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ABSTRACT: Atmospheric temperature distributions are often identified with their variance, while the higher-order
moments receive less attention. This can be especially misleading for extremes, which are associated with the tails of the
probability density functions (PDFs), and thus depend strongly on the higher-order moments. For example, skewness is
related to the asymmetry between positive and negative anomalies, while kurtosis is indicative of the “extremity” of the
tails. Here we show that for near-surface atmospheric temperature, an approximate linear relationship exists between
kurtosis and skewness squared. We present a simple model describing this relationship, where the total PDF is written as the
sum of three Gaussians, representing small deviations from the climatological mean together with the larger-amplitude cold
and warm temperature anomalies associated with synoptic systems. This model recovers the PDF structure in different
regions of the world, as well as its projected response to climate change, giving a simple physical interpretation of the higher-
order temperature variability changes. The kurtosis changes are found to be largely predicted by the skewness changes.
Building a deeper understanding of what controls the higher-order moments of the temperature variability is crucial for

understanding extreme temperature events and how they respond to climate change.

KEYWORDS: Advection; Asymmetry; Climate change; Temperature; Idealized models

1. Introduction

Extreme temperature events such as heat waves and cold
spells can present a serious threat to humans, livestock, and
agricultural production (Bindoff et al. 2013; Field et al. 2012).
Assessing the impact of a changing climate on temperature
extremes remains a key challenge, and much work is still
needed in order to provide reliable predictions of changes in
their frequency, intensity, and persistence. While climate
models robustly agree that the mean surface temperature is
projected to increase due to anthropogenic warming, the
higher-order temperature variability changes are less certain
(e.g., Tamarin-Brodsky et al. 2020). The latter are especially
important for temperature extremes, which lie in the tails of
the probability density functions (PDFs).

Much effort in recent years has been directed to studying the
mean temperature and temperature variance response to cli-
mate change (Schir et al. 2004; Screen 2014; Fischer and Schar
2009; Volodin and Yurova 2013; Parey et al. 2013; Kodra and
Ganguly 2014; Schneider et al. 2015; Gao et al. 2015; Holmes
et al. 2016; Bathiany et al. 2018; Dai and Deng 2021; Xu et al.
2020). It is now generally acknowledged that the temperature
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variance is projected to decrease in the Northern Hemisphere
(NH) during winter under greenhouse gas warming, due to the
excess warming of the Arctic region and associated decrease in
the meridional (equator-to-pole) temperature gradient (Screen
2014; Schneider et al. 2015; Tamarin-Brodsky et al. 2020). The
basic idea behind the variance decrease, proposed by Screen
(2014) and then formulated by Schneider et al. (2015), can be
understood by relating the temperature fluctuations, through
linear meridional advection, to the meridional background
temperature gradient. For example, if the meridional back-
ground temperature is uniform everywhere (zero gradient), then
no temperature perturbation is generated by advection of air
between the tropics and the pole. Similarly, a weakening of the
meridional temperature gradient will be associated with a
weakening of the temperature anomalies (and thus a decrease in
the temperature variance), all else being equal.

Recently, there has been a growing interest in under-
standing the higher-order moments of the temperature vari-
ability, due to their importance for temperature extremes.
Specifically, many receristuiie}s have highlighted the impor-
tance of skewness [S = T/(T?)" ", the third-order moment of
the temperature PDF], which relates to the asymmetry be-
tween the cold and warm temperature anomalies, for capturing
correctly the temperature distributions and their response
to climate change (Petoukhov et al. 2008; Fischer and Schér
2009; Ruff and Neelin 2012; Perron and Sura 2013; Kodra
and Ganguly 2014; Sardeshmukh et al. 2015; Garfinkel and
Harnik 2017; Linz et al. 2018; Loikith and Neelin 2019;
Tamarin-Brodsky et al. 2019; Linz et al. 2020; Tamarin-
Brodsky et al. 2020). A zero skewness implies that the posi-
tive and negative tails are symmetric around the mean (e.g.,
Figs. 1a,b), while a positive skewness implies that the positive
tail is longer than the negative tail (e.g., Figs. 1c,d) (with the
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FIG. 1. An illustration of PDFs with different kurtosis and skewness values. A PDF with
(a) positive excess kurtosis (K — 3 > 0) and zero skewness (S = 0) (black), (b) negative excess
kurtosis (K — 3 < 0) and zero skewness (S = 0) (black), (c) positive excess kurtosis (K — 3 > 0)

and positive skewness (S > 0) (black), and (d)

negative excess kurtosis (K — 3 < 0) and positive

skewness (S > 0) (black). In all panels, a Gaussian PDF (S = 0 and K = 3) is shown in red for

reference.

opposite for negative skewness). Two main mechanisms have
been proposed to understand how temperature skewness can
be generated dynamically, through meridional advection.
The first involves nonlinear meridional advection of tem-
perature anomalies by anomalous cyclone—anticyclone pairs
that are responsible for the equatorward (poleward) move-
ment of the cold (warm) temperature anomalies (Garfinkel
and Harnik 2017; Linz et al. 2018; Tamarin-Brodsky et al.
2019). This gives rise to the dipole skewness structure seen in
the midlatitude storm track regions, which is most pro-
nounced in the Southern Hemisphere (SH) storm tracks (see
Fig. 2a). The second mechanism involves linear meridional
advection of temperature anomalies generated by spatially
asymmetric background temperature gradients (Tamarin-
Brodsky et al. 2020) and is mostly important in the NH due to

the abundance of continents that create strong temperature
gradients. There is strong evidence that a positive skewness
change is projected to occur over most of the NH during
winter (Gao et al. 2015; Tamarin-Brodsky et al. 2020), indi-
cating that the cold anomalies weaken more strongly than the
warm anomalies (relative to the already warmer mean tem-
peratures). This occurs because the largest gradient de-
creases, which are due to Arctic amplification, occur closer to
the pole. Hence, cold anomalies advected from the Arctic
weaken significantly more than warm anomalies advected
from the tropics (Tamarin-Brodsky et al. 2020).

Kurtosis, on _the _ot%er hand, has been studied much less.
Kurtosis [K = T"/(T?)", the fourth-order moment of the tem-
perature PDF] is indicative of the “‘extremity” of the tails, and is
therefore especially important for extremes. The kurtosis of a
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FIG. 2. The 850-hPa temperature (a) skewness and (b) excess kurtosis, based on ERA-Interim data averaged over the years 1980-2015
during December-February (DJF). (c) The estimated excess kurtosis (see text for details). Regions where the skewness and excess

kurtosis values are statistically significant are stippled.

Figs). 1,2 live 4/C
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Gaussian distribution is exactly 3 (Fig. 1, red), which is why it is
often convenient to consider the excess kurtosis (K — 3).
Positive excess kurtosis (K > 3) generally implies that more of
the PDF lies around the mean and at the extreme tails, while less
of the PDF is in the midrange (Fig. 1a). In such a PDF, extreme
events occur more frequently than in a Gaussian distribution.
Similarly, negative excess kurtosis (K < 3) implies that extreme
events occur less frequently than in a Gaussian distribution
(Fig. 1b). Note however that this is not necessarily true for both
tails if skewness is nonzero. Figure 1c shows an example where
both skewness and excess kurtosis are positive but only the
positive tail is longer than a Gaussian, while the negative tail is
shorter than a Gaussian. The opposite would be true for a neg-
ative skewness and positive excess kurtosis. In Fig. 1d, skewness
is positive and excess kurtosis is negative, and while both tails are
shorter than a Gaussian in this case, it is clear that the negative
tail is significantly shorter. Hence, care must be taken with re-
gards to extremes and preconceptions about kurtosis, when
skewness is nonzero.

