto a regular grid. Thus, for each node (observational site or reanalysis grid point) of the climate network, a time series of the regarded physical quantity is available. Cooperativity between nodes can be detected from the similarity in the evolution of these time series and translated into links connecting the corresponding nodes. The links or their strengths may change with time. These nodes and their links constitute the evolving climate network, which can be represented by the adjacency (connectivity) matrix A . The analysis of this network can enable early predictions of climate phenomena and provide insights into the physical processes of the Earth system. For example, for forecasting El Niño, the nodes are in the Pacific and the links are between the El Niño basin (full red circles) and the rest of the tropical Pacific (open blue circles). The rising of the network's mean link strength S (red curve) above a certain threshold Θ serves as a precursor (green arrows) for the start of an El Niño event (blue areas) in the subsequent calendar year (32). Parts of the figure are from: NASA, adapted from (32), created by Norbert Marwan.

177 to uncover spatial and temporal patterns in the data that can later
 178 potentially be explained with domain knowledge about the phe-
 179 nomenon leading to new physical insights. When this is the case,
 180 then the discovered relationships may enable the development of new forecasting methods,
 181 which at this point could be entirely detached from the original
 182 climate network-based analyses that led to their discovery. How-
 183 ever, network-based quantities can potentially also serve as direct
 184 predictors in a forecasting algorithm if the underlying processes
 185 are not yet identified, as is the case in our first example.
 186

187 El Niño

188 El Niño-events (49–51) are part of the El Niño-Southern Oscillation
 189 (ENSO), the most important driver of interannual global climate
 190 variability. ENSO can be perceived as a self-organized dynamical
 191 see-saw pattern in the tropical Pacific Ocean-atmosphere system,
 192 featured by rather irregular warm ("El Niño") and cold ("La Niña")
 193 excursions from the long-term mean state.

194 The existing operational El Niño predictions have been es-
 195 pecially limited by the so-called spring barrier, obscuring the
 196 anomaly's onset until about six months before its beginning (51, 52).
 197 In contrast, the climate network-based prediction method can cross
 198 this barrier and roughly double the pre-warning time to about 1y
 199 ahead (32). For example, in September 2013, the method fore-
 200 casted the onset of an El Niño event in 2014 with 75% probability
 201 and based on this, a warning was issued (33). The forecast turned
 202 out to be correct as an extreme El Niño event has started in 2014
 203 (53) and ended in 2016. For comparison, in December 2013, i.e.,
 204 3 months after the network-based forecast, the most far-reaching
 205 plume-based forecast of the International Research Institute for
 206 Climate and Society/Climate Prediction Center (IRI/CPC) predicted
 207 a neutral event with 46% probability, an El Niño with 44%, and a
 208 La Niña with 10% for August-September-October 2014 (54).

209 This successful prediction was based on a detailed analysis of
 210 the meteorological connectivity of locations inside the so-called El
 211 Niño-basin with locations distributed across the rest of the Pacific
 212 (32). This analysis area was chosen since the evolution of the
 213 ENSO takes place across the Pacific. Previous studies (30, 55)
 214 had found that the connectivity usually drops strongly during an El
 215 Niño event. Accordingly, the cooperativity has to increase before an
 216 event, and this feature serves as the basis for the early prediction.

217 To obtain a measure for the cooperativity, the approach builds
 218 on daily surface atmospheric temperatures at grid points ("nodes")
 219 in the tropical Pacific (see map in Fig. 1), obtained from a reanaly-
 220 sis (56). The time evolution of the links between the temperature
 221 nodes inside the "El Niño basin" (14 nodes) and the nodes out-
 222 side the basin (193 nodes) is analyzed. The strengths of these
 223 2702 links are derived from the magnitudes of the lagged cross-
 224 correlation functions between the temperature time series at the
 225 corresponding sites. For further details, see the original publica-
 226 tions (32, 33). The rising of the network's mean link strength S
 227 above a certain threshold Θ serves as a precursor for the start of
 228 an El Niño event in the subsequent calendar year. This empirical
 229 threshold was optimized using a learning phase (1950–1980) and
 230 the approach's skill was tested in a hindcasting phase (1981–2011),
 231 see Fig. 2A, B. Figure 2C compares the prediction accuracy of the
 232 network approach via a receiver operating characteristic (ROC)-
 233 analysis with the 6- and 12-month forecasts based on dynamical
 234 climate models (57, 58). Based on this analysis, the network ap-
 235 proach considerably outperforms conventional 6-month and 1-year
 236 forecasts through dynamical modelling. The method was tested
 237 and validated, e.g., by discarding 80% of the nodes outside the
 238 El Niño basin randomly, leading to about the same prediction per-
 239 formance and by randomly (block) shuffling the data to obtain
 240 statistical error estimates for the observed performance of the
 241 method (32).

