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14 Abstract

15  The nature of the water vapour continuum has been of great scientific interest for more than 60 years.
16  Here, water vapour self-continuum absorption spectra are retrieved at temperatures of 398 K and 431 K
17 and at vapour pressures from 1000 to 4155 mbar in the 8800 and 10600 cm™' absorption bands using
18  high-resolution FTS measurements. For the observed conditions, the MT CKD-3.2 model
19  underestimates the observed continuum on average by 1.5-2 times. We use the hypothesis that water
20  dimers contribute to the continuum absorption to simulate the experimentally-retrieved self-continuum
21 absorption spectra, and to explain their characteristic temperature dependence and spectral behaviour.
22 The values of the effective equilibrium constant are derived for the observed temperatures. We find that
23 the dimer-based model fits well to the measured self-continuum from this and previous studies, but
24 requires a higher effective equilibrium constant compared to the modern estimates within the
25  temperature range (268-431 K) and spectral region studied. It is shown that water dimers are likely
26 responsible for up to 50% of the observed continuum within these bands. Possible causes of the
27  incomplete explanation of the continuum are discussed. Extrapolating these measurements to
28  atmospheric temperatures using the dimer-based model, we find that the newly-derived self-continuum
29  reduces calculated surface irradiances by 0.016 W m more than the MT CKD-3.2 self-continuum in
30 the 8800 cm band for overhead-Sun mid-latitude summer conditions, corresponding to a 12.5%
31  enhancement of the self-continuum radiative effect. The change integrated across the 10600 cm™! band is
32 about 1%, but with significant differences spectrally.

33
34  Keywords: continuum absorption, water vapor, absorption band, water dimer, line wings, semiempirical
35  model
36
37 1. Introduction
38 As one of the main gaseous absorbers of solar radiation, water vapour plays an important role

39  in radiative processes occurring in the Earth's atmosphere. Positive feedback between water vapour
40  concentration and temperature of the Earth’s surface significantly affects the weather and climate of
41  the Earth. Part of the water vapour absorption, the so-called water vapour continuum, has been a
42  special subject of study since it was first measured in the mid-infrared atmospheric window (8—14
43 upm) in 1918 [1]. Whilst we have a good understanding of the mechanisms responsible for water
44 vapour absorption lines, the physics underlying the water vapour continuum is not yet as clear. The
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intensity of the latter is characterized by a slowly varying spectral dependence that makes a small
contribution to the total absorption of solar radiation by water vapour in the Earth’s atmosphere (up
to 3% in the global average) [2]. The spectrum of water vapour continuum absorption can be divided
into so-called self and foreign components. The former is a result of interactions between water
molecules, while the latter is caused by the interaction of water molecules with other gases, most
notably nitrogen and oxygen in the Earth’s atmosphere. This paper focuses on improved
understanding of the water vapour self-continuum. Despite the much stronger intensity of water
absorption lines compared to the underlying continuum, there are particular features of the latter that
allow it to be spectrally discerned. A strong negative exponential temperature dependence and
quadratic pressure dependence of the water vapour self-continuum absorption are among such
features.

From an atmospheric radiative transfer perspective, the most relevant contributions of the self-
continuum absorption to the water vapour absorption spectrum are located predominantly in the
atmospheric window regions, where the spectral lines are relatively weak. In these atmospheric
windows, there is significant interest in the continuum absorption for several applications. For
example, the continuum strongly impacts the radiative balance of the atmosphere, affects the
propagation of laser radiation through the atmosphere and can interfere with the retrieval of
atmospheric gases, aerosols and clouds by optical methods [3].

Depending on the spectral region, the continuum within water absorption bands is between two
and three orders of magnitude weaker than the overlying spectral lines. Nevertheless, even within
these bands, the continuum absorption can be comparable with the local line absorption or even
dominate it in many microwindows between spectral lines, which makes it distinguishable in
measurements with sufficient spectral resolution. The first laboratory identification of water dimer
spectral features in the in-band near-IR self-continuum was presented in [4,5] using the calculated
dimer spectrum from [6]. Since then, distinct spectral peaks have been discovered in the
measurements of the continuum absorption spectrum within other near-IR water vapour bands [4,7—
9], which have allowed conclusions to be drawn about the nature of this component of the
continuum. Therefore, the investigation of the continuum absorption within the bands has
significance for our fundamental understanding of the underlying physics.

There are two physical mechanisms that are most often cited as being responsible for the
continuum absorption in the IR and mm-wave spectral regions, both of which likely contribute to a
certain extent in different spectral regions: (a) the cumulative absorption of the far wings of strong
water monomer spectral lines [10-15], and (b) bound and quasibound water dimers® (b- and g-
dimers, respectively) [7-9,16-21]. The first of these mechanisms, far-wing absorption, results from
energetic collisions between water molecules, which perturb rovibrational energy levels. There are
two main approaches to the far-wing hypothesis: asymptotic [12,15] and quasistatic [13,14]. Both
approaches operate in terms of intermolecular potential and use a set of parameters derived by fitting
models to experimental data. A satisfactory agreement of the far-wing model with the experimental
continuum has been shown [22,23] in some atmospheric windows in the far and middle IR spectral
regions. However, the existing far-wing models cannot provide sufficient accuracy in predicting the
intensity or temperature dependence of the continuum absorption over a wide spectral region without

'Bound (or stable) dimers require a third-body collision for their formation; quasibound (or metastable) dimers relate to multiple-approach pair
collisions resulting in the temporary stabilization of a pair which has total internal energy in excess of the dissociation threshold.
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a number of experimentally fitted ad hoc parameters that cannot be verified from independent
sources.

The second mechanism, which is based on water dimer absorption, describes the main
temperature and spectral dependences of the continuum absorption well (see, for instance, [24]) after
adjusting just two physically-based parameters (the dimer equilibrium constants) to fit the
experimental data. Bound and quasibound dimers exhibit different properties (e.g. dissociation
energy and lifetime), and consequently they are expected to have different spectral features.
Moreover, a statistical approach shows that absorption from either of these states can be the dominant
contributor tocontinuum absorption depending on the thermodynamic conditions [19]; b-dimers
dominate at lower temperatures and g-dimers are more prevalent at higher temperatures. The
‘transition’ temperature depends on the intermolecular potential and is different for different
molecular pairs. For example, for water dimers the transition temperature is expected to be close to
room temperature [19].

The absorption by water dimers is a dominant mechanism of so-called bimolecular absorption
by water vapour (see, for instance, [19]) at near atmospheric conditions. With increasing temperature,
the contribution of the third form of bimolecular absorption—free H>O pairs®>~begins to increase: from
negligible at room temperature to dominant at very high temperatures. Since this mechanism
becomes noticeable only at temperatures much greater than the temperature range of 398-431 K
investigated here, it is not considered further. Earlier considerations of the possible absorption of
solar radiation by water dimers in the visible and near-IR regions were presented in [25,26] based on
the first calculated water dimer vibrational spectra. To this day, quantum-chemical calculations of
water dimer spectra are still challenging, especially at higher wavenumbers (in near-infrared and
visible regions). Nevertheless, quantum-chemical and quantum-mechanical calculations [27-29] that
are now available together with the experimental data in the microwave [30,31], mid-infrared [3,32]
and near-infrared [4—8] spectral regions, demonstrate the explicit involvement of water dimers in the
water vapour continuum spectrum.

For practical applications, the MT CKD continuum model is commonly used [33]. It is a
semiempirical model, which modifies the Lorentzian profile in the line wings using a special -
function, assuming a so-called “weak interaction” between molecules, which is more important for
the in-band continuum, and makes a number of other empirical adjustments to fit the model to
experimental data. The model has therefore changed significantly since it was described in [33] as
new observations have become available; however many of these changes are not yet described in the
literature. In the spectral regions analysed here the MT_CKD continuum has not been subjected to
any experimental constraints and needs to be evaluated using observations. Although MT CKD is
primarily intended for application at atmospheric temperatures, the form of its temperature
dependence is based on extrapolation of laboratory measurements made between temperatures of 296
and 338 K [33] in bands at lower wavenumbers and hence it may not be appropriate in other bands or
at other temperatures.