While some studies have included an analysis of temperature
kurtosis (Perron and Sura 2013; McKinnon et al. 2016), no
deeper investigation of temperature kurtosis and its projected
changes has been performed, to our knowledge. The observed
kurtosis structure of near-surface temperature based on re-
analysis data was presented in Perron and Sura (2013), who
noted that regions of large skewness values tend to collocate
with large kurtosis values, but did not examine it further.
McKinnon et al. (2016) analyzed observed data from weather
stations to estimate the temperature distribution changes during
summer, and suggested that most of the PDF changes can be
explained by a shift in the mean, while the changes in the re-
maining variability were small. Several previous studies have
found an interesting parabolic relationship between kurtosis and
skewness for variables such as sea surface temperature (SST)
(Sura and Sardeshmukh 2008), sea surface height (Sura and
Gille 2010), vorticity and sea level in ocean jets (Hughes et al.
2010; David et al. 2017), and plasma fluids (Krommes 2008;
Guszejnov et al. 2013). This remarkable parabolic relation be-
tween kurtosis and skewness is not a fundamental statistical
result (i.e., it does not follow directly from the definitions of
skewness and kurtosis) but has been shown to hold in several
complex systems (Schopflocher and Sullivan 2005; Sattin et al.
2009; Cristelli et al. 2012).

For SSTs, Sura and Sardeshmukh (2008) have shown how a
linear mixed layer model for SST with a mixture of additive
(SST-independent) and multiplicative (SST-dependent) noise
can account for the skewness—kurtosis parabolic relation, by
writing a Fokker—Planck type equation for the stationary PDF of
the SST anomalies. Alternatively, Hughes et al. (2010) explored
the statistics of vorticity and sea level height in ocean jets and
developed a simple model that captures the squared relation-
ship. They considered a sharp jet, which may be approximated
as a step in vorticity. At the center of the jet, there is a flip from
negative to positive vorticity anomalies, as the mixing barrier
meanders due to passing Rossby waves. The model describes
the statistics as the sum of two Gaussians, accounting for the
positive and negative anomalies, and noise is then represented
by the width of the Gaussians. Despite its simplicity, the model
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captures the key features such as the squared relationship be-
tween skewness and kurtosis, and explains why strong jets acting
as mixing barriers tend to be associated with zero skewness and a
low kurtosis.

In this paper we extend the model proposed by Hughes et al.
(2010). We apply it to low-level atmospheric temperature to
explain the squared relationship between temperature skew-
ness and kurtosis, and further explore how it can be used to
better understand the future temperature variability changes.
The two-Gaussian model used in Hughes et al. (2010) is ap-
propriate for jets in a staircase model of two distinct well-
homogenized fluids with a strong mixing barrier. Hence, we
cannot expect it to work well for temperature, whose hori-
zontal distribution in the atmosphere is not generally well
represented as a staircase of homogenized temperatures. In the
proposed model, the temperature PDF is written as the sum of
three (rather than two) Gaussians, with two Gaussians repre-
senting the cold and warm anomalies, and another near-zero
Gaussian representing small departures from the mean tem-
perature (i.e., a Gaussian mixture model, with the choice of
three Gaussians motivated by a physical rather than a statis-
tical perspective). Note that if one assumes Gaussianity of the
temperature PDF (e.g., Schneider et al. 2015), then only one
Gaussian is considered around the mean. Hence, our model
can be thought of as an extension of the single Gaussian, to
include the effect of long-range advection associated with co-
herent motions (represented by the warm and cold Gaussians),
as opposed to random noise (represented by the Gaussian
around the mean). A similar three-Gaussian model was used in
David et al. (2017) to study the statistics of turbulent baro-
tropic ocean jets, but the analytical solutions of the three-
Gaussian PDF were not explicitly written or investigated
further there.

The three-Gaussian model also extends our results from a
previous study (Tamarin-Brodsky et al. 2020), where simple
equations were derived for temperature variance and skewness
in terms of the mean intensity of cold and warm anomalies,
assuming a Bernoulli distribution. The oversimplification of
the Bernoulli distribution used in that study did not allow for a
proper representation of kurtosis. The essential inclusion of
the near-zero anomalies, as well as the introduction of noise by
allowing for deviations around the mean intensities, is enough
to capture the essence of the temperature variability, yet
keeping the simplicity in terms of interpretation. We show how
the three-Gaussian model can be useful for better under-
standing temperature variability and its projected changes, by
relating the PDF variance, skewness, and kurtosis changes to
changes in the intensity and frequency of the cold, near-zero,
and warm anomalies separately.

The paper is organized as follows. The methods and data
used are first described in section 2. Section 3 gives an overview
of the observed temperature skewness and kurtosis and the
parabolic relationship between them. In section 4, we review
previous studies and extend them to develop the three-
Gaussian model. We present interesting limits of the solu-
tions to build intuition of how the model works, and present
idealized examples to demonstrate the role of the different
model parameters. The model is then used in section 5 to
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investigate the latitudinal dependence of the parabolic rela-
tion, and its interpretation for temperature variability in the
SH midlatitudes is discussed. In section 6, the usefulness of the
model for interpreting future temperature variability changes
is presented. A summary and discussion are given in section 7.

2. Data and methods

In this study we use the 6-hourly 850-hPa temperature field
from the ECMWF interim reanalysis (herein ERAT) dataset
(Dee et al. 2011) covering the period 1980-2014, where the
background climatology is defined for every 6-hourly time
period as its average over the 35 years in order to remove both
the diurnal and the seasonal cycle. We concentrate on the NH
winter season [December-February (DJF)], and on the 850-
hPa level, which is mostly above the boundary layer but still
highly correlated with the surface temperature (Tamarin-
Brodsky et al. 2020), because the focus here is on the dynamical
origin of the temperature anomalies and in winter we expect
temperatures to be mostly governed by large-scale dynam-
ics, whereas in summer other processes (such as local land
surface feedbacks) may be more important (Fischer and
Schir 2009).

For the projected temperature variability changes, we use
the 6-hourly 850-hPa temperature field from 26 CMIPS models
(see the model list in Table S1 in the online supplemental
material). We analyze the rlilpl ensemble member from the
representative concentration pathway 8.5 (RCP8.5) emissions
scenario (Taylor et al. 2012). The data cover a period of
19 years in the historical period (1981-99) and 19 years in the
projected period (2081-99) during DJF. The historical simu-
lations are forced by both the observed anthropogenic and
natural atmospheric forcings, and in the projected simulations
the radiative forcing increases by about 8.5Wm 2 by year
2100. Similar to ERAI for each model the background cli-
matology is defined for every 6-hourly time period as its av-
erage over the 19 years. Perturbations are defined as deviations
from the 6-hourly climatology (for the historical and projected
simulations separately). The skewness and kurtosis are calcu-
lated first for each model separately, and then averaged to-
gether to produce the ensemble means.