242 The network approach has proven its operational skill not

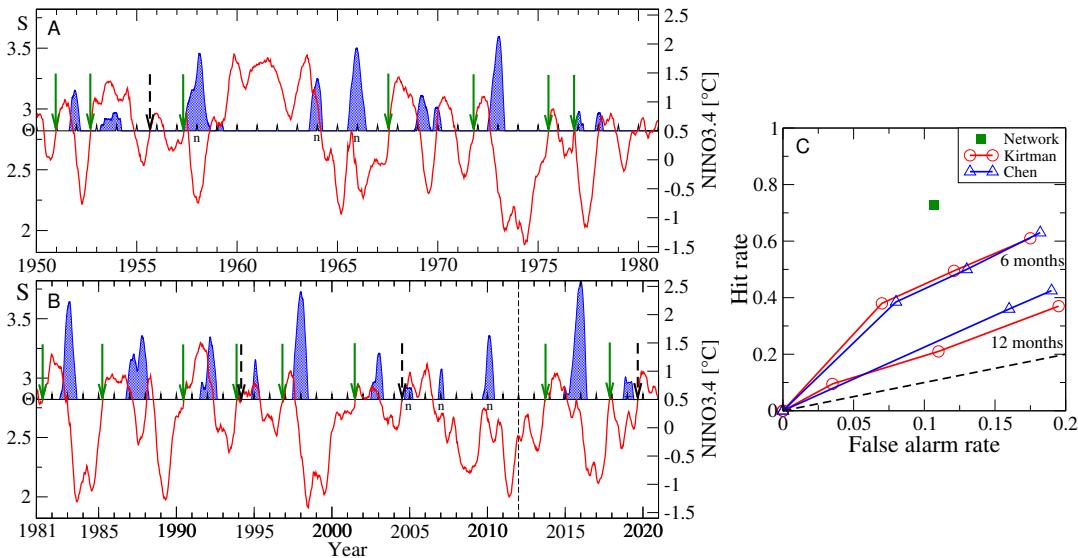


Fig. 2. The El Niño forecasting algorithm, updated figures from the original publication (32). (A, B) The mean link strength $S(t)$ (red curve) of the climate network (see Fig. 1) is compared to a decision threshold Θ (horizontal line, here $\Theta = 2.82$) (left scale) with the Oceanic Niño Index (ONI) (right scale). The ONI is defined as the 3-month running mean of the sea surface temperature anomalies in the Niño3.4 area in the Pacific (pink rectangle in Fig. 1). When the link strength crosses the threshold from below outside of an El Niño episode, an alarm is given and the start of an El Niño in the following calendar year is predicted. El Niño episodes (when the ONI is above 0.5°C for at least 5 months) are shown by blue areas. (A) shows the learning phase 1950–1980, where the decision threshold was optimized. In (B), the threshold obtained in (A) is used to hindcast and forecast El Niño episodes. The hindcasting and forecasting phases are separated by a dashed vertical line. Correct predictions are marked by green arrows, false alarms by dashed arrows. The index n marks unpredicted El Niño episodes. The lead time between a correct alarm and the beginning of the El Niño episodes is 1.01 ± 0.28 y, while the lead time to the maximal Niño3.4 value is 1.35 ± 0.47 y (32). (C) The prediction accuracy [Receiver Operating Characteristic (ROC)-type analysis]. In a ROC analysis, the hit rate (the number of correctly predicted events divided by the total number of events) is plotted against the false alarm rate (the number of false alarms divided by the number of non-events). The figure compares the performance of the network-based method (forecasting and hindcasting phase, 1981–2020, see (B)) with the 6- and 12-mo forecasts based on climate models (57, 58). In contrast to ensemble methods, the network-based “ROC-curve” is a single point since, by construction, the method does not allow to arbitrarily increase the hit rate at the expense of increasing the false alarm rate. The black dashed line shows the diagonal corresponding to random predictions.

merely in hindcasting but also in forecasting since it was introduced in 2012: Between 1981 and 2020, i.e., after the learning phase, the El Niño-onset predictions are correct to 73%, and the no-show predictions are correct even to 89%, see Fig. 2. Based on random guessing with the climatological average El Niño occurrence probability, the corresponding p -value is $5.8 \cdot 10^{-5}$ and for the forecasting phase alone $p = 0.029$ (8 out of 9 forecasts were correct).

The question of which physical processes generate the cooperative mode and how they are related to the El Niño-buildup is still open and offers interesting new research opportunities. Possible answers lie in an understanding of the Walker circulation as a synergistic phenomenon, of slow oceanic Rossby waves or of oceanic turbulence structures. The relationship between the cooperative mode and the El Niño-buildup should be also present in dynamical models, which makes this relationship a useful test criterion for a model’s ability to accurately reflect the underlying mechanisms.

Climate network derived quantities have also shown predictive skill for El Niño/ENSO in other studies (34–38, 59) and show that an upcoming El Niño provides early warning signals, which can be picked up by suitable climate networks.

264 Predicting Droughts in the Central Amazon

265 Droughts have severe impacts on ecosystems all around the globe. 266 They increase tree mortality and the risk of wildfires, which threaten 267 forests in addition to ongoing large-scale deforestation. The Amazon 268 rainforest has experienced several extreme droughts in the 269 last decades, during which the rainforest temporarily turned from a 270 carbon sink to a carbon source (60). More persistent and more

271 frequent droughts in the Amazon increase the risk of a large-scale 272 transition from rainforest to savanna (61). A dieback of the rainforest 273 would shift this ecosystem from a carbon sink into a carbon 274 source (62).

275 Although the tropical Atlantic Ocean is the main source of moisture 276 inflow into South America (63), it has long been thought that 277 droughts in the Amazon basin are dominantly caused by El Niño 278 events and associated longitudinal displacements of the atmospheric 279 Walker circulation. Only more recently, it has been suggested that sea 280 surface temperature (SST) anomalies in the tropical Atlantic Ocean 281 could provoke hydrological extremes in the Amazon as well (64). 282

283 Based on this hypothesis, a complex network was applied to 284 identify oceanic regions with a strong impact on Amazon rainfall. 285 By introducing a bi-variate network approach (39), it was possible 286 to reveal the two regions in the tropical Atlantic ocean where SST 287 anomalies have the strongest impact on seasonal-scale rainfall 288 anomalies in the central Amazon (Fig. 3a,b). The spatial pattern 289 revealed with this network-based data analysis is then explained 290 in terms of the relevant atmospheric and oceanic processes. It 291 was shown in (39) that the development of an SST dipole between 292 these regions in the northern and southern tropical Atlantic and 293 associated latitudinal shifts of the Intertropical Convergence Zone 294 lead to large-scale droughts in the central Amazon.

295 The analysis of the correlation structure between SST anomalies 296 in the two identified tropical Atlantic regions reveals clear early- 297 warning signals for droughts in the Amazon (Fig. 3c). A drought 298 warning is issued once the correlation turns significantly negative, 299 indicating the beginning of the development of the tropical Atlantic 300 SST dipole. Based on this scheme, six out of the seven most se-

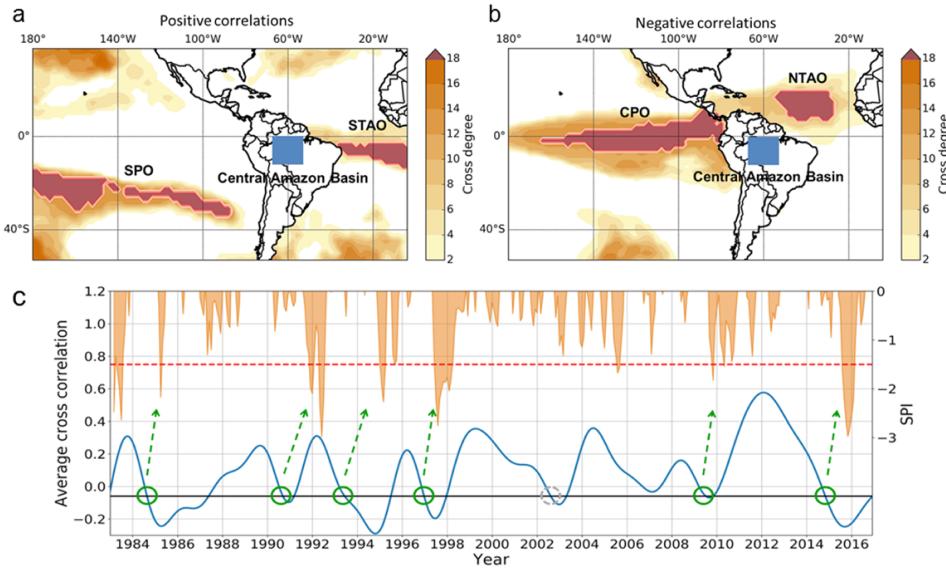


Fig. 3. Drought prediction analysis based on correlation structure of SST anomalies in the northern and southern tropical Atlantic Ocean. a,b) Cross degree between SSTs and continental rainfall anomalies. For each SST grid cell of the Atlantic and Pacific Ocean, the cross degree towards rainfall in the Central Amazon Basin (blue box) is shown, for a) positive and b) negative correlations. Darker shading indicates a larger cross degree, implying a larger number of links, and thus significant correlations with rainfall at more grid points in the Central Amazon Basin. Red areas outline coherent oceanic regions with the 20% highest cross degrees. c) Early-warning signal for droughts in the Central Amazon Basin. The time evolution of the average cross correlation of the Northern and Southern Tropical Atlantic Ocean (blue) is compared with the standardized precipitation index (SPI, orange) of the Central Amazon Basin. Negative SPI anomalies with $\text{SPI} < -1.5$ (red dotted line) indicate severely dry periods. A drought event is predicted within the following one and a half years whenever the average cross correlation between the SST anomalies falls below an empirically found threshold of -0.06. Green circles indicate a matching prediction, with one false alarm in 2002 indicated by a grey circle, where the threshold is crossed but no drought took place in the direct aftermath. The temporal evolution of the average cross correlation shown here is smoothed using a Chebyshev type-I low-pass filter and cutoff at 24 months. Figures from (39) (CC BY).

vere droughts in the central Amazon that occurred during the last four decades were successfully hindcasted at lead times between 12 and 18 months.