This paper focuses on the investigation of the water vapour self-continuum absorption at
elevated temperatures (398 and 431 K) and pressures (1000-4155 mbar) in the near-visible absorption
bands centred at 8800 and 10600 cm™ (1.13 and 0.94 pm) using laboratory observations. To our
knowledge these are the first reported measurements of the self-continuum in these bands. These

2 Free pairs are two water monomers, which experience one-off collisions and influence each other weakly.
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measurements are then interpreted in terms of the water dimer hypothesis. This work is an extension
of earlier investigations [24] on the origin of the continuum in the 1600 and 3600 cm™ (6.25 and 2.7
um) absorption bands at close to room temperature. Finally, calculations of the atmospheric
absorption due to this continuum are presented, by using a dimer-based model to extrapolate the
measurements to atmospheric conditions.

The paper structure is the following. Section 2 contains the main details of the measurements.
In Section 3, the measurement errors are considered. The retrieval procedure of the water vapour
continuum is described in Section 4. The water dimer model of the continuum is presented in Section
5 and is discussed in Section 6. Section 7 contains the estimate of the effect of the newly-retrieved
water vapour continuum to the atmospheric absorption. Conclusions are summarized in Section 8.
The retrieved water vapour continuum data are given in the Appendix and in the Supplementary
Materials 1 and 2.

2. Experiment

The pure water vapour absorption spectra were obtained at the Molecular Spectroscopy
Facility, Rutherford Appleton Laboratory (UK) in the near-visible spectral region 850013000 cm™.
The experimental setup included a Bruker IFS 125HR Fourier Transform spectrometer (FTS),
multipass absorption cell with optical path lengths of 9.7 and 17.7 m, Si-diode detector, 50 W quartz
tungsten halogen bulb and vacuum system. In order to detect the weak continuum absorption in these
absorption bands, the measurements were carried out at elevated water vapour pressures up to 4155
mbar and temperatures of 398 and 431 K (see measurement details in Table 1). The relative humidity
did not exceed 75% to avoid water vapour condensation on the cell walls; the mirrors were also
checked visually for any evidence of condensation. The total optical path lengths in the multipass
absorption cell were 9.7 m for pressures above 3000 mbar and 17.7 m for lower pressures. The
spectral resolution varied from 0.1 to 0.4 cm™ depending on pressure and was about 0.2—0.25 of an
average halfwidth of a spectral line.

A set of absorption spectra of pure water vapour at various pressures and temperatures were
obtained. Each measurement was conducted in three stages to reduce the error in determining the
baseline: (1) a background absorption spectrum of pure argon at the same pressure as the water
vapour pressure in step 2; (2) a sample absorption spectrum of pure water vapour; (3) repeat of stage
1. The background measurements with argon were found to be more effective than measurements of
an empty cell. Argon does not absorb radiation in this spectral region and was therefore useful to
minimise possible effects of cell deformation on optical alignment caused by the elevated gas
pressures. The baseline spectrum was derived as an average of the two background spectra.

Table 1 Thermodynamic conditions and configuration of pure water vapour absorption spectra measurements

Temperature, K Spectral interval, cm™  Pressure, mbar ~ Optical length, m  Resolution, cm™!

398 8505-9200, 1000 (6% ) 17.7 0.1
10135-11110 1370 (8.7%) 0.2

1080 (3% 1) 17.7 0.1

1580 (3% 1) 0.2

431 8530-9195, 2070 (1.5% 1) 02
1005511110 2101 (1.3% 1) 0.2

3145 (2.4% 1) 9.7 0.4

4155(3% 1) 0.4
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* The pressures given here are the spectroscopically-adjusted values using the method described in Section 3.2.
The arrows indicate the reduction () or increase (1) due to this adjustment.

The experimental optical depth of water vapour absorption (v, 7) at wavenumber v and
temperature 7" was derived from the Beer—Lambert law. An example of an optical depth spectrum of
water vapour in the spectral region investigated is shown in Fig.1.
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Fig. 1. FTS signals from measurements in the cell with argon (blackcurve) and water vapour (red curve) at a pressure of
3145 mbar and temperature of 431K (upper panel); the resulting spectrum of pure water vapour optical depth (dark cyan
curve, bottom panel). To demonstrate the small baseline uncertainty, the insetin the upper panel shows the water vapour
signal (red curve) and the baseline signal (blackcurve)obtained as an average of the signals from the cell with argon
measured before (steps 1, light grey curve) and after (steps 3, dark grey curve) the sample measurements in a “window”
spectral region where the continuum absorption is very weak compared to the in-band region. The kink in the baseline at
about 9400 cm™' is due to the detector’s sensitivity function.

Deriving the water vapour continuum absorption from high-resolution absorption spectra first
requires the calculation and subtraction of the local contribution from water monomer lines. These
calculations were made using the LBLiao line-by-line program [34]. The local line contributions were
calculated within 25 cm™ from the centre of each Lorentzian line without the CKD “plinth”. Water
vapour line parameters were taken from HITRAN-2016 [35]. The continuum data beyond 11150 cm™!
demonstrate weak values compared to the noise level; therefore, only the 8800 and 10600 cm!
absorption bands are investigated. The retrieval of the watervapour continuum at higher
wavenumbers requires more sensitive measurements, for example, using the CRDS technique [36].
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3. Error analysis
3.1 Error types

Discussionof the main sources of uncertainties for FTS measurements of the weak continuum
absorption can be found, for example, in [37]. Here, four main error sources of error were identified
and taken into account.

3.1.1 Random measurement errvor caused by the FTS system.

This error was evaluated by comparison of the noise within formation content at an optical
depth of 1. To minimize this noise each measurement was averaged over hundreds of individual
spectrometer scans. As a result, the information-to-noise ratio was not less than 500:1.

3.1.2 A quasi-random error due to uncertainties in spectral line parameters used for the
water vapour spectra calculations.

Although these errors do not depend on time, they are often not correlated with each other and
have a random character over the spectrum. Error codes given in the HITRAN database for the line
centres, intensities, temperature coefficients, and pressure broadening coefficients were used to
estimatethe upper limit of the absolute error of this type (see details in [38]).

3.1.3 Systematic errors caused by uncertainty in the spectral baseline (the FTS signal
recorded when the cell contained argon).

The baseline was derived as an average of the signals obtained in measurements with argon
before and after the water vapour absorption measurements. The inset in Figure 1 shows an example
in a window spectral region around 11550 cm™ where the continuum absorption should be negligible
under the experimental conditions. These errors may be caused by slow temporal drifts in the
spectrometer system or gas cell, and for individual measurements were partially mitigated by equal
separation in time of background spectra acquisitions in relation to that of the water sample.
However, this type of error is usually negligible for the measurements of in-band continuum
absorption and does not exceed 1% in our case (see upper panel in Fig. 1).

3.1.4 Systematic errors caused by the inaccuracy in measured water vapour pressure and
temperature.

The main uncertainty here was from the pressure measurements. A description of how these
errors were reduced using a spectroscopic technique is given in Section 3.2.

3.2 Adjustment of the water vapour pressure

The measured intensities of water vapour absorption lines are proportional to the water vapour
pressure, while the intensity of the continuum absorption is proportional to the square of the vapour
pressure. Therefore, the precise value of the water vapour pressure plays an important role in retrieval
of the water vapour continuum. To reduce the respective systematic error in this work, we performed
a spectroscopic assessment of the measured water vapour pressures by comparing measured and
calculated line intensities using the HITRAN database.

To exclude lines which are very weak or saturated, and lines with uncertain spectral
parameters, we selected only spectral lines that have measured optical depths in the range 0.2 to 5 at
line centre and an error-index for the line intensity and self-broadening of not less than 5 in
HITRAN-2016. Then the measured intensities of the selected spectral lines were compared with
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those calculated line-by-line using the HITRAN-2016 parameters within a distance of a few
halfwidths from the line centre. Figure 2 shows an example of a distribution of relative deviation for
each selected i-th line (8/(v;)) in the investigated spectral region calculated using the equation:

SI(vy) = IRAL(ll’:;LI(I;l/IiT)‘lG(Vi)' (1)

In Eq. (1), Irar(vi) and Iuiis(vi) are line intensities obtained from the experiment and simulation,
respectively. The average relative deviation between measured and calculated intensities of all
selected lines was used as a criterion for the water vapour pressure adjustment factor. Systematic
divergence of the d/(vi) distribution from zero indicates inaccuracy in the measured water vapour
pressure. At the same time, strong deviations of d/(vi) were also observed for individual lines, which
may be caused by errors in the parameters of relatively weak water vapour lines in the spectral
database. Generally, the discrepancy was 4% on average in our measurements and we adjusted the
pressures to agree with the spectroscopically-derived values (see Table 1).