3. The observed relationship between temperature
skewness and kurtosis

The spatial structure of the low-level (850 hPa) temperature
skewness from ERAI data (Fig. 2a) has been presented previ-
ously in several studies (e.g., Tamarin-Brodsky et al. 2019), but is
presented here for completeness. Temperature skewness is
generally negative (positive) on the equatorward (poleward)
flank of the midlatitude storm tracks over the oceans in both
hemispheres. This is mainly due to nonlinear meridional tem-
perature advection by anomalous cyclone—anticyclone pairs,
which advect the cold (warm) temperature anomalies equator-
ward (poleward) in regions of strong localized meridional
temperature gradients (Garfinkel and Harnik 2017; Linz et al.
2018; Tamarin-Brodsky et al. 2019). Other processes, such
as linear advection of asymmetric meridional temperature
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gradients (Tamarin-Brodsky et al. 2020) and regional land
surface feedbacks or the vicinity to ocean and mountains
(Lutsko et al. 2019; Loikith and Neelin 2019), can also influ-
ence temperature skewness.

The low-level (850hPa) temperature excess kurtosis in
ERAI (Fig. 2b) was shown in Perron and Sura (2013), but not
investigated further to our knowledge. Temperature kurtosis is
generally high (positive excess kurtosis) in the tropics, and a
clear dipole structure can be seen in the SH midlatitude storm
track region, but with a center that is farther to the south
compared to the skewness dipole. Just by comparing Figs. 2a
and 2b it is hard to see the parabolic relationship between
kurtosis and skewness. This can be more easily seen by ex-
amining scatterplots of kurtosis versus skewness in different
regions, for example, in the SH (Fig. 3a) and in the NH
(Fig. 3b) midlatitudes. In the tropics (Fig. 3c), this relationship
is less pronounced, as points are scattered more widely, but still
apparent. Similar plots have been identified in previous studies
for other variables (as discussed above), which indicates that
this might be a fundamental aspect of advective fluid systems
(Schopflocher and Sullivan 2005).

To get a rough idea of the coefficients of this relationship, in
Figs. 3d—f the points are plotted for the same latitudinal bands,
but for kurtosis (K) and skewness squared ($%). We find that
kurtosis can be estimated as K ~ aS? + b, witha = 1.6, 1.6, and
23 and b = 2.7, 2.8, and 3.5 for the SH midlatitudes, NH
midlatitudes, and tropics, respectively. Hence, depending on
the value of the skewness S, it is clear that the excess kurtosis
K — 3 can be either negative or positive in the midlatitudes
(since b is close to 3 and b — 3 < 0), while it is mostly positive in
the tropics (since b — 3 > 0), as can indeed be seen from Fig. 2b.

The statistical significance of the observed skewness and
excess kurtosis values can be determined using the standard
errors of skewness and kurtosis, given by os = /(6/N;) and
ok = +/(24/N;) = 20, respectively, where N; is the number of
independent degrees of freedom (Brooks and Carruthers
1953). Skewness and excess kurtosis values are then considered
significant at the 95% level if they are larger in magnitude than
205 and 20, respectively (Perron and Sura 2013). We can
estimate N; = 450 (90 days for a season multiplied by the
35 years and divided by a typical atmospheric decorrelation
time scale of 7 days), which gives 20's ~ 0.23 and 20k ~ 0.46.
Regions where skewness and excess kurtosis values are larger
than these thresholds are stippled in Fig. 2 (and in Fig. 8 for
the historical CMIP5 values) and denote regions where the
PDFs deviate significantly from a Gaussian. It is interesting to
note that temperatures over land are generally more Gaussian
than temperatures over oceans, particularly over Eurasia (Fig. 2).

4. A simple model for temperature variability

In a previous study by the same authors (Tamarin-Brodsky
et al. 2020), simplified expressions were derived for tempera-
ture variance and skewness in terms of the mean intensities of
cold and warm temperature anomalies (see section 2 in the
online supplemental material):

P ~T,T, )
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FIG. 3. Scatterplots of temperature kurtosis vs skewness, based on ERA-Interim data covering the period 1980-2015 during DJF. (a)—(c)
Kurtosis vs skewness is plotted for SH midlatitudes (30°-70°S), NH midlatitudes (30°~70°N), and the tropics (25°S-25°N), respectively.
(d)—(f) Asin (a)—(c), but for kurtosis vs skewness squared. The black lines in (a)—(c) are the best parabolic fit of the points, while in (d)—(f)

a best linear fit is used.

and

— (TW B TL‘)

g

S @)
where T, = |T| and T,, = |T},| denote the average absolute in-
tensity of the cold and warm temperature anomalies, respec-
tively. To derive these equations, a Bernoulli distribution was
implicitly assumed, namely that at every time step we either get a
warm temperature anomaly of mean intensity 7,, with proba-
bility p,, = T./(T,, + T.) or a cold temperature anomaly of mean
intensity 7, with probability p. = T,,/(T,, + T.),such that overall
pw + p. =1 asneeded. For this simple Bernoulli approximation,
it is easy to show (see section 2 in the supplemental material)
that kurtosis is then directly related to skewness by

K=8+1. 3)

This is in fact the lowest possible K for a given S (Pearson
1916). If, for example, this Bernoulli distribution describes an
unbiased coin toss with two states of equal probability, then
S = 0 and K = 1, which is the minimum possible kurtosis
(Pearson 1916).

While some of the high kurtosis regions seen in Fig. 2b are
indeed captured by high values of $% + 1, this relationship is
oversimplified. The excess kurtosis (K — 3) estimated from (3)
(see supplemental Fig. S1) is negative everywhere (because the
skewness squared values are smaller than 2), unlike the actual
excess kurtosis shown in Fig. 2b. Hence, while the simplified
skewness from the Bernoulli distribution given by (2) recovers
well the actual skewness (see Fig. 2 from Tamarin-Brodsky
et al. 2020), the simplified kurtosis given by (3) fails to recover

Fig(s). 3 live 4/C

correctly the actual kurtosis (Fig. 2b). One of the main limi-
tations of this simple approximation for studying kurtosis is the
assumption that only warm or cold anomalies can occur, while
ignoring the weight of the distribution around the mean.

To further study the nature of the relation between skewness
and kurtosis, we consider first a slightly more complicated case
of a modified Bernoulli distribution with three variables: 7,,, T,
and Tp, where the latter represents the mean with probability po,
such that p,, + p. + po = 1 (here T = 0 since the T terms are
measured as anomalies relative to the mean). For this system, it is
easy to show (see section 3 in the supplemental material) that the
probabilities are now modified to p,, = T.(1 — po)/(T,, + T.) and
pe=T,(1 = po)/(T,, + T.),variance is given by o> = T, T.(1 — py),
skewness by S = (T, — T.)/\/T.T.(1 — py), and kurtosis by

L
(1 _p()).

For py = 0, one recovers the earlier Bernoulli results given in
(3). For large po values (approaching one), Eq. (4) predicts high
kurtosis (which can explain the high kurtosis values found in
the tropics). In contrast to Eq. (3), the kurtosis estimated from
Eq. (4) can now have a positive excess kurtosis (depending on
the value of p,). However, the coefficient in front of $? pre-
dicted from Eq. (4) is still one, while the observed slope of a
best linear fit between K and §? (Fig. 3) clearly shows that the
coefficient should be larger than one.