Extreme Rainfall in the Eastern Central Andes

During the core season of the South American monsoon from December through February, the eastern slopes of the Central Andes are frequently affected by extreme rainfall events. These events can lead to floods and landslides with devastating socioeconomic impacts, but until the development of the network approach (40, 41), no early-warning scheme had been proposed.

Complex networks were again used as a data-exploration method to reveal patterns that might be useful for prediction when combined with mechanistic insights. The spatiotemporal structure of those extreme rainfall events (above the 99% percentile), as inferred from high-resolution satellite data, can be mapped onto a directed and weighted network: The link weights between two grid points are a measure for how often two grid points show a time-delayed, significantly similar precipitation event pattern, and the direction is determined by the temporal sequence of the events. The resulting network allows for identifying the source and the sink regions of extreme precipitation across the South American continent. SI Appendix Fig. S1 shows that the Intertropical Convergence Zone and the northern Amazon are a source of extreme events, while the central parts of South America are sink regions of extremes.

Surprisingly, the network approach reveals that the exit region of the low-level monsoonal wind flow in southeastern South America turns out to be a source area of extreme rainfall events. The directed network structure allows to infer that events occurring there

tend to be followed by further events along a narrow band extending northwestward to the Bolivian Central Andes, and thus in the opposite direction of the low-level monsoon circulation. Combining the results of this data exploration with process knowledge reveals the mechanisms underlying these extreme events and opens the door for prediction. A detailed analysis of the atmospheric conditions exhibits that not the rainfall systems themselves, but rather the atmospheric conditions that favor the development of large convective systems and thus lead to extreme rainfall, propagate against the direction of the monsoon circulation (41). These atmospheric conditions are determined by westward moving Rossby wave trains that originate from the southern Pacific Ocean and turn northward after crossing the southern tip of the continent. The interaction of the pressure anomalies embedded on these Rossby wave trains with the warm, moist monsoon flow from the tropics leads to the propagation of extreme rainfall from southeastern South America northwestward to the Central Andes.

The so-gained knowledge establishes a forecasting rule for extreme rainfall in the eastern Central Andes based on two preconditions, namely (i) strong rainfall in southeastern South America, and (ii) an anomalously deep low-pressure system over northwest Argentina. With a lead time of two days, this forecast rule correctly predicts 60% (and 90% during El Niño conditions) of the extreme rainfall events in the eastern Central Andes (41). Note that these 60% true positives correspond to a Heidke Skill Score of 0.47 and thus clearly outperform a random forecast, for which this score would yield a value of zero. The better prediction skill during El Niño conditions can be explained by the fact that the atmospheric pattern described above, based on which the forecast rule has been established, occurs more often, and more concisely, during these episodes.

361 Teleconnections for extreme rainfall do not only operate at re-
362 gional to continental, but also at global scales (65). In particular,
363 atmospheric Rossby waves can be identified as dominant transcon-
364 tinental processes. The forecasting potential of continental and
365 global synchronization patterns for extreme rainfall has so far only
366 been systematically assessed in a few cases and should be ex-
367 ploited for other regions. Moreover, extreme-rainfall teleconnection
368 patterns determined from observational data can, in principle, yield
369 a methodological framework to benchmark and constrain atmo-
370 spheric general circulation models with respect to their capability
371 to reproduce these patterns.

372 Indian Summer Monsoon

373 The Indian summer monsoon is an intense rainy season lasting
374 from June to October. The monsoon delivers more than 70%
375 of the country's annual rainfall, which is the primary source of
376 freshwater for India. Although the rainy season happens every
377 year, the monsoon onset and withdrawal dates vary within a month
378 from year to year. Such variability greatly affects life and property
379 of more than a billion people in India, especially those living in
380 rural areas and working in the agricultural sector, which employs
381 70% of the entire population. Only Kerala in South India receives
382 an official monsoon forecast (47) two weeks in advance, while
383 the other 28 states rely on the operational weather forecast of
384 about 5 days (47). The demand for an earlier monsoon forecast is
385 highest in central India, which is most exposed and vulnerable to
386 droughts before the monsoon onset. Moreover, while under climate
387 change, severe storms and floods during the monsoon withdrawal
388 are becoming more frequent, there is currently no official forecast
389 for the withdrawal date.

390 Exploratory network-based analyses of extreme rainfall across
391 the Indian subcontinent (42, 43) enabled the identification of geo-
392 graphical domains displaying far-reaching links, influencing distant
393 grid points. Especially North Pakistan and the Eastern Ghats
394 turn out to be crucial for the transport of precipitation across the
395 subcontinent (43).

396 The combination of the network-based analysis and nonlinear
397 dynamics in the tipping-elements approach (44) allowed to uncover
398 the critical nature of the spatiotemporal transition to the monsoon.
399 It was found that the temporal evolution of the daily mean air
400 temperature and relative humidity exhibit critical thresholds on the
401 eve and at the end of the monsoon. The spatial analysis of the
402 critical growth of the fluctuations (66) in the weekly mean values
403 of the same variables revealed the same two geographical areas
404 with maximum fluctuations (Fig. 4a-c): the Eastern Ghats (EG)
405 and North Pakistan (NP). A highly developed instability occurring
406 in these regions creates the conditions necessary for the spatially
407 organized and temporally sustained monsoon rainfall. Thus, the
408 two critical regions appear to play the role of the tipping elements
409 of the monsoon system. The most interesting feature is how the
410 tipping elements are connected: on the eve of the onset and
411 the withdrawal of the monsoon in the central part of India, the
412 temperature and relative humidity in two tipping elements equalize
413 (Fig. 4d). This insight creates the foundation for predictions of the
414 monsoon timing.

415 Based on this knowledge, a scheme was developed for fore-
416 casting the upcoming monsoon onset and withdrawal dates in the
417 central part of India 40 and 70 days in advance, respectively, thus -
418 considerably improving the time horizon of conventional forecasts
419 (44). The new scheme has proven its skill (73% of onset and 84%
420 of withdrawal predictions correct) not only in retrospective (for the

421 years 1951-2015) but showed to be successful in the prediction of
422 future monsoons already five years in a row since its introduction
423 in 2016 (68). The methodology appears to be robust under climate
424 change and has proven its skill also under the extreme conditions
425 of 2016, 2018 and 2019.

426 The approach creates new monsoon-forecasting possibilities
427 around the globe, for instance, for the African, Asian and American
428 monsoon systems. In particular, it also offers the possibility for
429 regional monsoon forecasting schemes, like the above one for the
430 central part of India.