Measurements at 7=471 K were also performed in this work. However, at some pressures these
measurements had poor agreement between the measured and spectroscopically-derived pressure, as
well as poor agreement with the pressure-squared dependence expected for the self-continuum
absorption. Therefore, we excluded these measurements from analysis in this paper.

0.3

L T L i e T
10200 10400 10600 10800 11000 11200
Wavenumber, cm
Fig. 2. Relative deviation of line intensities in the spectral region under investigation for measurements at 431K and 2070

mbar: empty circles — before pressure adjustment (2039 mbar), black points — after pressure adjustment (increased by
1.5%).

4. Retrieval of the water vapour continuum absorption

At the first stage of the analysis, the water vapour continuum optical depth 7.(v) was derived as
a difference between the experimental optical depth spectrum z(v) (see Section 2) and the cumulative
local contribution of water monomer lines Tmon(v) calculated with the line-by-line technique [34]. An
example of the preliminary retrieval of the continuum absorption is given in Fig.3 (grey points).
Fluctuations of the continuum at frequencies corresponding to water monomer line centres are caused
by uncertainties in spectral line parameters. Generally, the retrieval of the continuum is not possible
at line centres within absorption bands, because the continuum component is much less (2 orders of
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magnitude) than the line contribution. Even small relative errors in line parameters lead to large
errors in the retrieved continuum. Therefore, the continuum absorption can only be derived in the
microwindows between absorption lines (blue points in Fig. 3), where the impact of uncertainties in
line parameters on the retrieved continuum is often relatively small (less than 10-20%). The
exclusion of line centres from the continuum retrieval does not lead to significant information loss
since the continuum possesses a rather smooth spectral character within several halfwidths of a
spectral line. Moreover, spectral smoothing was applied to select the most reliable continuum
information within these microwindows — the continuum data points were obtained by averaging over
ten data points, corresponding to a derived continuum at a spectral resolution of between 1 to 4 cm™!
depending on the measurement pressure. This procedure helps to exclude false minima in the
experimental spectrum within microwindows. An example of the retrieved continuum spectrum
including smoothing is shown by the red points in Fig. 3. In the remainder of this paper, this
smoothed continuum is used throughout. The semi-empirical MT CKD-3.2 continuum model [33] is
also shown (dashed line in Fig.3) for the measurement conditions.

o : . :
£100 | '

"g ] v/ \s

E V Vv V v f . 4

8 'y

a

©) ce ® P [ K ° @%% ®
101 b I A % ¢ g

@ % 8 : fo b iU LML e T

1072

8660 8680 8700 8720 8740 8760 8780

Wavenumber, cm-!
Fig. 3. Example of the continuum absorption spectrum retrieved from the experimental data (431K, 1080 mbar):
measured absorption spectrum of pure water vapour(z(v), black points), MT CKD-3.2 model (dashed line), calculated
spectrum of the local line absorption zmon(v) without the “CKD plinth” (green line), difference between the measured
water vapour absorption and calculated local lines monomer absorption (z(V)— mon(V), grey points), the differential
spectrum (V) — Tmon(V) after filtering (blue points), smoothed continuum spectrum t.(v) (red points).

The self-continuum cross-section Cs(v,T) in units of cm’molec'atm™ was derived using the
equation

_ 1) ) K T

G =22 = (Vi = el @)

where ps and Ps are water vapour number density and pressure, respectively, k is the Boltzmann
constant, 7" is temperature and L is the optical path length, a(v) is the absorption coefficient. Figures
4 (a,b) illustrate the close agreement of cross-sections obtained from a range of pressures at both

temperatures (398 and 431 K).
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Fig. 4. Cross-section spectra of the water vapour continuum absorption obtained using eq. (2) for two pressure sets:1000
and 1370 mbar at 398 K (a) and six pressures from 1080 to 4155 mbar at 431 (b) K. The error bars are given for the
continuum cross-section spectra corresponding to 1370 mbar, 398 K (a), and 2101 mbar, 431 K (b).

A linear fitting was performed to confirm the pressure-squared dependence of the measured
water vapour continuum absorption. The continuum absorption coefficients a(v) versus P* are
presented in Fig.5 for some microwindows. There is good agreement between the experimental
points and the fitted linear function (y=kx+b) and the intercept b is always close to zero. This helps
confirm the quality of the observations. The slope of the straight line determines the cross-section
value (Fig.6). Figure 6 demonstrates the expected inverse temperature dependence of the retrieved
continuum absorption.

The retrieved self-continua within the 8800 and 10600 cm™! absorption bands demonstrates the
presence of several spectral peaks that are absent in the MT CKD-3.2 continuum model (dashed
lines in Fig.6), although the MT CKD-3.2 represents the overall shape of the continuum absorption
quite satisfactorily. Similar peaks were previously reported within more intense near-IR water vapour
absorption bands [9]. It is also apparent that the MT CKD-3.2 model underestimates the observed
continuum by about 1.5-2 times on average at the investigated temperatures in the centre of the
bands (see lower panel of Fig. 6). The data at 11084 and 11113 cm™' wavenumbers demonstrate the
greatest deviation from MT_CKD-3.2 and may reflect the beginning of the g-dimer subband in the
continuum spectrum (see Fig. 9 and further discussion in Section 6). However, it was not possible to
retrieve this spectral feature completely since the difference between the experimental data and the
calculated contribution of water monomers turned out to be too noisy.
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We acknowledge that MT CKD was not designed for application at such high temperatures, as
it was intended for use in atmospheric conditions, although as noted in Section 1, the temperature

10

dependence was defined using measurements at elevated temperatures at lower wavenumbers.

As a consequence of the above arguments, our measurements clearly indicate limitations in the
MT_CKD model in this spectral region and at these temperatures. A more physically-based model of
the water vapour continuum is now required to address the limitations highlighted here. Such a model
should include significant advances in experimental and theoretical capabilities, and to have a quite
wide range of applicability beyond the conditions (both spectral and temperature) for which it was

derived.

The cross-sections of the water vapour self-continuum absorption,_obtained here for the first

time from laboratory measurements at elevated temperatures, are given in Appendix 1.
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Fig. 6. Cross-section spectra of the water vapour self-continuum absorption retrieved from the experiment (upper panel)
at 398 K (blue) and 431 K (red). The dashed lines show the corresponding MT CKD-3.2 model spectra. Respective ratios
of the derived continuum to the MT CKD-3.2 model are shown in the bottom panel.

5. Simulation of water dimer absorption spectra

It has been shown in [7-9,20] that the spectral features of the water vapour self-continuum
absorption within near-IR spectral bands are likely caused by a significant contribution from water
dimers. In our study, the parameterization of the dimer model proposed in [9] was used for the 8800
and 10600 cm™ absorption bands. The total water dimer absorption cross-section (b-dimers + g-
dimers) Cs (in [cm*/atm/molec], where 'atm' and 'molec’ applies to the pressure and number of water
monomers, respectively) was simulated using the following equation:

Co(v) = Kby XS FP (v y?) + K&, 5557 £ vy D, (3)

where Kqand KY%q are the equilibrium constants of b- and g-dimers (in [atm™] = [Ndimers/Nmonomers Per
1 atm of water monomers]); S% is the intensity of i-th subband of b-dimers [cm/dimer]; S% is the
intensity of i-th line of q-dimers [cm/dimer]; fi(Avi,)°) and ffi(Avi,)9) are Voigt profiles [cm] with
halfwidths at half-maximum intensity 7° and 7% [cm™'] of b- and g-dimers, respectively; Av; is the
distance from the centres of b-dimer subbands; Av; [cm™'] is a distance from q-dimer line centre. The
calculation was carried out using the LBLiao line-by-line program [34]. It is important to note that all
parameters in Eq.(3) have a clear physical meaning as opposed to the semi-empirical parameters that
are often used in continuum models.The physical background of the model parameters — and so, the
possibility to verify them from other sources — will allow us (similar to that in [24,39]) to estimate the
contribution of water dimers to the continuum absorption in the investigated bands (see Section 6). In
Section 7 (devoted to the atmospheric calculations), we will use this relatively simple dimer model to
extrapolate the self-continuum from 400-430 K to the 260-296 K temperature range.