K=8+ 4)

a. The three-Gaussian model for temperature variability

We next extend our model to include also noise, which was
done in Hughes et al. (2010) for the two-state Bernoulli
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problem. Instead of constant 7., Ty = 0, and T,,, we take
Gaussian distributions with mean values 7., Ty, and T,,, and
with standard deviation ¢ (see Fig. 4). This represents the
random variability that can occur for the cold, near-zero, and
warm temperature variations around their averages. The
Gaussians around 7, and 7, represent the temperature
anomalies associated with synoptic-scale features, while the
Gaussian around T, represents small departures from the
mean temperature. The width of the three Gaussians & is
chosen equal for simplicity, but in general the width can be
different (and this assumption is probably a poor approxi-
mation in certain regions).
Taking the PDF to be

p:p(N(_Tcaé—)+p0N(Oaé—)+PWN(TWa6—)7 (5)

where p,, + p. + po = 1 and N(u, &) represents a Gaussian
distribution with mean u and standard deviation &, we find (see
section 4 in the supplemental material for further details)

o> =6"+T,T.(1-p,) (6)
and
TWTC(l _pO)(Tw — TC)
S= o . @)
We then further find that the kurtosis can be written as
K=aS$*+b, 8)
where
%)
a
a=———+1 9
T)VTC(l _pO) ( )
and
1 1 3

The coefficient a = 62/[T,, T.(1 — pg)] + 1 essentially mea-
sures the ratio between the noise (given by width of Gaussians
¢) and the signal [related to the variance of the modified three-
parameter Bernoulli system, 7., T.(1 — po)]. The parameter b,
for a given a, is then inversely related to 1 — p. In section 4b we
explore interesting limits of the three-Gaussian model, and in
section 4c we demonstrate how different a and b parameters
give rise to different decompositions of Gaussians, which ul-
timately control the non-Gaussian shape of the total PDF.

Note that the three-Gaussian PDF written in (5) was used in
David et al. (2017) to examine the kurtosis and skewness
structure of idealized barotropic ocean jets (see Fig. 9 in David
et al. 2017), but the analytic expressions were not written ex-
plicitly or investigated further there.

b. Interesting limits of the three-Gaussian model

To explore proper limits of the expressions for a, b, S, and
K achieved from the three-Gaussian model, we first define
B=T,T.&*. The parameter 8 is a dimensionless parameter
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FIG. 4. A schematicillustrating the three-Gaussian model. In this
model, the total PDF is written in terms of three Gaussians, de-
scribing the cold, near-zero, and warm anomalies. The mean values
of these Gaussians are — 7, Ty = 0, and 7,,; their amplitudes are p,, po,
and p,,, respectively; and their widths are denoted as ¢ (chosen equal
for simplicity; see text). Note that the probabilities p,, po, and p,, are
are not necessarily equal, and satisty by construction p. + po + p,, = 1.

describing the signal-to-noise ratio between the two-state
Bernoulli system (with variance 7,,7,), and the noise given
by the width of the Gaussians, . For simplicity, we also denote
v =1 — po. Using these notations, the equations become

a? =621+ By), (11)
B3/2,y
—_ Py 12
BT =
and

By o By(1-3y)
= S2 + +3, 13
A+By) " (1+By) =

where Sy = (T, — T.)/\/T, T. is the skewness of the two-state
Bernoulli distribution, and the parameters a and b are

a=i+1

By (14)

and
(1s)

Writing the equations in this form ensures we get the
proper limits.

1) THE LIMIT 8 — 0 (SMALL SIGNAL-TO-NOISE RATIO)

If the signal-to-noise ratio is small, T, T, < 6 (i.e., the
width of the PDFs is much larger than the two-state Bernoulli
signal), then the means of the 7,, and T, Gaussians are effectively
close to each other relative to their distance from the tails (since
the width of the Gaussians is so wide). In this case, from Egs. (11)
to (15) 62 —» 02, S — 0, and K — 3 (consistent with a — o,
b — 3); that is, the PDF asymptotes to a normal distribution at
the origin, and the concentrations at 7,, and 7, become negligible.

2) THE LIMIT B8 — % (LARGE SIGNAL-TO-NOISE RATIO)

If the signal-to-noise ratio is large, T,, T, >> 62 (i.e., the two-state
Bernoulli signal is much larger than the width of the Gaussians), and
then from Egs. (11) to (15) one finds 0> — T,,T.y, S — (1/\/%)So,
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and K — (1/y)$2 +1/y = $* + 1/y (consistent with a — 1,
b — 1/y). These are exactly the results found earlier for the
modified Bernoulli distribution with three variables [see
Eq. (4)], that is, for the case of constant values of T,,, T., and
T, with effectively zero noise.

3) THELIMIT y — 0 (po — 1)

In the limit where the probability concentrates at the origin,
around the T, Gaussian, the T, and 7. Gaussians become
negligible (recall that p,, + p. = 1 — pg = ¥y — 0). Equations
(11)—(15) then give 6> > 02, S — 0,and K — 3 (and a — o,
b — 3); that is, the PDF asymptotes again to a normal distri-
bution at the origin, irrespective of the noise level.

4) THELIMITy — 1 (pp — 1)

In the limit of py — 0, where the probability of the
middle Gaussian becomes negligible, the problem reduces
to the two-Gaussian problem studied in Hughes et al.
(2010) (see section 5 in the online supplemental material
for a derivation of the two-Gaussian case). Equations (11)-
(15) now give o? — 6*(1+B), S — [B¥*/(1 + B)**]Ss, and
K — [B*(1 + B)*1S2 — [28%/(1 + B)’] + 3, corresponding to
a— (1/8)+1and b —> —(2/a®) + 3.

These results essentially recover Hughes et al. (2010) (but a
and b were not written explicitly there). Note that in their
notation, A = p,,, B = p., P = p,,p., variance is set to one, and
the width of the Gaussians is denoted o (rather than ¢ as in our
study). In addition, their solutions are written in term of d,
which represents the distance (in units of standard deviations)
between the two Gaussians, so 6d=T, + T, in our case.
A comparison between the two- and three-Gaussian models is
given in section Sc, where it is demonstrated that the added
complexity in the three-Gaussian model is needed in order to
successfully capture the correct temperature variability.

c. Interpreting the parameters a and b

Sattin et al. (2009) proposed that the parabolic relationship
between kurtosis and skewness can be found in many physical
systems obeying certain constraints. In the simplest case, as-
sume that there is some parameter é that controls the deviation
from Gaussianity of the PDF. Hence, K and § are both func-
tions of , and it is further assumed that S (§) is smooth and
invertible. This gives 6 = 8(S), and therefore K = K(S).
Expanding K in a Taylor series around small values of S (Sattin
et al. 2009), one finds

SPK

K~K, + 3 a5 (16)
Here it was also assumed that the system is invariant with
respect to the sign inversion, so the odd derivatives are zero
since S is an odd function and K an even function with respect
to the inversion operation. Note that the higher-order terms
in this expansion can be neglected to a reasonable extent,
given that the observed temperature skewness values are
typically smaller than one (e.g., Fig. 2a).

From (16), it can therefore be identified that b = K| is the
kurtosis that would exist in the absence of skewness. It is thus
related to the relative frequency of the small (near-mean) and
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the extremely strong (in the far tails) anomalies, compared
to anomalies in the middle range, regardless of the sign. Setting
S = 0 gives K = b, which implies that the sign of b — 3 deter-
mines whether the symmetric PDF would be platykurtic (neg-
ative excess kurtosis) or leptokurtic (positive excess kurtosis).