431 Stratospheric Polar Vortex

432 The Northern Hemisphere extratropical stratosphere in boreal winter
433 is characterized by a westerly circumpolar flow, the stratospheric
434 polar vortex (SPV) (69). The strength of the SPV can influence the
435 tropospheric mid-latitude circulation and a weak SPV increases
436 the chances of cold air outbreaks there. Thus, extremely weak
437 SPV states can lead to cold spells in parts of North America and
438 Eurasia. Given the rather persistent surface impacts, the SPV
439 is also an important source of subseasonal to seasonal (S2S)
440 predictability for winter weather (70). To predict extremely weak
441 and strong SPV states, a climate network was constructed via
442 the Peter Clark Momentary Conditional Independence (PCMCI)
443 algorithm (45, 71) and has been successfully applied to identify
444 the precursor processes of these states.

445 While in the previous climate network examples, nodes were
446 single grid points on the globe, in this approach, each node of the
447 network stands for an individual sub-process and the links, derived,
448 for instance, from partial correlations, have a causal interpretation
449 (45, 46, 71, 72). A quantitative representation of a sub-process
450 (node) might be, for instance, the mean value of a physical quantity
451 over a particular spatial area (e.g., sea level pressure anomalies
452 over the Ural Mountains region).

453 Then the aim is to estimate a directed network representation
454 of the regarded system's sub-processes, i.e., to identify which
455 sub-processes causally influence which other sub-processes (for
456 details, see (71)). This goal is addressed by discriminating between
457 the direct causal connections between the sub-processes and
458 spurious, non-causal correlations (71, 72). The latter can arise due
459 to common causes of two regarded sub-processes, intermediate
460 mediating processes or autocorrelations in the sub-processes.
461 The PCMCI algorithm identifies those spurious correlations and
462 removes them from the network.

463 At the start of the SPV analysis, potential relevant variables
464 affecting vortex variability were expected in variables such as sea
465 surface temperatures, sea level pressure and lower stratospheric
466 poleward eddy heat flux. From these fields, regional precursors
467 indices were first formed by cross-correlating the fields against the
468 polar vortex time-series and then averaging over the significantly
469 correlated regions. In the next step, these precursors indices
470 were then evaluated using the PCMCI algorithm for their causal
471 interactions. Thus, while domain knowledge was crucial to choose
472 the input variables, selecting the exact precursor regions as well as
473 identifying and quantifying the involved causal processes was done
474 using the algorithm described in (46, 72), which yields statistically
475 more reliable estimates than relying on Granger Causality (71).

476 The algorithm enabled the prediction of stratospheric polar
477 vortex behavior with predictive skill up to 45 days for extreme
478 15-day-mean events (46). For instance, the scheme hindcasts
479 58% of the extremely weak polar-vortex states with a lead time
480 of 1-15 days and a false alarm rate of only about 5%. Dynamical

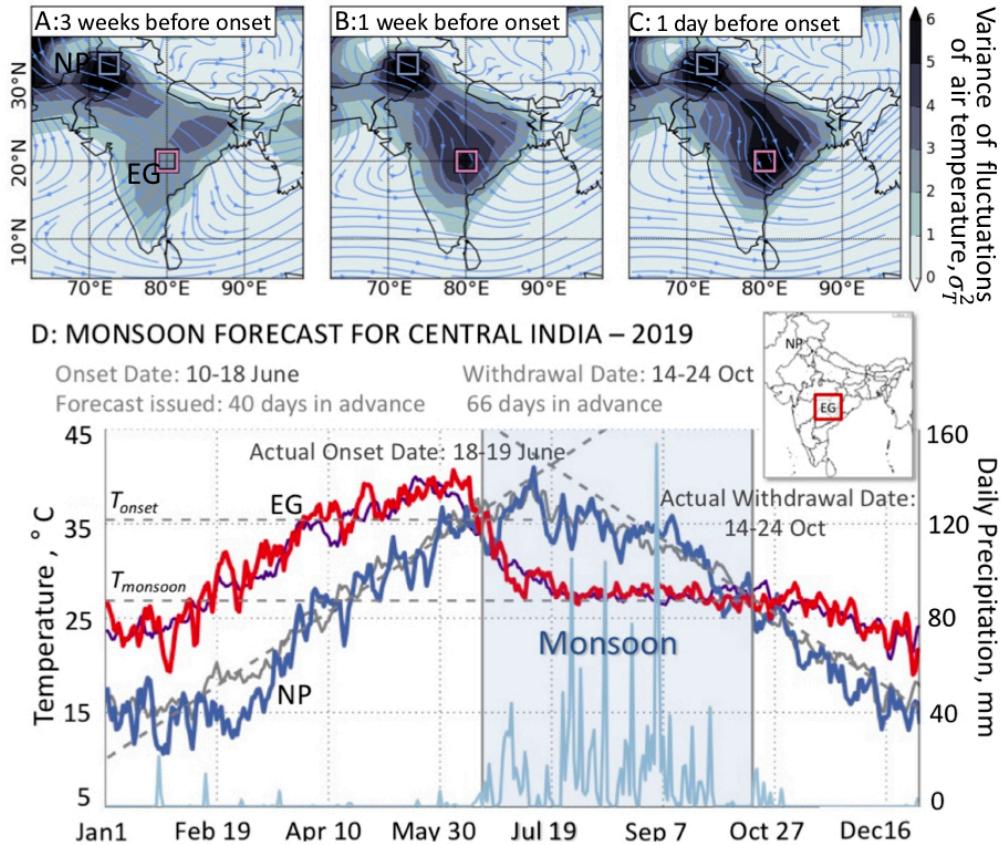


Fig. 4. Tipping elements of the Indian summer monsoon (ISM): forecast of onset and withdrawal dates for 2019 (based on the methodology in (44)). The Tipping elements of the ISM are geographical regions in North Pakistan (NP) and the Eastern Ghats (EG), which are revealed by the pre-monsoon growth of the variance σ_T^2 of fluctuations of the weekly mean values of the near-surface air temperature T , (A) 21 days, (B) 7 days, and (C) 1 day before the monsoon onset in the EG. Two boxes, where σ_T^2 is maximal, show the location of the tipping elements. The composites of σ_T^2 and the 700 hPa winds (indicated by the blue lines) for the period 1958–2001 from the ERA40 reanalysis data set (73) are shown in A–C. (D) Forecasting scheme of the onset and withdrawal dates for central India in the EG-region for 2019 based on daily mean near-surface (1000 hPa) air temperatures (NCEP/NCAR) (56, 74) in 2019 in the EG (red) and NP (blue), and the previous 5-years average temperature in the EG (purple) and NP (gray). Vertical grey lines represent the forecasted monsoon onset and withdrawal dates, which we call the tipping points of the monsoon. The tipping points occur when the temperatures in the EG and NP (the tipping elements of the monsoon) become equal, which happens twice during a year. At the end of May, the temperature in the EG decreases from its maximum value; then, it reaches a critical threshold (T_{onset}), and an abrupt transition occurs – the temperature inevitably falls, and the rainy season begins in the EG region. At the same time, the temperature in NP increases, and the two time-series intersect at T_{onset} at the onset date of the monsoon in the EG. In October, when the temperature in NP falls below at the second intersection of the two time-series, the monsoon withdraws from the EG. This feature allows to estimate the dates when the two critical temperatures (T_{onset} and $T_{monsoon}$) are reached and to forecast the onset and withdrawal dates of the monsoon. (See details in (44)). The daily precipitation in the EG region obtained from NOAA (67) is shown superimposed in light blue. The sudden increase and decrease in precipitation coincide with the monsoon period defined by the light blue band. The results of forecasts for the period 2016–2020 are presented in (68). Parts of the figure are from (44), reprinted with permission from John Wiley and Sons, copyright American Geophysical Union.

forecast methods can provide predictability up to 30 days for daily events, so-called sudden stratospheric warmings, but the prediction lead time varies strongly for individual events and is usually much shorter (48).