Some data on the frequencies and strengths of several main bending and stretching oscillations
in b-dimers can be obtained from theoretical calculations and low-temperature measurements [28,40—
42]. In this work, the b-dimer spectrum was simulated on the basis of quantum-chemical calculations
of the O-H stretching vibrational overtone spectrum of the water dimer presented as two individually
vibrating monomer units [29]. The used data for the intensities of b-dimer transitions is presented in
Table 2. The Voigt profile with 20 cm™ halfwidth was used to simulate the subbands shape of b-
dimers, as it fits best the respective experimental features. However, this parameter has a minor effect
on the total water dimer spectrum (absorption by b- and g-dimers), since b-dimers contribute weakly
to the water vapour self-continuum at high temperatures within the bands investigated here (see
details below). Recently interpreted measurements [43] of the self-continuum in the 3600 cm™ band
at 296 K used a more sophisticated, although still speculative, approach to modelling the b-dimer
band shape. This is based on estimates of the b-dimer rotational constants and distinguishing between
parallel and perpendicular bands; at this lower temperature, the contribution of b- and g-dimers is
expected to be more equal, so that assumptions on the b-dimer shape are more important than is the
case here.

Table 2. Positions and intensities of transitions in bound dimer [29] used for the water dimer model.

Local mode assignments* Wavenumber, cm™!  Intensity, cm/molec
0>42>| 1> 8530.5 2.35E-21
[20>4[1>(70%)+[1 1>4[1>(16%) 8754.9 6E-22

2>0>p| 1>(63%)H1>1>4|1>(22%)  8804.8 7E-21
[2>£(0>p| I>(63%0)H1>1>4|1>(22%)
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20>|1> 8806.9 5.5E-20
11> 15| 1>(66%)+2>10>6|1>(25%)  8930.1 1.9E-21
11> 1>(74%)+20>1>(18%) 9006.9 4.85E-24
10>2>4[2>(69%)H0>3>1/0>(13%)  10057.5 2.65E-22
10>3>/0>(80%)+/0>(2>p2>(12%)  10161.1 1.95E-21
130>{0>(77%)+2 1>+0>(9%) 10601 1.85E-21
3>0>/0>(67%)+2>(1>5/0>(12%) 10611 6.5E-21
30>0> 10615.3 1.8E-20
[1>42>4/0>(68%)+3>10>4/0>(15%)  10673.7 9.5E-21
21>410>(80%)+30>/0>(10%) 10869.7 8E-22
2> 1>]0>(74% )+ 1>12>5/0>(15%)  10889.1 3.5E-21
21>]0> 11042 2.25E-21

* According to the notation [28], [x>¢y>p|z> and |xy>+|z>label the vibrational modes in the donor and acceptor water unit respectively.
Here, x and y denote number of the vibrational quanta respectively in the free (‘f”) and bound (‘b’) OH-stretching mode in the donor
unit, z is the quanta in the HfOH» bending mode, while “+” refers to the symmetry of the stretching vibrations in the acceptor unit.

Quasibound dimers, which can be considered as a transitional state between free-pairs and b-
dimers, have not been studied as much as the bound states. Therefore, a very simple approximate
model of g-dimer lines was used here. In a similar way to [9], the g-dimer absorption spectrum was
simulated as a sum of strongly broadened water monomer lines with doubled intensity S (i.e.
§%=28)). Strong broadening occurs because the lifetime of q-dimers is rather short (~10"'? s). The
halfwidth of g-dimer lines was set to 10 cm™, which corresponds to estimates of their average
lifetime (see [9]). Intensities of g-dimer lines were assumed to be equal to double the intensities of
the corresponding water monomer lines, as an approximation for two slightly interacting water
monomers in a short-lived metastable state. For simulation of the g-dimer spectrum, intensities and
centres of monomer lines were taken from the HITRAN-2016 database [35]. It was shown that the
total dimer spectrum agrees well with the measured continuum within 1600 and 3600 cm™ absorption
bands [9] despite using this quite simple model for the description of the g-dimer spectrum.

The main challenge in parameterization of the dimer model (Eq. (3)) is to determine the
equilibrium constant of g-dimers. Direct quantum-chemical calculations of this value, especially for
the high temperatures observed here, are not available at present. In this work, an attempt was made
to derive both K%q and K% values by fitting the model (Eq. (3)) to the retrieved continuum within
8800 and 10600 cm'absorption bands. As a result, a satisfactory spectral agreement between the
dimer model and the continuum absorption spectrum was established. A significant difference in the
expected contribution of b- and g-dimers at the measurement temperatures was also observed, with a
strong prevalence of q-dimers. This result supports the conclusion made on the basis of the statistical
approach [19,21] for the temperature dependence of K°.q and K%q. However, K°q values derived from
this fitting were characterized by significant estimated errors that exceed 100% in some cases. This is
due to the very small relative contribution of b-dimers to the total absorption at the investigated
temperatures, so that a simultaneous fitting of b- and g-dimer spectra to the continuum leads to large
estimated errors in the derived K’ values and in the fitting itself.

Currently two relatively recent independent estimates of K°q temperature dependence are
available [40,41]. The first [40] requires recalculation adjusted for a more accurate value of the
dissociation energy obtained from measurements [44] (D" = 1105 cm™! instead of Do=1234 cm!
used in [40]). In our work, the adjusting factor e@0°" ~Po)/kT wag applied to K eq from [40]. The
available calculated temperature dependences of K°q (Fig.7, red [40] (modified) and black [41] (with
Do = 1105 cm™) solid curves) noticeably differ from each other at low temperatures. Moreover, both
estimatesare partially confirmed by different experimental data at temperature up to 350 K (see, for
example, Fig.6 (left panel) in [24]). Therefore, in the next step, the average value of these two
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estimates (further denoted as K°@).) was taken for simulation of b-dimer absorption spectra.
Table 3a contains the model parameters for b-dimer spectra calculation. Thus, the main fitting
parameter of the dimer model was the g-dimer equilibrium constant. Table 3b (column 5) presents
the obtained KY%q values as a result of fitting the dimer model (Eq. (3)) to the retrieved continuum
spectra with K*@D, values from theoretical calculations (Table 3a, column 5) using the least square
method. The rms deviation of K%qis 29% on average.

0 12 LB T ¥y FrELx T T ¢ T T - T
0.10 —— Scribano et al. (2006) modified
. Buryak&Vigasin (2015)
T --- <Average>
£ 0.08
©
=3
© 0.06 1
<
0.04
0.024
e e ——

260 280 300 320 340 360 380 400 420 440
Temperature, K

Fig. 7. Temperature dependence of b-dimer equilibrium constant obtained in ab initio calculations [40] and modified for
Dy (see the text above) (red curve), and in [41] (black solid curve). The average values between [40] modified and [41]
are shown by dashed black curve.

Table 3. Result of the dimer model parameterization:
a — Parameters for simulating b-dimer absorption spectra using theoretical calculations for equilibrium constant
K, (see details above).

Temperature, ~ Absorption band,  Intensities and centre ~ Subband HWHM,  gb@ven
K cm’! positions v, cm’! atm’!
398 8800, 10600 Quantum-chemical 20 0.0031
431 8800, 10600 calculations [29] 0.0019

b— Parameters for simulating q-dimer absorption spectra using fitted values (5th column) and theoretical
calculations for equilibrium constant K%, (column 6, see Section 6).