For the three-Gaussian model, we find that b—3=
1/[(1 — po)a?] — 3/a®> = (1/1a®)[(Bpo — 2)/(1 — po)]. Hence, if
Do >2/3, the PDF with zero skewness has positive excess kur-
tosis, whereas if py <?2/3 the PDF has a negative excess kurtosis.
This is presented in Figs. S5a—d, which show examples of PDFs
composed of the sum of three Gaussians, where the width of the
total PDF is set to unity (o = 1) and skewness to zero (S = 0
implying T, = T.), and we also arbitrarily set @ = 1.8. This allows
us to examine the effect of changing b, or effectively p,, through
b=1/[(1 — py)a®] —3/a* + 3, on the PDF structure. For low
values of b (and therefore pg) (Figs. 5a—c), the PDF is indeed
characterized by a negative kurtosis, indicated by the shallower-
than-Gaussian peak and shorter-than-Gaussian tails, whereas for
high values of b (and thus py) (Fig. 5d) the PDF is characterized
by a positive kurtosis, indicated by the higher-than-Gaussian peak
and longer-than-Gaussian tails. Note that the values of 7,,, T, p,,
D, and ¢ in these idealized examples are determined from b (or
Do), a, o, and S (see section 6 in the supplemental material).

As for the parameter a, from (16), it is clear that a = (1/2)
(9*K/9%S). This also gives (for constant a) a = dK/9(S?). Hence,
a measures the sensitivity of K to changes in the “intensity”’ of
skewness (i.e., to changes in skewness squared). The larger a is,
the larger kurtosis K can be found for the same S°. Moreover,
for a given nonzero skewness S and a given b, a will determine
if the PDF will have a positive or negative excess kurtosis. If
b >3then K = aS> + b will also be larger then 3, regardless of a
(since aS? > 0). However, if b < 3, the PDF can still have a
positive excess kurtosis if a is large enough.

In the three-Gaussian model a = [67 + T, T.(1 — po))/[ T\
T.(1 = po)] = /[T, T.(1 — py)], which can therefore be in-
terpreted as the enhancement of the total variance of the three-
Gaussian distribution, o2, compared to the variance of the
modified Bernoulli distribution with three variables, T, T.(1 — po).
Alternatively, a = 6*/[T,, T.(1 — pg)] + 1 can be interpreted as
the ratio (plus 1) between the noise in the system, given by
the width 62 of the Gaussians, to the signal, defined here as the
modified Bernoulli distribution with three variables. Hence,
the signal-to-noise ratio is related to how well separated the
Gaussians are compared to their width.

From its definition, it is clear that @ = 1 (with @ = 1 only
achieved for the modified Bernoulli system with three parame-
ters, where ¢ = 0). Figures Se-h show PDFs composed of the
sum of three Gaussians with varying a, where the total width of
the PDF is again set to unity (o = 1), and we also set skewness to
S = 0.4 and b = 2.7 (hence b in the case of zero skewness would
give a negative excess kurtosis). For low values of a (Fig. 5¢) we
find narrow PDFs that are more distant from each other, and the
PDF becomes trimodal (which is not what is usually found for
realistic low-level temperature distributions). In this case, the
excess kurtosis is negative (K < 3) because the localization of the
signals effectively make the Gaussian longer in the tails. As a
increases (Figs. 5e—g), the PDFs become wider and closer to
each other (the signal-to-noise ratio decreases) until eventually a
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FI1G. 5. Idealized examples of PDFs composed of the sum of three Gaussians, with varying a and b, to explore their influence on the shape
of the total PDF. (a)-(d) a is held constant at a fixed value of @ = 1.8, and skewness is set to zero (S = 0 implying 7,, = T,). The values of
b—or effectively py, through b = 1/[(1 — po)a®] — 3/a®> + 3—are (a) b = 2.5 (corresponding to py = 0.2), (b) b = 2.6 (corresponding to py =
0.4), (¢) b = 2.8 (corresponding to py = 0.6), and (d) b = 3.6 (corresponding to py = 0.8). (¢)—(h) b is held constant at a fixed value of b =
2.7, and skewness is set to S = 0.4. The values of a, which effectively control the signal-to-noise-ratio, are (¢)a = 1.1, (f)a = 1.4, (g)a = 1.7,
and (h) @ = 2.3. In all cases, the width of the total PDF is set to unity (¢ = 1), and a Gaussian distribution with a unit width is shown for
reference with a gray line. The resulting kurtosis is given in the upper-left corner of each panel. In (e)—(h), the upper-right box is a zoom-in

into the right positively skewed tail.

is large enough (Fig. 5Sh) such that the overall PDF has a positive
excess kurtosis (K > 3) and the right-skewed tail becomes longer
than a Gaussian (see boxes in Figs. S5e-h, which show a zoom into
the region of the right-skewed tail).

Hence, different a and b values can give very different PDF
structures, from trimodal distributions to unimodal PDFs
with a non-Gaussian shape. In the following sections, we esti-
mate the parameters a and b from the linear relationship be-
tween K and S, first in a longitudinally independent form and
then for different local regions, and explore the resulting PDF
decompositions, their interpretation, and their projected changes.

5. The latitudinal dependence of K = aS? + b

For clarity, we henceforth denote the actual kurtosis as K,
while the approximated kurtosis is denoted as K = aS? + b.
The coefficients a, b of the approximated kurtosis can be es-
timated for each latitude by taking all longitudinal points and
finding a best linear fit between K and S% The resulting de-
pendence on latitude is shown in Fig. 6 (after applying a cus-
tomary smoothing with respect to latitude using MATLAB’s
“smooth” function). Also shown for completeness are the
zonally averaged skewness S(y) (Fig. 6a) and the zonally av-
eraged excess kurtosis K(y) — 3 (Fig. 6b). Note however that
the zonal averages hide a lot of the regional structure in the
NH. For example, the skewness is generally very small in the
zonal mean, but Fig. 2a shows that this is a result of compen-
sation between strong positive skewness in northern oceans
and strong negative skewness, particularly over the west coast
of North America. Nonetheless, the purpose here is to get the
general latitudinal dependence of the parameters a and b, even
if they might vary longitudinally. Moreover, since we are not
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averaging, but rather taking all longitudinal points in a given
latitude, even if K and S vary significantly longitudinally they
might still possess the same relationship in terms of the fit K =
aS® + b.

The coefficient a(y) is generally high in the tropics and lower
in the midlatitudes (Fig. 6¢). Note that the 850-hPa level in-
tersects topography, and we have thus limited our analysis here
to 75°S-75°N. The parameter b(y) is also high in the tropics and
achieves the lowest value in the middle of the SH jet (where
skewness is zero) (Fig. 6d). The frequency pg of the near-zero
anomalies [calculated by plugging a and b in relation (10) and
inverting it to find py] is generally similar to b (Fig. 6e). The
overall recovered excess kurtosis, K — 3 = aS? + b — 3 (Fig. 6f),
is indeed similar to the zonally averaged kurtosis (Fig. 6b) and
captures its main features.