This approach of reconstructing causal interactions is a powerful tool in Earth system sciences (72): It can be applied to test specific hypotheses about interaction mechanisms or to weigh the importance of components as gateways for spreading perturbations in the network. But it also offers a novel approach to prediction: For prediction targets as different as the amount of Indian summer monsoon rainfall (75) and seasonal Atlantic hurricane activity (76), precursors with lead times of several months could be identified. Additionally, the algorithm also allows more process-based model evaluations (77) beyond simple correlation analyses to understand potential biases in representing teleconnection pathways. This might, in particular, be useful in the form of hybrid forecasts (78) which combine numerical models with

statistical methods.

The PCMCI algorithm is particularly useful if the main goal is understanding the underlying mechanisms of different processes by reconstructing causal relationships hidden in correlations of observed data. The algorithm requires sufficient domain expertise to optimally pre-select the variables and processes of the phenomena one is interested in and can be sensitive to different parameter settings. Although causal discovery algorithms have been successfully applied to high-dimensional settings as well (including the here discussed SPV case, see also (71, 79)), a low-dimensional, parsimonious set of variables representing the considered mechanisms is often beneficial to reduce the number of statistical independence tests in order to assure interpretability of results. In contrast, complex correlation networks provide a more explorative approach, helping to detect patterns in large high-dimensional data, which can give rise to new hypotheses, which could, in turn, be tested with the PCMCI approach.

515 Climate Networks and Artificial Neural Networks

516 Extending the avenues for climate-phenomena forecasting beyond
517 numerical modelling is not limited to climate network theory. Artificial
518 neural networks (ANNs), and especially their currently most
519 popular application, deep learning (80, 81), are inspired by the
520 functioning of the brain and are also composed of nodes ("neurons"),
521 which are connected (linked) to other nodes. However,
522 the similarity to climate networks is primarily structural: In climate
523 networks the individual nodes represent grid locations or physical
524 processes, thereby creating an alternative description of the
525 physical world. By contrast, the nodes in ANNs and their links
526 (the ANN's architecture) have generally no physical meaning and
527 the link (and bias) weights, trained on the data, create an internal
528 representation of useful aspects of the physical world. If enough
529 training data have been presented to a suitable ANN, it is able to
530 capture characteristics of the underlying system and make pre-
531 dictions. For instance, deep learning has been recently proposed
532 to forecast the El Niño-Southern Oscillation (82) and the amount
533 of Indian summer monsoon rainfall (83). Furthermore, ANNs and
534 other machine-learning techniques have been successfully applied
535 to a wide range of weather and climate questions and can be
536 powerful tools for tackling climate change; see (84) for a detailed
537 review. However, an issue at the forefront of research remains the
538 black-box character of ANNs (85), although promising advances to-
539 ward explainable or interpretable artificial intelligence have recently
540 been made (86).

541 We believe that climate-network analyses and ANNs can gain-
542 fully combine (37, 87). The ANNs' strength of being able to learn
543 complex non-linear relationships in the presented data and the
544 climate networks' ability to identify and compress/merge spatially
545 dispersed information about cooperativity and their potential to pro-
546 vide a physical interpretation makes them well-fitting complements
547 for climate-phenomena forecasting.

548 Outlook

549 The above (incomplete) list of successful applications of network
550 theory to climate phenomena demonstrates the potential of this
551 approach. We argue that it complements established concepts and
552 schemes with a new possibility to reveal precursor processes or
553 even entire causal chains of climate phenomena. Network theory
554 applied to climate science is still in its infancy and the subject of
555 ongoing research. The analyses of complex climate phenomena
556 such as the ones discussed above require individual case-by-case
557 approaches and there are no simple general recipes yet. Climate
558 networks are versatile tools for exploratory analysis to uncover
559 spatial and temporal patterns in the data, which may potentially
560 lead with domain expertise to new forecasting methods.

561 The examples highlighted in this Perspective can, however,
562 serve as useful analogies/templates for a network-based forecasting
563 of climate phenomena that are similar to them. For instance,
564 the example of El Niño can serve as a template to forecast other
565 large-scale cooperative phenomena like the Indian Ocean Dipole
566 or the Atlantic El Niño. As in the case of the Amazon droughts, the
567 quantification of the impacts of SST patterns on rainfall anomalies
568 over adjacent continents should be possible also for other tropical
569 regions where land-ocean temperature gradients drive moisture
570 flow and hence rainfall anomalies. The approach developed for
571 the extreme rainfall prediction in the Central Andes should be
572 applicable also to other regions where interactions between sub-
573 tropical and extratropical weather phenomena are relevant, such

574 as in North America or eastern Asia. Developed for forecasting
575 the Indian summer monsoon, the tipping elements approach is
576 applicable to other climate and weather phenomena that exhibit
577 a critical transition. In particular, it could be applied to other mon-
578soon systems in West and East Africa, and also North and South
579 America. Finally, the PCMCI algorithm is particularly useful if the
580 primary goal of an analysis is an understanding of the underlying
581 mechanisms of a regarded phenomenon.

582 Network theory applied to climate science is rapidly developing,
583 but there are still open challenges in the realm of application, as
584 well as challenges of methodological nature:

585 Since climate networks are constructed from observational data
586 via similarity measures, e.g., correlations, their underlying physi-
587 cal processes may not be immediately apparent. Uncovering the
588 physical processes can lead to a better understanding of the re-
589 garded system, which could translate into better predictions within
590 the network framework or improved numerical models. Causally
591 interpretable networks and machine learning techniques could be
592 instrumental in uncovering the underlying processes. As recently
593 argued regarding the role of theory in modelling-dominated climate
594 science (88), a delicate balance between, and a skillful combi-
595 nation of, observations, theory and application-driven simulations (be
596 it through numerical modelling or network methods, or rather both)
597 may provide the best path forward.

598 Then, there are some challenges related to the data itself: First,
599 as an entirely data-dependent approach, network analysis may
600 be subject to the underlying uncertainty in the data. Based on
601 experience, the network-based schemes appear to be robust, see,
602 e.g., (32) and in practice data uncertainty might not be a significant
603 issue. However, this remains to be studied systematically.

604 Another question is, how to incorporate multi-variate data sets?
605 Most current approaches construct climate networks by relying on
606 a single physical quantity, e.g., temperature or precipitation data.
607 For instance, reanalysis data sets offer a wide range of physical
608 quantities at each grid point. Exploiting multi-variate networks,
609 also called multi-layer networks, can enable new ways for both un-
610 derstanding the underlying phenomena and also finding improved
611 prediction schemes.