Temperature, Absorption band,  Intensities and centre Line HWHM, Ka,, - gacalo)
K cm’! positions vy, cm’! atm-! atm-!
398 8800 Strongly broadened 0.0306 0.0090
10600 monomer lines from 0.0284
HITRAN-2016 [35] 10
431 8800 with doubled 0.0170 0.0069
10600 0.0168

monomer intensities

6. Discussion

As mentioned earlier, there is no direct information about the q-dimer equilibrium constant at
present, but it can be roughly estimated using information about the b-dimer and the total equilibrium
constants as defined by Eq. (4)

b
Kof'=Kb +KL. (4

Currently, three estimates of the total equilibrium constant K°*9.q are known from different
approaches to determine the second virial coefficient [45,46] and from the thermodynamic properties

of water dimers [47]. These data can be considered reliable as they are in good agreement with each
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other (see Fig.8, solid grey, solid black, and dash-dot black curves). In this work, we apply the
temperature dependence of K°"%, derived from the virial equation of state for real gases, using highly
accurate measurements of water vapour thermodynamic properties [45]. The difference between
K9 [45] and K°®*) was taken to get approximate temperature dependence of K94, (see black
dashed curve in Fig.8 and values in column 6 of Tab.3b). Column 5 in Tab.3b contains the values of
K9, obtained as a result of the dimer model fitting to the retrieved water vapour self-continuum

spectra.
T T T T T T T T T T T T T T T T T T T T T T T T T T
—-—— Kb*deq (Leforestier 2014) [46]
KP*9gq (Tretyakov et al. 2012) [45]

0.20 —— Kb*deq (Ruscic 2013) [47] ]
R Kb(aver)gq (<Scrib.2006(modif.)40] & Buryak2015(411>) |
£ - - ~ Keq (K*deq (Tret.2012) f45] - Kb(avereg) 1
o —— Approximation for Kb+Q(f't)eq from fitting in: 1
& 0.15+ @ 1600 cm™[24]; © 3600 cm [24] 7
& v 8800 cm; A 10600 cm™! 1
8
E 4.

20104
5 ]
%
O
L EEERS
0.054 >
0.00 —

260 ZéO 360 3&0 3‘&0 36“;0 BéO 460 420
Temperature, K

Fig. 8. Temperature dependences of equilibrium constants obtained from different approaches: total equilibrium constant
K®"9¢q obtained from quantum-chemical calculation [46] (dash-dot curve), from the second virial coefficient [45] (solid
grey curve), and thermodynamic properties of water dimers [47] (solid black curve); average values of b-dimer
equilibrium constant K@y, [40] (modified) and [41] (grey dashed curve); g-dimer equilibrium constant K4¢).,
obtained in this work as a difference between K™% [45] and K*@*., (black dashed curve); total equilibrium constant
K94 obtained from the fitting of the dimer model to experimental water vapour continuum spectra within 1600 and 3600
cm! bands (black and white circles) [24]; K", obtained from the fitting within 8800 and 10600 cm™! bands (white and
black triangles) in the current work; approximation function of all experimental points for the total equilibrium constant
derived using the water dimer continuum model [9] within the near-IR absorption bands (solid red curve).

The values of KM, obtained from fitting the dimer model (Eq. (3)) to the experimental
continuum in two different absorption bands at each temperature are close to each other (see triangle
symbols in Fig. 8). This seems a reliable result as the concentration of water dimers (characterized by
an equilibrium constant) in water vapour should not depend on the spectral region. The examples of
fitting the dimer model (3) to the experimental data are presented in Fig.9 (a,b,g,h). Given the very
approximate character of the q-dimer absorption model (the second term in Eq. (3)) and the dominant
contribution of q-dimers at the investigated temperatures, the dimer model provides a fairly detailed
spectral description of the retrieved self-continuum spectra.

Comparison of values in columns 5 and 6 in Tab. 3b shows evidence that the fitted values

KY, are significantly greater than K%¢2¢)

eq derived from Eq. (4) using reliable values, by about a
factor of 3 on average. A more complete picture of the dimer model parameterisation can be seen in
Fig.8. The total equilibrium constant K°"% data obtained at relatively low temperatures within 1600
and 3600 cm™! bands [24] and at elevated temperatures within 8800 and 10600 cm! absorption bands

was interpolated in this work using the empirical fit



471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

15
Kor 4(T) = 3.717 - 108 - T738%6_ (5)

This can be considered as the temperature dependence of some effective total dimerization constant
(solid red curve in Fig. 8); i.e. it is the constant that gives a satisfactory description of spectral
behaviour and strength of the water vapour self-continuum in the investigated spectral regions,
irrespective of the physical origin of the continuum (see upper panels at each temperature (a,b,g,h) in
Fig.9) if the intensities of the b- and g-dimer used here are assumed to be correct and no other
mechanisms were responsible for the continuum. We refer to the dimer model using this empirical fit
as the “dimer-based model”.

The effective equilibrium constant K°*4(f9.; obtained in this work is a factor of 1.5-2.5 greater
than values of K"™9, from prior estimates [45—47] across the entire temperature range. This means
the best fitting of the dimer model (Eq. (3)) requires a larger quantity of water dimers than can be
objectively explained at the considered thermodynamic conditions (according to the independent
estimates), and it is K%jq that is strongly overestimated in our model. One possible explanation of this
result can be a contribution from additional mechanisms for the water vapour self-continuum which
is not accounted for in our model. For example, it could be absorption by intermediate line wings as
suggested in [39]. The recent analysis [43] of measurements in the 3600 cm™' band at 296 K reached
a broadly similar conclusion, finding a factor of about 1.35 greater K°"4f, (which is within the
uncertainty at 296 K shown in Fig. 8) than expected from the prior estimates; they also suggested that
enhanced absorption in the intermediate wings [39] may explain the difference. Another explanation
could be overestimation of the intensities of fundamental transitions of the b-dimers in [29] caused by
the neglect of intermolecular vibrations in the dimer model. Inclusion of the intermolecular modes
into quantum-chemical calculations may potentially decrease the intensity of fundamental transition
(the main spectral peaks) up to 30% [48,49], but strongly increase the calculated underlying part of b-
dimer absorption which is currently mostly attributed to the g-dimers by the fitting procedure. It
should be stressed that it is more likely that an overestimation of K%M
leads to the overestimation of the total K°*a(fit), .

Fig. 9 (c,d,i,j) contains the simulated water dimer absorption spectra using the values of
K*@e), (Table 3a, 5 column) and K% (Table 3b, column 6) obtained from Eq. (4). The
integrated spectral contribution of the b-dimer and g-dimer absorption to the continuum is 36% at
398 K and 45% at 431 K in this case. The part of the retrieved continuum that is unexplained by
water dimers using the currently-available theory, and total equilibrium constant, is presented in
Fig. 9 (e,£k.]).

eq In our current fitting that
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Fig. 9. Result of the water dimer model (Eq. (3)) fitting within the 8800 cm™' (left panels) and 10600 cm™' (right panels)
absorption bands at 398 K (a-d) and 431 K (g-j). Upper panels at each temperature: the result of the water dimer model
fitting to the retrieved water vapour self-continuum cross-section spectra using the fitting parameter K4, Middle
panels at each temperature: the result of the water dimer model simulation using theoretically-derived estimated values
Kb@ven . and K99, Lower panels (e,f at 398 K and k.1 at 431 K): the unexplained part of the continuum absorption
obtained as a difference of the retrieved continuum and the dimer model from middle panels (c,d at 398 K and 1i,j at
431 K). The water vapour self-continuum spectrum derived from measurements (black circles), model spectra of b- and
g-dimers (green and blue curves, respectively), total model spectrum of water dimers (red curve), MT CKD-3.2 model
(dashed curve), the unexplained absorption spectrum (dark green circles). The parameter values of the water dimer model

are given in Tab. 3 a,b.

7. Radiative impact of the new self-continuum

This section aims to determine how much of an effect the retrieved water vapour self-
continuum absorption has from the perspective of atmospheric radiative transfer. Within the
investigated 8800 and 10600 cm™ absorption bands, water vapour lines and the self-continuum are
weaker than in the bands at lower wavenumbers. The near-visible absorption bands, unlike the
stronger near-IR bands, do not completely attenuate solar radiation between the top-of-atmosphere
and the surface layer (i.e. their absorption is not saturated); therefore, uncertainty in absorption within
these bands has more impact on the calculated shortwave surface fluxes than near-IR bands at lower
wavenumbers.