The estimated coefficients a(y) and b(y) can also be used
to plot a spatial map of the estimated excess kurtosis
K —3=a(y)$? + b(y) (ie., the same coefficients a and b are
used for every longitude as a function of latitude only, but we
keep the full spatial field of skewness; Fig. 2¢). This recovers well
the excess kurtosis structure (a spatial correlation coefficient of
0.85), albeit with somewhat lower values (see Fig. S2). For ex-
ample, it captures the high kurtosis values in the tropics (which
are not achieved for the simplified relation K = S 4+ 1; see
Fig. S1), and also the high kurtosis values on the poleward flanks
of the midlatitude storm track regions and on the west coast of
North America.

a. The relation between K and S in the SH midlatitudes

The relation between K and S is demonstrated for the SH
midlatitudes. The skewness dipole around the SH midlatitude
jet can be clearly seen in Fig. 6a. In the middle of the SH jet
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FIG. 6. The latitudinal distribution of the 850-hPa (a) zonally averaged skewness S(y), (b) zonally averaged excess kurtosis, the esti-
mated parameters (c) a(y), (d) b(y), and () po(y), and (f) the recovered excess kurtosis K(y) — 3 = a(y)S2(y) + b(y) — 3, based on ERA-
Interim data averaged for the period 1980-2015 during DJF. The parameters a(y) and b(y) are estimated by calculating, for each latitude
separately, the coefficients a, b of K = aS? + b, by fitting a linear relation between K and $? in all the corresponding longitudinal points.
The parameter po(y) is then estimated from a(y) and b(y) using the relation b(y) = {1/[1 — po(y)]}[Va(y)*] — 3la(y)* + 3.

axis, around 45°S, skewness is zero and kurtosis achieves its  The seven unknowns in the model (&, T, Ty, Ty, P> Po, and p,,)
minimum. From (8), it is clear that K ~b since S ~ 0. The can be found as follows. First, from the normalization of the
minimum of b (Fig. 6d) is consistent with a minimum in PDF, we have po = 1 — p,, — p.. Next, we set Ty = 0, and from
po (Fig. 6e), since b = [1/(1 — py)]1/a> — 3/a®> + 3,and aisroughly  the first-order moment of the PDF (the mean) we thus also
constant in the SH midlatitudes. have T,p, = T.,p. The second- and third-order moments
The interpretation of these findings is as follows. The center ~ [given in (6) and (7), respectively] give two more equations for
of the jet roughly describes a jump between cold polar air and  the known variance and skewness. Last, from the fit between
warmer subtropical air. As the jet meanders, the region be- K and S* we have two more equations for the estimated coef-
neath it will always be in either a cold anomaly state or a warm ficients a and b [given in (9) and (10), respectively]. Hence,
anomaly state. Close to the jet center, the system will spend a  inverting these relations (see section 6 in the supplemental
similar fraction of time in either one of these states (cold or material for full derivation), we can find all the model pa-
warm), and the magnitude of cold and warm anomalies is rameters. Note that kurtosis is thus not used directly. Rather,
similar since the meridional background temperature gradient ~ we are using the fitted relationship between K and S to extract
is roughly symmetric around the jet axis. Hence, in this region, —more information about the system.
we can expect S =~ 0, and also p,, =~ p. =~ pg =~ 1/3 [as is indeed The three-Gaussian decomposition is illustrated for three
found in Fig. 6e, with min(py) ~ 1/3]. Thus, kurtosis is smallest  latitudinal regions in the SH midlatitudes (30°-40°, 45°, and 55°-
at the center of the jet both because S is smallest (zero), and  75°S). The actual PDFs (referred to as ‘“raw” but presented
because py achieves a minimum there. with a kernel density smoother) are shown in black in the first
Away from the jet center, the system spends more time around  row of Fig. 7. For comparison, their corresponding Gaussian
its average temperature (pg increases; Fig. 6¢) and an asymmetric ~ distributions (i.e., same variance but with § = 0, K = 3) are
fraction of time in the cold/warm states. Nonlinear meridional  shown in red. Equatorward of the SH jet (30°-40°S; Fig. 7a), the
advection results in an equatorward (poleward) movement of  positive warm tail is shorter than a Gaussian, while the negative
cold (warm) anomalies, and hence stronger magnitudes of cold  cold tail is longer than a Gaussian, consistent with the negative
(warm) anomalies on the equatorward (poleward) side of the jet. ~ skewness there (S = —0.2). In addition, kurtosis is larger than
Correspondingly, a negative (positive) skewness is generated on  that of a Gaussian (K = 3.3). The three-Gaussian model de-
the equatorward (poleward) side of the jet. Consistent with this, composition (Fig. 7c) gives T,, ~ 3.3 and T, ~ 4.9. Hence,
kurtosis (which is proportional to §?) increases away from the jet ~ equatorward of the jet, the mean intensity of cold anomalies is
axis (Fig. 6b). A similar interpretation was given in Hughes et al.  larger than that of warm anomalies (7, > T,,) (recall that
(2010) and in David et al. (2017) for ocean jets. anomalies are measured relative to the background field, which
is warm in this region). Consistent with this, the decomposition
also shows that averaged cold anomalies occur less frequently,
Pe < pw (pw =~ 0.25and p. ~ 0.17). This is a simple consequence
More intuitively, these results can be directly seen by of the zero mean of the entire distribution (p,,7,, — p.T. = 0);
inspecting the three-Gaussian model decomposition (Fig. 7).  that is, the stronger anomalies must be less frequent in order for

b. The three-Gaussian interpretation for the SH
midlatitudes
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FIG. 7. Examples of the three-Gaussian vs the two-Gaussian decomposition for the SH midlatitudes. (a)-(c) The 850-hPa raw tem-
perature PDFs (black line) for anomalies at the latitudinal bands (a) 30°-40°S, (b) 45°S, and (c) 55°-75°S, based on ERA-Interim data
averaged over the years 19802015 during DJF. The red lines show the corresponding Gaussian distributions (the same variance but
setting skewness to 0 and kurtosis to 3). (d)-(f) The approximated PDFs based on the three-Gaussian model for the same latitudinal bands,
respectively. The thin blue and red lines are the Gaussians representing the cold and warm anomalies, respectively, while the green
Gaussian represents the near-zero anomalies. The sum of the three Gaussians is shown by the thick black line, which recovers well the
shape of the corresponding raw PDF, shown in dashed black for reference. (g)-(i) The corresponding decomposition but for the two-
Gaussian model, calculated in the same manner but assuming p, = 0. The correlation coefficients for the match between the model and the
raw PDFs for each case is denoted in the upper-left corner of each panel. The parameters used for finding the three Gaussians are derived
from the variance, skewness, kurtosis, a, and b, calculated for each region of interest separately (see section 6 in the supplemental material

for more details).

the total time-mean anomaly to be zero. However, note that the
very extreme cold anomalies (left tail in the Gaussian describing
T.; blue line in Fig. 7c) have a higher probability than very ex-
treme warm anomalies (right tail in the Gaussian describing
T,, red line in Fig. 7c). Hence, while the averaged cold
anomalies occur less frequently (to conserve zero time-mean
anomaly in total), extremely strong cold anomalies have a
higher probability than extremely strong warm anomalies.
These results are exactly the characteristics of the negative
skewness found in this region. The three-Gaussian model also
reveals that the frequency po (po =~ 0.58; that is, the frequency
of small departures from the mean) is significantly higher
than either p,, or p.. The high p, together with the nonzero
skewness are what give rise to the positive excess kurtosis
found in this region.