612 New reanalysis data, e.g., ERA5 (89), which create ensembles
613 of plausible trajectories instead of only a single one, as previous
614 products mostly did, may improve predictions, e.g., when uncertain
615 input data can be identified and possibly omitted or down-weighted.
616 Also, robustness-tests for the prediction methods to intra-ensemble
617 uncertainties are now becoming feasible. Climate networks are
618 often constructed only based on one assimilation product, often
619 due to the lack of viable alternatives, and in the future, systematic
620 inter-data-set comparisons would be desirable.

621 Apart from these "data uncertainty problems", there is also
622 the case where there is not enough data available: for instance,
623 how can the often short observational records be dealt with? This
624 is especially relevant for extreme events, which are by definition
625 rare, and only a few extreme events might be on record to validate
626 more complex prediction models based on network characteris-
627 tics. Possible solutions could be applying the prediction methods
628 from network theory to the output of GCM runs or validating on
629 corresponding phenomena at different geographical locations. Ad-
630 ditionally, long paleoclimatological records, for instance, tree-ring
631 or coral-based reconstructions, could provide opportunities to val-
632 idate complex prediction models. Finally, when looking into the
633 future of the method itself: Does climate change impact a fore-
634 casting scheme and does it need to be extended accordingly, e.g.,

635 by evolving networks? Statistical prediction methods in general
636 entail stationarity assumptions, which may or may not be fulfilled
637 in a changing climate, where unprecedented configurations could
638 appear. Applying the prediction schemes to GCM future scenario
639 outputs or an understanding of a method's underlying processes
640 could reveal if and how schemes should be modified.

641 Most importantly, and in spite of all these standing challenges,
642 network analysis can serve both as a toolbox to develop early-
643 warning schemes as well as concrete leads or as a scientific in-
644 spiration for identifying physical mechanisms that relate spatially
645 and/or temporally distant observations, where no connection was
646 suspected before.

647 These first successes encourage us to invite the research com-
648 munity to intensively investigate the applicability of the network
649 approach to climate dynamics, but also to other data-rich problems
650 of non-local nature. We are confident that based on network ap-
651 proaches, critical advances are possible in the understanding and
652 prediction of emerging phenomena, with topics ranging from jet-
653 stream dynamics, sea-ice melting and earthquakes to epidemics
654 containment and physiological-systems collapse.

655 **Data Availability.** There are no data underlying this work.

656 Acknowledgments

657 We would like to thank the anonymous reviewers for their very
658 constructive comments and suggestions. J.L., J.F., E.S. acknowl-
659 edge the support of the EPICC project funded by the German
660 Federal Ministry for the Environment, Nature Conservation and Nu-
661 clear Safety (BMU) (18_IU_149_Global_A_Risikovorhersage). N.B.
662 acknowledges funding by the Volkswagen foundation and the Euro-
663 pean Union's Horizon 2020 research and innovation program under
664 grant agreement No. 820970 (TiPES). C.C. acknowledges funding
665 by DFG/FAPESP (IRTG 1740/TRP 2015/50122-0). S.H. thanks
666 the Israel Science Foundation (Grant no. 189/19), the joint China-
667 Israel Science Foundation (Grant no. 3132/19), the BIU Center
668 for Research in Applied Cryptography and Cyber Security, NSF-
669 BSF Grant no. 2019740, the EU H2020 project RISE, and DTRA
670 Grant no. HDTRA-1-19-1-0016 for financial support. M.K. has re-
671 ceived funding from the European Union's Horizon 2020 research
672 and innovation programme under the Marie Skłodowska-Curie
673 grant agreement (No. 841902). J.K. acknowledges support from
674 the Russian Ministry of Science and Education Agreement (No.
675 13.1902.21.0026). V.S. acknowledges the support from the Russian
676 Foundation for Basic Research (RFBR) (No. 20-07-01071).

677

678 1 S. Hallegate, A cost effective solution to reduce disaster losses in developing countries: Hydro-
679 meteorological services, early warning, and evacuation. *Policy Research Working Paper 6058*
680 (The World Bank, 2012).

681 2 L. M. Braman *et al.*, Climate forecasts in disaster management: Red Cross flood operations in
682 West Africa, 2008. *Disasters* **37**, 144-164 (2013).

683 3 E. Kintisch, How a 'Godzilla' El Niño shook up weather forecasts. *Science* **352**, 1501-1502
684 (2016).

685 4 A. S. T. de la Poterie *et al.*, Understanding the use of 2015–2016 El Niño forecasts in shaping
686 early humanitarian action in Eastern and Southern Africa. *Int. J. Disaster Risk Reduct.* **30**,
687 81-94 (2018).

688 5 S. M. Moore *et al.*, El Niño and the shifting geography of cholera in Africa, *Proc. Natl. Acad.*
689 *Sci. USA* **114**, 17, 4436-4441 (2017).

690 6 V. Petoukhov *et al.*, Role of quasiresonant planetary wave dynamics in recent boreal spring-to-
691 autumn extreme events. *Proc. Natl. Acad. Sci. USA* **113**, 25, 6862-6867 (2016).

692 7 N. Sandhu, J. Hussain, H. Matlay, Barriers to finance experienced by female owner/managers
693 of marginal farms in India. *Journal of Small Business and Enterprise Development* **19**, 4,
694 640-655 (2012).

695 8 P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction. *Nature*,
696 **525**(7567), 47-55 (2015).

697 9 L. F. Richardson, *Weather prediction by numerical process* (Cambridge Univ. Press, Cam-
698 bridge, UK, 1922).

699 10 J. G. Charney, R. Fjortoft, J. von Neumann, Numerical integration of the barotropic vorticity
700 Equation. *Tellus* **2**, 4, 237-254 (1950).

701 11 World Meteorological Organization, *Seamless Prediction of the Earth System: From Minutes
702 to Months*. WMO No. 1156 (World Meteorological Organization, Geneva, Switzerland, 2015).

702 12 R. B. Alley, K.A. Emanuel, F. Zhang, Advances in weather prediction. *Science*, **363**(6425),
703 342-344, (2019).

704 13 F. Zhang *et al.*, What is the predictability limit of midlatitude weather? *Journal of the Atmo-
705 spheric Sciences*, **76**(4), 1077-1091, (2019).

706 14 World Climate Research Programme, Near-Term Climate Prediction.
707 [https://www.wcrp-climate.org/component/content/article/695-gc-near-term-climate-
708 overview?catid=138&Itemid=538](https://www.wcrp-climate.org/component/content/article/695-gc-near-term-climate-overview?catid=138&Itemid=538). Accessed 31 July 2020.

709 15 A. Mariotti, P. M. Ruti, M. Rixen, Progress in subseasonal to seasonal prediction through a
710 joint weather and climate community effort. *npj. Clim. Atmos. Sci.* **1**, 4 (2018).

711 16 F. Vitart, A. W. Robertson, The sub-seasonal to seasonal prediction project (S2S) and the
712 prediction of extreme events. *npj. Clim. Atmos. Sci.* **1**, 3 (2018).