Despite the fact that our observations are limited by the elevated temperatures (398 and 431 K),
the good agreement between the experimentally-retrieved water vapour continuum and the dimer-
based model (see Fig. 9, a,b,g,h) allows us to simulate H>O self-continuum spectra at atmospheric
temperatures by extrapolating the dimer-based model. Here, for the temperatures of interest, we
calculated the water dimer cross-sections (Eq. (3)) with the effective values of k"4 obtained from
the best fit to the experimental data at different temperatures and approximated using the temperature
dependence from Eq. (5). Figure 10 shows the extrapolated coefficients from the dimer-based model
at 296 and 260 K (see Supplementary materials 3), compared to those from MT CKD-3.2 at the
same temperatures. Despite MT_CKD-3.2 being a factor of ~1.5-2 weaker on average than the
observed continuum at elevated temperatures, at atmospheric temperatures there is reasonable
agreement between the dimer-based model (using the effective value of K*"%q) and MT CKD-3.2.
However, this agreement must be treated with caution, as the true temperature dependence in these
bands, strictly speaking, may be different to that obtained from the combination of these and near-IR
bands at different temperatures (Fig. 8 and Eq. (5)) — we do not have direct observational evidence
that this is the case. Also, the dimer model and MT CKD-3.2 demonstrate different spectral
behaviour; the dimer-based model has various peaks and troughs corresponding mainly to the
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transitions of the q-dimer, and there are also some larger differences at the edges of each of the two
bands.

Dimer (260 K)
ffffff MT_CKD-3.2 (260 K)
Dimer (296 K)

ffffff MT_CKD-3.2 (296 K)

Ll
Lo

N
m
N
(]

Continuum cross-section, cm?molec'atm™

' |
8500 9000 9500 10000 10500 11000
Wavenumber, cm-?

Fig. 10 MT _CKD-3.2 (dashed lines) and dimer-based model coefficients (solid lines) at 260 K (red) and 296 K (green).

We derived the dimer-based model spectrum at 296 and 260 K, which are the temperatures at
which the MT _CKD continuum coefficients are specified. For ease of incorporation into our
radiative transfer model, we then use the MT CKD temperature dependence to interpolate the dimer
absorption between these temperatures. The MT CKD temperature dependence is of the form

Cs(V,T1)) (T—To)/(T1—To)

Cs(vJ T) = CS(V’ TO) (Cs(V.TO)

b

where 7o1s 296 K and 71 is 260 K. Since this temperature dependence interpolates absorption cross-
sections between 296 and 260 K, and the dimer-based model shows a reason able agreement with
MT _CKD at these two temperatures (Fig. 10), one can expect that the temperature dependences of
these two models do not deviate significantly in this temperature region. The highest tropospheric
temperature used in our model atmospheres is 300 K, meaning that the MT CKD temperature
dependence is suitable for modelling the range of temperatures we explore here (260-300 K); at 280
K the difference is no more than 3% at any wavenumber, and averages out to 0.15%.

To estimate irradiances, we use an updated version of the RFMDISORT radiative transfer tool
(used, for example, in [50]). This is a combination of two established radiative transfer codes; the
Reference Forward Model [51] (a line-by-line code used to determine gas absorption) and DISORT
[52] (a multiple scattering code used to compute irradiances). A spectral resolution of 0.1 cm™ is
used here. We use an offline version of MT _CKD-3.2 to calculate continuum absorption, with
modifications using user-provided continuum absorption cross-sections. For this work, we used
tropical (TRO), mid-latitude summer (MLS) and sub-arctic winter (SAW) standard atmospheres,
with specified profiles of H>O, CO» (at 380 ppmv), CHs (1.7 ppmv), O2, N2 and Os. Spectral data is
obtained from the HITRAN2016 database. We used the Kurucz solar spectral irradiance [53]. These
calculations are for clear-sky conditions, and include the effects of Rayleigh scattering, with a
spectrally constant surface albedo of 0.3. For an overhead Sun, the original MT CKD-3.2 self-
continuum reduces the downwelling surface irradiance by ~ 0.26 W m?in MLS conditions compared
to the no-continuum case across the 8500-9250 cm™ and 10000-112000 cm™ bands (see Fig.11 (c,
d)). This value is strongly dependent on the humidity; for SAW the absorbed irradiance is as low as
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~0.014 W m?, but as high as ~0.46 W m™ for TRO. This makes up ~15% of the total (self + foreign)
continuum absorption and 0.5% of the total water vapour absorption in this spectral region in the
MLS case; this contribution will be greater for more humid atmospheres, and lesser for less humid
ones. In most radiation models, the continuum at these wavelengths is parameterised using versions
of MT_CKD. The results in many studies were obtained on the basis of MT CKD-2.5 in the
shortwave (e.g. [54]). Here, we use MT CKD-3.2 as a benchmark, as this is the most recent version
in which the water vapour continuum was updated.

0.05
8500 8600 8700 8800 8900 9000 9100 9200 10000 10200 10400 10600 10800 11000 11200
<~ 0.0000 i ‘ TITe 0.0000 ‘ ™
37 | |
E
< § -0.0005 , | ‘ -0.0005
B \ ‘
= g -0.0010{ € | 1 — diff=-0.1282Wm=2 | -0.0010{ d | — diff=-0.1405 Wm=2 |
S Il Il Il | | |
8500 8600 8700 8800 8900 9000 9100 9200 10000 10200 10400 10600 10800 11000 11200
0.0000 ‘ ‘ ‘ ‘ —~———  0.0000 ——w"“\Mv g
e ‘ | f J
-0.0005 ‘ —— diff=-0.0061Wm—2 | ~0.0005 ‘ —— diff=0.0016 Wm~2
8500 8600 8700 8800 8900 9000 9100 9200 10000 10200 10400 10600 10800 11000 11200

Wavenumber (cm~1)

Fig. 11 Downwelling surface irradiance in the 8000-9250 cm™ (panels a, ¢ and e) and 10000-11200 cm™' (panels b, d and
f) bands for a mid-latitude summer atmosphere with overhead Sun (panels (a) and (b), the modelled impact of the
MT_CKD-3.2 self-continuum in these spectral regions (panels (c¢) and (d)), and the change in surface irradiance from
using the dimer-based model as opposed to MT_CKD-3.2 (panels (e) and (f)). A negative value in panels (c), (d), (e) and
(f) indicates that the surface irradiance is being reduced, i.e. that additional absorption is occurring.

Figure 11 shows the calculated irradiances / at the surface for the model setup described above,
with the MT _CKD-3.2 continuum shown in panels (a) and (b), the effect of the MT_CKD-3.2 self-
continuum in this region (panels (c) and (d)), derived as /mt ckp — Ino self-continuum (Where Iyt ckp and
Lo seif-conimum are the irradiances including the MT CKD self-continuum and without it, respectively),
and the effect of the change between the continuum obtained by extrapolating the dimer-based model
in temperature and MT_CKD-3.2 in panels (e) and (f), derived as liimer moder—Imt ckp. The data in
Fig. 11 was generated using MLS with an overhead Sun. The integrated difference (across the 8000-
12000 cm! region) between the two in this case is relatively small (roughly 0.021 W m), due to the
broad similarity between the MT CKD-3.2 and the effective water dimer spectra at the relevant
temperatures. For the MLS case described in Fig. 11, the reduction in the surface irradiance across
the two bands due to the self-continuum is 7% greater using the dimer-based model rather than
MT_CKD-3.2; however, this is dominated by a decrease in irradiance of ~12.5% in the 8500-9250
cm’! region, with a much smaller decrease (~1%) in irradiance in the 10000-11200 cm™ region. A
more detailed breakdown of the effect of the dimer-based model relative to MT CKD-3.2 is
presented in Table 4, for a range of atmospheric profiles and solar zenith angles. It is interesting to
note that the increase in atmospheric absorption for the 60-degree solar zenith angle case in Table 4a
using the dimer-based model is greater for the MLS atmosphere than the more humid TRO
atmosphere in the 8500-9250 cm™' band. This is an indication that the saturation of absorption lines in
the tropical atmosphere reduces the effect of the enhanced continuum absorption at these higher
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zenith angles. A saturation effect may also explain why the sign of the contribution changes in the
10000-11200 cm™! band as the solar zenith angle increases in some cases.