In the center of the SH jet (45°S; Fig. 7b), skewness is almost
zero (S ~ —0.02) and kurtosis is low (K ~ 2.4). The three-
Gaussian decomposition now gives (Fig. 7¢) T, ~ 4 and T, ~
4.2 (hence T,, = T.) and p,, =~ p. ~ po ~ 1/3. Hence, T, and T,
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anomalies occur at similar magnitudes, and at similar fre-
quencies as Ty. This confirms our previous interpretation of the
underlying dynamics at the center of the jet, discussed in
section Sa.

Poleward of the jet (55°-75°S; Fig. 7c), we find the opposite
result compared to the equatorward side. In this region the
model predicts stronger warm anomalies, 7,, > T, (T,, =~ 5.8
and T, =~ 2.5), which occur on average less frequently, p,, < p.
(pw =~ 0.1 and p. =~ 0.24), but with a much longer warm tail
overall. In addition, we find higher frequency of near-zero
anomalies (py =~ 0.66). These results are consistent with the
high positive skewness (S =~ 0.6) and higher than Gaussian
kurtosis (K =~ 4) found in this region.

In each case shown in Figs. 7d—f, the overall sum of the three
Gaussians (black line) recovers well the actual PDF in the
region (shown in black in Figs. 7a—c and given by the dashed
black line in Figs. 7d—f for ease of comparison). The corre-
sponding correlation coefficient is reported in the upper left
corner of each panel.
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To summarize, the model allows us to truncate the full PDF
(which has an infinite number of moments) into a sum of three
Gaussians. These illustrate directly the main ingredients of the
underlying PDF, namely the mean intensity of cold, near-zero,
and warm anomalies, their frequencies, and width. These re-
cover the variance, skewness, and the parabolic relation be-
tween kurtosis and skewness by construction, but also give a
much simpler interpretation of the temperature variability
characteristic of the region.

c. Comparing the two- versus three-Gaussian model

The two-Gaussian model developed in Hughes et al. (2010) also
predicts a squared relation between kurtosis and skewness, and has
fewer free parameters than the three-Gaussian model (since py =
0). However, the latter gives a much better match to the observed
temperature variability. Specifically, the two-Gaussian model
predicts the relation b = —2/a® + 3, which is not what we find
from the data (Fig. S3). Similarly, the predicted excess kurtosis
from the two-Gaussian model, namely K = a(y)S$2 — 2/a(y)* + 3,
does a poor job of recovering the actual excess kurtosis, with too
negative values almost everywhere (Fig. S4). No similar com-
parison can be made with the three-Gaussian model because we
are using the estimated kurtosis (or, more directly, @ and b) to
estimate the parameters of the three Gaussians (i.e., we have
another free parameter p, that is unknown, and this parameter is
estimated using a and b).

For further comparison, we repeat the PDF decomposi-
tion analysis shown in Figs. 7d—f for the same SH latitudinal
bands, but for the two-Gaussian model. As can be seen,
while the fit is still good for the two-Gaussian model, the
match is clearly reduced. In all cases, the three-Gaussian
model provides a better match to the full PDF compared to
both a Gaussian distribution and the two-Gaussian model.
Specifically, the latter clearly underrepresents anomalies
around the mean, which can result in a bimodal PDF (which
is not usually found for low-level temperature). Hence, the
three-Gaussian model gives a better fit even if the raw PDF
is a unimodal distribution, allowing us to correctly capture
its non-Gaussian shape.

The discussions above for the latitudinal dependence of
the relation K = aS® + b are focused on the SH midlatitudes
during DJF (which are primarily over ocean regions) since
the parameters a and b are estimated for all longitudinal
points in a given latitude, and these estimates are probably
more accurate over nearly zonally homogeneous regions
(such as the SH midlatitudes). Indeed, different parabolic
relationships between skewness and kurtosis (i.e., different
a and b parameters) are found for land versus ocean regions
in the NH with the same latitudinal positions and the same
zonal extent (see Fig. S5). These differences are not cap-
tured in Fig. 6, which takes all longitudinal points in a given
latitude together and fits one value for a(y) and one for b(y).
The motivation for estimating a(y) and b(y) is to produce a
spatial map of the estimated excess kurtosis using 2. Ideally,
a and b should be evaluated at the grid point level, but since
this is not possible we fit it to the longitudinally independent
coefficients. However, the fact that K — 3 (Fig. 2b) is recovered
relatively well by K — 3 = a(y)S? + b(y) — 3 (Fig. 2c; see also
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Fig. S2) implies that this is not such a bad approximation, and
that in fact most of the zonal structure in kurtosis is originating
from the structure of S%. Nonetheless, in section 6b we estimate
a and b locally for different regions over the globe, and in-
vestigate their three-Gaussian decompositions and projected
changes.

6. Interpreting future temperature variability changes

We next investigate the projected higher-order temperature
variability changes using an ensemble of 26 CMIP5 models
driven by the RCP8.5 emissions scenario. Specifically, we con-
centrate on the skewness and kurtosis changes (Fig. 8). The first
row shows the historical values (Figs. 8a,b), which are very
similar to the results found for the ERAI data (Figs. 2a,b), and
the second row shows the corresponding projected changes of
skewness (Fig. 8c) and kurtosis (Fig. 8d).

The model developed here can be used to better under-
stand the future temperature variability changes in two dif-
ferent ways. First, from the approximate expression for
kurtosis K = a$? + b, we can inspect how each of the changes
ina, b, and S? influence changes in K.Second, using the three-
Gaussian PDF given in (5), we can examine how each one of
the changes in p., po, pw» Te, T, and & contributes to the
overall change in the temperature PDF. This enables easier
visualization and understanding of the projected temperature
changes in different regions over the globe.

a. Decomposition of kurtosis changes
From the relation K = aS$? + b, we can decompose the pro-
jected kurtosis changes in terms of changes in a, b, and §” as

AK = 8?Aa + aA(S?) + Ab. 17)

Each of the terms in (17) can be estimated separately from
the historical and projected simulations. For simplicity, we con-
sider here only the longitudinally independent estimations a(y)
and b(y), but keep the full spatial field of skewness. The actual
projected excess kurtosis change (shown again in Fig. 9a for ease
of comparison) is captured well by the estimated projected excess
kurtosis change A(K — 3) = AK = A(aS? + b) (Fig. 9b), with a
relatively small difference (and a spatial correlation coefficient of
0.76), showing the largest discrepancies in the tropics.

The advantage of examining the estimated kurtosis change is
that we can now decompose it into each of the terms in (17) for
AK. The decomposition in Figs. 9d—f shows that the estimated
kurtosis change is dominated by the skewness squared changes,
through the term aA(S%) (Fig. 9¢), while the other terms are
considerably smaller (Figs. 9d,f). Even though these are calcu-
lated for a(y) and b(y) only, it is clear from comparing Figs. 9a
and 9b that these are reasonable approximations, and that in-
deed most of the change in kurtosis originates from the changes
in the skewness squared. This implies that kurtosis changes can
be predicted to first order by the skewness squared changes:

AK ~ aA(S?) = 2aSAS. (18)

It is easy to see from (18) that if skewness changes oppose
the historical skewness [SA(S) < 0], then the kurtosis change
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FIG. 8. The historical (1981-99) ensemble-mean temperature skewness and kurtosis, and their projected changes
(2081-99 minus historical), based on 26 CMIP5 RCP8.5 ensemble members. The 850-hPa temperature (a) skewness
and (b) kurtosis during DJF, and (c),(d) the corresponding projected changes. Regions where the skewness and
kurtosis values are statistically significant are stippled. The black boxes highlight regions of interest that are further

explored in Fig. 10.

will be negative, while if the skewness change reinforces
the historical skewness [SA(S) > 0] then the kurtosis
change will be positive. In other words, if the change in the
asymmetry between cold and warm anomalies increases,
then kurtosis increases too, since more of the PDF must
lie in one of the tails (and vice versa if the asymmetry
decreases).