713 17 F. Hourdin *et al.* The art and science of climate model tuning. *Bulletin of the American Meteo-
714 rological Society*, **98**(3), 589-602 (2017).

715 18 G. T. Walker, Correlations in seasonal variations of weather. I. A further study of world weather.
716 *Mem. Indian Meteorol. Dep.*, **24**, 275-332 (1924).

717 19 M. Bennetett *et al.*, Huygens's clocks. *Proc. of the Royal Society of London. Series A: Mathem-
718 atical, Physical and Engineering Sciences* **458**, 2019, 563-579 (2002).

719 20 A. Pikovsky, M. Rosenblum, J. Kurths, *Synchronization: A universal concept in nonlinear sci-
720 ences* (Cambridge University Press, Cambridge, UK, 2003).

721 21 M. Newman, *Networks: An introduction* (Oxford University Press, Oxford, UK, 2010).

722 22 R. Cohen and S. Havlin, *Complex Networks: Structure, Robustness and Function* (Cambridge
723 University Press, Cambridge, UK, 2010).

724 23 A. L. Barabasi, *Network Science* (Cambridge University Press, Cambridge, UK, 2016).

725 24 J. Fan *et al.*, Statistical physics approaches to the complex Earth system. *Physics Reports* **896**,
726 1-84, (2021).

727 25 Y. Zou, R. V. Donner, N. Marwan, J. F. Donges, J. Kurths, Complex network approaches to
728 nonlinear time series analysis. *Physics Reports*, **787**, 1-97, (2019).

729 26 N. Molkenthin, K. Rehfeld, N. Marwan, N., J. Kurths, Networks from flows-from dynamics to
730 topology. *Scientific reports*, **4**(1), 1-5 (2014).

731 27 E. N. Lorenz, Deterministic non-periodical flow. *J. Atmos. Sci.* **20**, 130-141 (1963).

732 28 E. A. Allen, E. Damaraju, T. Eichele, L. Wu, V. D. Calhoun, EEG signatures of dynamic func-
733 tional network connectivity states. *Brain topography*, **31**(1), 101-116 (2018).

734 29 A. A. Tsonis, P. J. Roebber, The architecture of the climate network. *Physica A* **333**, 497-504
735 (2004).

736 30 K. Yamasaki, A. Gozolchiani, S. Havlin, Climate networks around the globe are significantly
737 affected by El Niño. *Phys. Rev. Lett.* **100**, 228501(2008).

738 31 J. F. Donges, Y. Zou, N. Marwan, J. Kurths, Complex networks in climate dynamics. *The Euro-
739 pean Physical Journal Special Topics*, **174**(1), 157-179 (2009).

740 32 J. Ludescher *et al.*, Improved El Niño forecasting by cooperativity detection. *Proc. Natl. Acad.
741 Sci. USA* **110**, 11742-11745 (2013).

742 33 J. Ludescher *et al.*, Very early warning of next El Niño. *Proc. Natl. Acad. Sci. USA* **111**, 2064-
743 2066 (2014).

744 34 V. Rodríguez-Méndez, V. M. Eguíluz, E. Hernández-García, J. J. Ramasco, Percolation-based
745 precursors of transitions in extended systems. *Sci. Rep.* **6**, 29552 (2016).

746 35 Q. Y. Feng *et al.*, ClimateLearn: a machine-learning approach for climate prediction using
747 network measures. *Geosci. Model Dev. Discuss.* doi: 10.5194/gmd-2015-273 (2016).

748 36 J. Meng *et al.*, Forecasting the magnitude and onset of El Niño based on climate network. *New
749 Journal of Physics* **20**(4), 043036 (2018).

750 37 P. D. Nootboom, Q. Y. Feng, C. López, E. Hernández-García, H. A. Dijkstra, Using network
751 theory and machine learning to predict El Niño. *Earth Syst. Dynam.* **9**, 969-983 (2018).

752 38 P. J. Petersik and H. A. Dijkstra, Probabilistic Forecasting of El Niño Using Neural Network
753 Models. *Geophys. Res. Lett.* **47**, 6, e2019GL086423 (2020).

754 39 C. Ciemer *et al.*, An early-warning indicator for Amazon droughts exclusively based on
755 tropical Atlantic sea surface temperatures. *Environmental Research Letters* **15**, 9, 094087,
756 <https://doi.org/10.1088/1748-9326/ab5ccf> (2020).

757 40 N. Boers *et al.*, Complex networks identify spatial patterns of extreme rainfall events of the
758 South American Monsoon System. *Geophys. Res. Lett.* **40**, 16, 4386-4392 (2013).

759 41 N. Boers *et al.*, Prediction of extreme floods in the eastern Central Andes based on a complex
760 networks approach. *Nature Commun.* **5**, 5199 doi: 10.1038/ncomms6199 (2014).

761 42 N. Malik, B. Bookhagen, N. Marwan, J. Kurths, Analysis of spatial and temporal extreme mon-
762 soonal rainfall over South Asia using complex networks. *Clim. Dyn.* **39**, 971-987 (2012).

763 43 V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, J. Kurths, Topology and seasonal evolution
764 of the network of extreme precipitation over the Indian subcontinent and Sri Lanka. *Nonlin.
765 Processes Geophys.* **21**, 901-917 (2014).

766 44 V. Stolbova, E. Surovtakina, B. Bookhagen, J. Kurths, Tipping elements of the Indian mon-
767soon: Prediction of onset and withdrawal. *Geophys. Res. Lett.* **43**, 8, 3982-3990 (2016).

768 45 M. Kretschmer, D. Coumou, J. F. Donges, J. Runge, Using causal effect networks to analyze
769 different arctic drivers of midlatitude winter circulation. *J. Clim.* **29**, 4069-4081 (2016).

770 46 M. Kretschmer, J. Runge, D. Coumou, Early prediction of extreme stratospheric polar vortex
771 states based on causal precursors. *Geophys. Res. Lett.* **44**, 16, 8592-8600 (2017).

772 47 D. S. Pai, R. M. Nair, Summer monsoon onset over Kerala: new definition and prediction. *J.
773 Earth Syst. Sci.* **118**, 123-135 (2009).

774 48 D. I. Domeisen *et al.*, The role of the stratosphere in subseasonal to seasonal prediction Part
775 I: Predictability of the stratosphere. *J. Geophys. Res. Atmos.*, **125**, e2019JD030920 (2020).

776 49 E. S. Sarachik, M. A. Cane, *The El Niño-Southern Oscillation phenomenon* (Cambridge Uni-
777 versity Press, Cambridge, UK, 2010).

778 50 A. Timmermann *et al.*, El Niño-Southern Oscillation complexity. *Nature* **559**, 535-545 (2018).

779 51 M. J. McPhaden, A. Santoso, W. Cai (Eds.), *El Niño Southern Oscillation in a Changing Cli-
780*

781 mate. (John Wiley & Sons, Hoboken, NJ, USA, 2020).

782 52 A. G. Barnston *et al.*, Skill of real-time seasonal ENSO model predictions during 2002–11: 783 Is our capability increasing?. *Bulletin of the American Meteorological Society*, **93**(5), 631–651 784 (2012).