The differences between MT CKD-3.2 and the dimer-based model from this work are largest
at the g-dimer band centres (according to blue curves in Fig. 9). These bands are included explicitly
within our model, whereas in MT_CKD 3.2 they could be interpreted as being included indirectly in the “weak
interaction term”, which would spread their effect over a wider spectral range (see e.g. Fig. 10). It is clear
from Fig. 11(e) that the narrow g-dimer peaks at ~8800 cm™! have a significant impact on the total
self-continuum absorption. There is better agreement with MT CKD when integrating across the
band, due in part due to the peaks and troughs in the dimer-based model cancelling each other out.
The sign of the change relative to MT _CKD is dependent on the atmospheric conditions and solar
zenith angle; it is likely that some of the spectral features are causing some bands to saturate sooner
than others, within certain monomer band centres (which correspond to the g-dimer peaks which give
the dimer-based model its more detailed spectral structure). Despite this, the presence of these peaks
means that there may therefore be some useful spectral information that could be used to validate the
dimer model. An atmospheric measurement with a high enough precision (e.g. those used as part of
the Total Carbon Column Observing Network [55]) could potentially observe the sharply-peaked
features especially noticeable, for example, at ~ 8530 and 10160 cm™' (see Fig. 11).

While a change in the continuum may have an effect on water vapour retrievals (e.g. MODIS
retrievals in the 915-965 nm band [56]), the significant cancellation of the peaks in this band (see e.g.
Fig.11 c) results in a minimal change in the optical depth averaged over this spectral region going
from MT_CKD-3.2 to the dimer-based model.

Table 4 Differences between the spectrally integrated surface irradiances (dimer-based model — MT_CKD-3.2) for
different solar zenith angles and atmospheres, separated by spectral band.

a) 8500-9250 cm’!

Solar zenith angle TRO MLS SAW
0 -0.0218 (-11.7%) -0.0161 (-12.5%) -0.001 (-13.9%)
30 -0.0168 (-10.11%)  -0.0165 (-14.3%) -0.0009 (-12.8%)
60 -0.0035 (-3.49%) -0.0057 (-3.95%) -0.0007 (-11.9%)

b) 10000-11200 cm'!

Solar zenith angle TRO MLS SAW
0 -0.0003 (-0.14%) 0.0016 (1.14%) 0.0002 (3.1%)
30 0.0002 (0.1%) -0.0016 (-1.23%) 0.0002 (3.2%)
60 0.0011 (0.8%) -0.0002 (-0.11%) 0.0002 (3.3%)

* Values are in W m? integrated over each band. Values in brackets indicate the percentage change in the surface
irradiance due to self-continuum absorption within each band using the dimer-based model rather than MT _CKD-3.2. A
negative number indicates that the surface irradiance has decreased (i.e. absorption has increased) when making this
change from MT_CKD?3.2 to the dimer-based model, and vice versa.

8 Conclusions

Measurements of IR radiation absorption in pure water vapour using Fourier transform
spectroscopy were used to retrieve the water vapour self-continuum absorption in the 8800 and
10600 cm™! water vapour bands at 398 and 431 K, and at pressures between 1000 and 4155 mbar. To
our knowledge these are the first experimental derivations of the self-continuum in these bands. The
dimer-based model of the water vapour self-continuum absorption, proposed for other infrared
absorption bands in the earlier work [24], was parameterized and extended to higher wavenumbers
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and higher temperatures by fitting the model to the experimental continuum spectra. A good
quantitative description of the continuum absorption by this model was established, but required
more water g-dimers than can be objectively explained by independent thermodynamic estimates.
The MT_CKD-3.2 model demonstrates an underestimation of the observed continuum by about a
factor of 1.5-2 on average in the measured absorption bands at elevated temperatures. Moreover, the
characteristic spectral peaks observed in the measured self-continuum spectra are absent in
MT _ CKD-3.2. The temperature dependence of the total effective dimerization constant was derived
in a broad temperature region from 268 to 430 K based on fitting of the dimer model to the measured
continuum spectra with one fitted parameter (the equilibrium constant of quasibound dimers) in this
work and the results of the lower temperature data in near-IR bands [24]. Using this temperature
dependence, the dimer-based model for 8800 and 10600 cm™ water vapour bands was then
extrapolated from 400-430 K to the temperatures 260-296 K, and was found to be in reasonable
agreement with the MT CKD-3.2 continuum model at these temperatures (see Section 7), but with
less agreement toward the band edges, and with some significant differences in narrow spectral
regions (corresponding to absorption features of the quasibound dimer). The dimer-based model
provides some support for the values produced by the MT CKD model at atmospheric temperatures
but not for the physical assumptions underlying that model. We suggest that the dimer-based model
could now be considered as a replacement to MT_CKD for the in-band self-continuum as it is has
now been shown to simulate, with reasonable accuracy, the observed self-continuum in several near-
IR bands.

It is shown that without our empirical adjustment to the equilibrium constant of quasibound
dimers, water dimers could account for not more than 50% of the detected water vapour self-
continuum absorption within the 8800 and 10600 cm™ absorption bands at the investigated
temperatures. Possible reasons for the difference between this and the observed absorption could be
the presence of additional mechanisms that contribute to the in-band continuum (such as intermediate
line wings) or so-far neglected contributions in theoretical models of the bound dimer spectrum. In
addition, to minimize the uncertainty of the water dimer model, the spectrum of quasibound dimers
also needs to be studied in more detail. Hence, to advance understanding, improvements in
theoretical calculations are needed. Measurements of the continuum strength over a wider range of
experimental conditions would also be very beneficial in constraining theoretical models. The
extension of such work to include the foreign continuum would also be beneficial.
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846  Appendix
847

848  Table 1. Cross-section absorption, Cy(v) [cm?’molecatm™'], of water vapour self-continuum experimentally
849  retrieved in this work at 398 and 431 K within 8800 and 10600 cm™ absorption bands.

398 K 431K

v, cm’! Cs(v) Cerry(v) v, em’! Cs(v) cery(v) | v, em’! Cs(v) (V) v, em’! Cs(v) Cery(v)