785 53 M. J. McPhaden, Playing hide and seek with El Niño, *Nature Climate Change*, **5**(9), 791–795, 786 doi:10.1038/nclimate2775 (2015).

787 54 International Research Institute for Climate and Society. https://iri.columbia.edu/our-expertise/climate/forecasts/enso/2013-December-quick-look/?enso_tab=enso-iri_plume. 788 Accessed February 12 2021.

789 55 A. Gozolchiani, K. Yamasaki, S. Havlin, The Emergence of El-Niño as an Autonomous Component in the Climate Network. *Phys. Rev. Lett.* **107**, 148501 (2011).

790 56 E. Kalnay *et al.*, The NCEP/NCAR 40-year reanalysis project. *Bull. Am. Meteorol. Soc.* **77**(3), 791 437–471 (1996).

792 57 B.P. Kirtman, The COLA anomaly coupled model: Ensemble ENSO prediction. *Mon. Weather 793 Rev.* **131**, 2324–2341 (2003).

794 58 D. Chen, M.A. Cane, El Niño prediction and predictability. *J. Comput. Phys.* **227**, 3625–3640 795 (2008).

796 59 M. A. De Castro Santos, D. A. Vega-Oliveros, L. Zhao, L. Berton, Classifying El Niño–Southern 797 Oscillation Combining Network Science and Machine Learning. *IEEE Access* **8**, 55711–55723 798 (2020).

799 60 S. L. Lewis, P. M. Brando, O. L. Phillips, G. M. van der Heijden, D. Nepstad, The 2010 Amazon 800 drought. *Science*, **331**(6017), 554–554 (2011).

801 61 T. E. Lovejoy and C. Nobre, Amazon tipping point: Last chance for action. *Sci. Adv.* **5**:eaba2949 802 (2019).

803 62 R. Brienen *et al.*, Long-term decline of the Amazon carbon sink. *Nature* **519**, 344–348 (2015).

804 63 C. Vera, G. Silvestri, B. Liebmann, P. González, Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. *Geophys. Res. Lett.* **33**, 13, L13707 (2006).

805 64 J. A. Marengo, J. C. Espinoza, Extreme seasonal droughts and floods in Amazonia: causes, 806 trends and impacts. *International Journal of Climatology*, **36**, 3, 1033–1050 (2016).

807 65 N. Boers *et al.*, Complex networks reveal global pattern of extreme-rainfall teleconnections. 808 *Nature* **566**, 373–377 (2019).

809 66 E. D. Surovyyatkina, Y. A. Kravtsov, J. Kurths, Fluctuation growth and saturation in nonlinear 810 oscillator on the threshold of spontaneous symmetry breaking. *Phys. Rev. E* **72**, 811 4, 046125 (2005).

812 67 CPC Global Unified Gauge-Based Analysis of Daily Precipitation, NOAA Physical Sciences 813 Laboratory. <https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html>. Accessed June 8 814 2021.

815 68 Potsdam Institute for Climate Impact Research, Monsoon Page. <https://www.pik-potsdam.de/services/infodesk/forecasting-indian-monsoon>. Accessed July 31 2020.

816 69 M. P. Baldwin, T. J. Dunkerton, Stratospheric harbingers of anomalous weather regimes. *Science* **294**, 817 581–584 (2001).

818 70 L. Jia *et al.*, Seasonal prediction skill of northern extratropical surface temperature driven by 819 the stratosphere. *J. Clim.* **30**, 4463–4475 (2017).

820 71 J. Runge *et al.*, Detecting and quantifying causal associations in large nonlinear time series 821 datasets. *Sci. Adv.* **5**, eau4996 doi: 10.1126/sciadv.aau4996 (2019).

822 72 J. Runge *et al.*, Inferring Causation from Time Series in Earth System Sciences. *Nature Commun.* **10**, 2553 (2019).

823 73 European Centre for Medium-Range Weather Forecasts, ERA-40. Data are available at 824 <http://apps.ecmwf.int/datasets/data/era40-daily/levtype=pl/>. Accessed July 31 2020.

825 74 National Center for Environmental Prediction/National Center for Atmospheric Research, Re- 826 analysis 1. Data available at <https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>. Accessed July 31 2020.

827 75 G. Di Capua *et al.*, Long-Lead Statistical Forecasts of the Indian Summer Monsoon Rainfall 828 Based on Causal Precursors. *Weather and Forecasting* **34**, 5, 1377–1394 (2019).

829 76 P. Pfeiferer, C. Schleussner, T. Geiger, M. Kretschmer, Robust Predictors for Seasonal Atlantic 830 Hurricane Activity Identified with Causal Effect Networks. *Weather and Climate Dynamics* **1**, 831 313–324 (2020).

832 77 D. Marra *et al.*, Towards Process-Informed Bias Correction of Climate Change Simulations. 833 *Nature Climate Change* **7**, 11, 764–773 (2017).

834 78 M. Dobrynin *et al.*, Improved teleconnection-based dynamical seasonal predictions of boreal 835 winter. *Geophys. Res. Lett.* **45**, 8, 3605–3614 (2018).

836 79 P. Nowack, J. Runge, V. Eyring, J. D. Haigh, Causal networks for climate model evaluation and 837 constrained projections. *Nature communications*, **11**(1), 1–11 (2020).

838 80 I. Goodfellow, Y. Bengio, A. Courville, *Deep learning* (MIT press, Massachusetts, USA, 2016).

839 81 M. Reichstein *et al.*, Deep learning and process understanding for data-driven Earth system 840 science. *Nature* **566**, 195–204 (2019).

841 82 Y. G. Ham, J. H. Kim, J. J. Luo, Deep learning for multi-year ENSO forecasts. *Nature* **573**, 842 568–572 (2019).

843 83 M. Saha, P. Mitra, R. S. Nanjundiah, Deep learning for predicting the monsoon over the homo- 844 geneous regions of India. *J. Earth Syst. Sci.* **126**, 54 (2017).

845 84 D. Rolnick *et al.*, Tackling climate change with machine learning. arXiv:1906.05433 (2019).

846 85 A. McGovern *et al.*, Making the Black Box More Transparent: Understanding the Physical 847 Implications of Machine Learning. *Bull. Amer. Meteor. Soc.* **100**, 2175–2199 (2019).

848 86 W. Samek, K. R. Müller, “Towards Explainable Artificial Intelligence” in *Explainable AI: Inter- 849 pretating, Explaining and Visualizing Deep Learning*, W. Samek, G. Montavon, A. Vedaldi, L. 850 Hansen, K. R. Müller (Eds.). https://doi.org/10.1007/978-3-030-28954-6_1 (Springer Nature, 851 Cham, Switzerland, 2019).

852 87 H. A. Dijkstra, P. Petersik, E. Hernández-García, C. López, The application of machine learning 853 techniques to improve El Niño prediction skill. *Front. Phys.* **7**, 153 (2019).

854 88 K. Emanuel, The Relevance of Theory for Contemporary Research in Atmospheres, Oceans, 855 and Climate. *AGU Advances*, **1**, e2019AV000129 (2020).

856 89 European Centre for Medium-Range Weather Forecasts, ERA5. 857 <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>. Accessed February 12 858 2021.