8502.76  6.85E-25  8.23E-26 1013545  1.04E-25  2.62E-26 | 8531.26 3.9E-25 8.61E-26  10052.73 2.41E-26  3.01E-27
8503.12 6.73E-25  8.19E-26  10136.23  8.55E-26  3.19E-26 | 8535.51 4.57E-25 7.71E-26  10094.07 3.74E-26  7.38E-27
8503.18  6.84E-25  8.23E-26  10158.86  1.83E-25  3.70E-26 | 8548.44 5.00E-25 8.92E-26 10136.20 8.61E-26 1.06E-26
8510.23  7.16E-25  1.25E-25 1016549  1.97E-25  5.53E-26 | 8566.64 6.90E-25 1.42E-25 10140.36 6.48E-26 1.51E-26
8512.94 6.43E-25 1.30E-25 10165.88  1.91E-25  5.63E-26 | 8573.81 5.89E-25 1.80E-25 10160.61 1.33E-25 2.81E-26
8513.09 6.40E-25 1.30E-25 10171.94  2.05E-25  5.72E-26 | 8586.10  7.64E-25 1.52E-25 10162.35 1.59E-25 2.86E-26
8531.32  7.85E-25 1.66E-25  10180.58  1.94E-25  5.81E-26 | 8598.40 1.09E-24  1.36E-25 10166.23 1.17E-25 4.08E-26
8531.69  7.75E-25  1.65E-25  10189.74  2.19E-25  4.83E-26 | 8612.80 1.26E-24  2.58E-25 10189.83 1.33E-25 2.64E-26
853536  7.42E-25  1.44E-25 10193.60  2.47E-25  4.69E-26 | 8624.98 1.51E-24  3.64E-25 10193.45 1.50E-25 2.28E-26
853551 7.36E-25  1.44E-25  10204.45 3.20E-25  6.90E-26 | 8633.68 1.90E-24  3.70E-25 10232.14 2.74E-25 2.80E-26
8535.60 7.32E-25  1.45E-25  10232.14  4.15E-25  5.68E-26 | 8643.08 2.24E-24  3.17E-25  10256.85 3.21E-25 5.20E-26
8537.83  8.53E-25  1.80E-25  10256.82  6.04E-25  1.00E-25 | 8643.17 2.24E-24 3.17E-25 10286.62 2.59E-25 3.37E-26
8541.11 5.89E-25  1.64E-25  10263.09  4.88E-25  9.67E-26 | 8643.30 2.25E-24  3.16E-25 10286.77 2.58E-25 5.29E-26
8546.57 8.81E-25  1.52E-25  10286.65 4.23E-25  5.84E-26 | 8656.13 2.71E-24 4.71E-25 10302.29 2.68E-25 3.62E-26
8548.44 799E-25  1.45E-25 10294.42  4.62E-25  8.09E-26 | 8671.47 2.84E-24  5.23E-25 10333.50 4.63E-25 4.14E-26
8548.68 8.21E-25  1.46E-25  10299.28  4.70E-25  5.95E-26 | 8683.28 3.51E-24  5.42E-25 10334.02 4.55E-25 7.39E-26
8553.83  7.20E-25  2.01E-25 10302.29  4.13E-25  7.27E-26 | 8690.75 3.61E-24  5.18E-25  10378.85 8.37E-25 1.54E-25
8565.37 1.12E-24  2.43E-25  10302.47  4.17E-25  7.23E-26 | 8701.60 3.53E-24  4.79E-25 10379.13 8.74E-25 9.39E-26
8573.87 1.10E-24  3.27E-25  10322.60  5.81E-25  7.98E-26 | 8701.66 3.53E-24 4.78E-25 10400.43 1.03E-24  2.00E-25
8585.92 1.03E-24  2.26E-25  10333.78  7.29E-25  7.12E-26 | 8708.95 3.48E-24  3.86E-25 10441.20 1.91E-24 1.69E-25
8586.07 1.22E-24  2.48E-25  10333.93  7.22E-25  7.52E-26 | 8727.97 3.29E-24  3.67E-25 10442.34 1.82E-24  2.92E-25
8598.37 1.72E-24  2.39E-25  10334.14  7.53E-25  1.14E-25 | 874599 3.10E-24  3.49E-25 10457.05 1.82E-24  3.59E-25
8598.85 1.70E-24  2.30E-25  10350.62  7.37E-25  1.53E-25 | 8752.80 3.02E-24  3.14E-25 10470.67 1.93E-24 4.29E-25
8607.14  1.45E-24  4.44E-25  10359.54  1.03E-24  2.10E-25 | 8768.43 3.35E-24 3.71E-25 10480.01 2.20E-24  2.84E-25
8626.03  3.83E-24  8.44E-25 1037892  1.40E-24  2.27E-25 | 8769.37 3.37E-24 3.71E-25 10487.24 1.90E-24 2.43E-25
8630.64 4.31E-24  9.40E-25  10379.28  1.38E-24  1.49E-25 | 8779.55 3.52E-24  3.57E-25 10494.26 2.06E-24  3.72E-25
8633.74 437E-24  743E-25 1039552  1.98E-24  3.90E-25 | 8787.75 3.14E-24  3.74E-25 10500.87 2.20E-24 3.63E-25
8643.17 4.08E-24  6.79E-25  10400.64  1.95E-24  3.24E-25 | 8794.05 4.11E-24 4.10E-25 10512.73 2.13E-24  1.83E-25
8656.13  5.16E-24  1.01E-24  10431.01 = 2.53E-24  4.05E-25 | 8794.59 4.04E-24  4.06E-25 10581.00 2.40E-24 2.92E-25
8669.69 5.71E-24  1.02E-24  10442.28  2.78E-24  2.62E-25 | 8843.98 3.81E-24  3.55E-25 10597.46 2.04E-24  2.84E-25
8671.41 598E-24  1.03E-24  10457.05  3.17E-24  3.82E-25 | 8859.34 4.51E-24 4.75E-25 10613.25 1.44E-24 2.27E-25
8683.28  7.30E-24  1.15E-24  10470.70  4.13E-24  5.58E-25 | 8873.02 5.15E-24  5.85E-25 10618.25 1.58E-24  2.11E-25
8690.87  7.15E-24  1.11E-24 1047998  3.85E-24  4.83E-25 | 8891.16 5.75E-24  6.61E-25 10626.69 1.76E-24  2.21E-25
8690.96 7.17E-24  1.11E-24  10482.03  3.99E-24  541E-25 | 8894.84 5.50E-24  6.63E-25 10646.64 1.60E-24  2.65E-25
8701.66  6.72E-24  9.32E-25 1048736  3.20E-24  4.07E-25 | 8902.76 4.83E-24  6.68E-25 10664.18 1.72E-24  4.87E-25
8708.17 6.44E-24  8.43E-25 1051041  2.87E-24  4.61E-25 | 8921.35 4.14E-24  7.08E-25 10677.86 2.14E-24  3.83E-25
872471  6.49E-24  1.95E-24  10512.70  3.42E-24  331E-25 | 8945.07 3.55E-24  6.54E-25 10693.04 2.13E-24  4.68E-25
8735.68 7.67E-24  2.08E-24  10515.78  3.37E-24  4.67E-25 | 9049.21 3.16E-25 8.20E-26 10715.40 2.21E-24 4.17E-25
8741.22 6.05E-24  1.33E-24 1053578  3.29E-24  3.57E-25 | 9059.81 2.81E-25 8.33E-26 10783.20 2.40E-25 8.05E-26
8746.11 5.74E-24  7.14E-25  10548.02  3.14E-24  5.98E-25 | 9078.25 1.81E-25 4.16E-26 10787.47 3.05E-25 1.04E-25
8746.23  5.64E-24  7.00E-25  10560.70  3.08E-24  6.50E-25 | 9089.46 1.70E-25  3.58E-26  10790.91 1.74E-25 6.28E-26
8752.80 5.34E-24  7.35E-25  10563.93  3.66E-24  5.54E-25 | 9096.82 1.81E-25 2.90E-26  10793.16 1.99E-25 8.58E-26
8756.80 5.27E-24  7.94E-25  10577.49  3.63E-24  535E-25 | 9116.82 1.80E-25  8.79E-27  10800.80 1.71E-25 4.79E-26
875798 5.43E-24  7.96E-25  10581.58  4.37E-24  497E-25 | 911731 1.64E-25 9.11E-27 10810.32 1.81E-25 4.02E-26
8768.50 6.34E-24  8.62E-25  10596.56  3.83E-24  5.50E-25 | 912797 1.38E-25 1.38E-26 10823.88 2.07E-25 5.04E-26
8769.37 6.31E-24  8.49E-25  10613.37  2.90E-24  4.29E-25 | 9140.69 1.01E-25 1.30E-26 10834.48 2.03E-25 2.99E-26
8775.85 6.44E-24  7.58E-25  10618.80  2.95E-24  3.42E-25 | 9144.67 9.80E-26  1.18E-26  10863.29 2.70E-25 1.70E-26
8777.75 6.46E-24  7.01E-25  10626.63  3.35E-24  4.39E-25 | 9144.76 9.80E-26  1.18E-26  10879.62 2.67E-25 3.48E-26
8779.43  6.13E-24  7.47E-25  10629.16  2.87E-24  4.59E-25 | 9155.57 8.95E-26  8.79E-27  10907.28 3.50E-25 3.58E-26
8786.39  6.18E-24  8.85E-25  10634.38  2.53E-24  4.04E-25 | 9155.69 8.94E-26 8.76E-27  10928.86 3.90E-25 4.05E-26
8787.69 6.31E-24  9.13E-25  10646.70 ~ 2.85E-24 ~ 3.24E-25 | 917498 7.38E-26  6.91E-27 10931.45 3.62E-25 3.86E-26
879435 6.98E-24  8.02E-25  10652.76  3.00E-24  6.82E-25 | 9175.13 7.36E-26  6.90E-27  10935.61 3.61E-25 4.00E-26
8794.62 6.93E-24  7.97E-25  10662.67  3.27E-24  7.52E-25 | 9184.89 6.57E-26  6.42E-27  10938.62 3.48E-25 4.01E-26
8804.66  7.70E-24  8.51E-25  10664.04  3.46E-24  8.74E-25 | 9184.98 6.56E-26  6.42E-27  10958.75 3.64E-25 2.89E-26
8834.67 6.16E-24  742E-25 1066520  3.90E-24  8.21E-25 | 918830 7.11E-26  6.73E-27  10969.54 2.99E-25 2.70E-26
8839.08 5.53E-24  7.33E-25 10677.92  4.25E-24  6.42E-25 | 9188.39  7.13E-26  6.74E-27  10982.80 2.73E-25 5.94E-26
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Figure 8

Equilibrium constant, atm-’
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