In addition, (18) implies that the meridional advection ar-
guments used in previous studies (Garfinkel and Harnik 2017;
Linz et al. 2018; Tamarin-Brodsky et al. 2019; Linz et al. 2020;
Tamarin-Brodsky et al. 2020) to explain skewness changes can
also be used to understand kurtosis changes. For example, it
was suggested that the skewness increase projected over most
of the NH during winter (Fig. 8c) can be understood by linear
advection arguments (Tamarin-Brodsky et al. 2020), since cold
anomalies advected from the Arctic encounter a significantly
reduced background temperature gradient compared to warm
anomalies advected from the tropics (and the cold anomalies
therefore weaken more than the warm anomalies). The posi-
tive skewness change, together with the spatial structure of the
historical skewness (Fig. 8a), are enough to understand the sign
of the projected kurtosis changes (Fig. 8d); these are generally
positive where the sign of AS is the same as S, and negative
where the sign of AS is opposite to that S, as predicted
from (18).

We note however that in some regions, the contributions
from changes in a, and especially b, could be important too (as
seen from Figs. 9d,f) and could reflect changes in extremes that
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do not contribute directly to an asymmetry between cold and
warm anomalies (e.g., through changes in ¢ or py).

b. The three-Gaussian paradigm for interpreting future
temperature changes

The three-Gaussian paradigm can also be useful for
interpreting regional temperature variability and its pro-
jected changes. To show this, we examine several regions
over the globe, chosen because they represent very dis-
tinct temperature responses. The coefficients a and b in
K = aS? + b can be estimated as before, but now locally for
each region of interest. This is done by aggregating S and K
over the specific grid points defining the region and over all
the 26 CMIP5 models, and finding the best linear fit between
K and S°. From these regional parameters of a and b and
from the regionally averaged values of the mean, variance,
and skewness, we then find, separately for the historical and
projected simulations, the parameters describing the three-
Gaussian model (as was done before from the SH midlati-
tudes; see section 6 in the supplemental material), namely
Tw, Te, Pws Pe» Do, and & (recall that by construction Ty = 0).
This allows us to translate the problem from changes in the
higher-order temperature moments such as skewness and
kurtosis, which are generally harder to interpret, to changes
in the amplitude and frequency of cold, warm, and averaged
anomalies. The three-Gaussian paradigm also allows for a
simple visualization of the decomposition of the underlying
PDF and its projected changes.
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FIG. 9. Projected kurtosis change and its decomposition, based on 26 CMIP5 RCP8.5 ensemble members at the 850-hPa level during
DIJF. The (a) projected excess kurtosis change A(K — 3), (b) total change in the estimated excess kurtosis A(K — 3) = A(aS? + b), and
(c) their difference, and the decomposition of the approximated kurtosis change into (d) A(a)S?, (e) aA(S%), and (f) A(b). Here the
longitudinally independent estimations a(y) and b(y) are used, while for skewness the full S(x, y) field is used.

As an example, we consider the following regions, highlighted
by the black boxes in Fig. 8: central-east North America (37°-
52°N, 258°-285°E), the eastern tropical Pacific cold tongue (10°-
25°S, 255°-270°E), the northern part of South Asia (22°-33°N,
60°-95°E), and middle South America (14°-28°S, 287°-320°E).
These regions have different signs of skewness and kurtosis, and
also experience different combinations of projected skewness
and kurtosis changes. For example, central-east North America
is characterized by negative skewness and excess kurtosis
and experiences a positive skewness and a negative excess
kurtosis change (Figs. 8 and 10a). The eastern tropical Pacific
cold tongue is characterized by positive skewness and excess
kurtosis and experiences a negative skewness and excess kur-
tosis change (Figs. 8 and 10b). The northern part of South Asia is
characterized by negative skewness but a slightly positive excess
kurtosis and experiences a negative skewness and a positive
excess kurtosis change (Figs. 8 and 10c). And finally, middle
South America is characterized by negative skewness and a
positive excess kurtosis and experiences a positive skewness
and a negative excess kurtosis change (Figs. 8 and 10d). Thus,
these regions depict very different temperature variability sig-
natures and distinct responses to climate change.

We now show how the three-Gaussian decomposition can aid
the interpretation of the temperature PDF and its projected
changes. For central-east North America (Fig. 10e) in the his-
torical simulations, we find 7. = 9.4, T,, = 7,p. = 0.19, p,, = 0.25,
and py = 0.56. Thus, the averaged magnitude of cold anomalies
T, is larger than T, in this region, but they occur less frequently
(ie., p. < p,, consistent with the constraint p,,T,, = p.T,).
However, as opposed to averaged cold anomalies, the extreme
cold anomalies (in the extreme left tail of the PDF describing the
historical cold anomalies; blue solid line in Fig. 10e) have a
higher probability of occurrence compared to extreme warm
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anomalies (in the extreme right tail of the PDF describing the
historical warm anomalies; red solid line in Fig. 10e). These
characteristics are exactly consistent with the negative skewness
found in this region in the historical simulations. In the projected
climate, the cold and warm Gaussians become of similar mag-
nitude and frequency, as cold anomalies weaken significantly
and become more frequent (7, = 6.7, T,, = 6.7, p. = 0.25, and
pw = 0.25). The decrease of extreme cold anomalies and the
increase in frequency of average cold anomalies is also accom-
panied by a slight decrease in the frequency of the 7, Gaussian
(from py = 0.56 in the historical simulations to py = 0.51 in the
projected simulations) and a decrease in the width of the
Gaussians (from ¢ = 4.6 to 6 = 4.2). These changes are consis-
tent with the positive skewness change AS = 0.19 (as the asym-
metry between cold and warm anomalies decreases), negative
kurtosis change AK = —0.12 (less frequency of extreme events),
and the variance or standard deviation decrease Ac = —0.71 (as
both cold and warm anomalies weaken).

Similarly, the PDF decomposition in the eastern tropical
Pacific cold tongue (Fig. 10f) shows how warm anomalies are
stronger but less frequent on average (7. = 1.4 and 7, = 3.2
with p. = 0.2, p,, = 0.1), while extreme warm anomalies are
more frequent than extreme cold anomalies, consistent with
the positive skewness there. In the projected climate, there
is a negative skewness change (AS = — 0.18) as mean cold
anomalies slightly intensify while warm anomalies slightly
weaken (7. = 1.6, T,, = 3, p. = 0.25, p,, = 0.5), so the
asymmetry decreases. In addition, the frequency of the T,
Gaussian decreases in the future climate (from py = 0.7 to
po = 0.6), and the width of the Gaussians slightly increases
(from 6 =1 to ¢ = 1.2), consistent with the negative kurtosis
change (AK = —0.64) and positive variance increase (Ao =
0.29) there. Note that even though more of the PDF lies at the
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FIG. 10. Examples of the three-Gaussian decomposition of temperature PDF and its projected changes for different regions over the
globe. (a)-(d) The historical (solid) and projected (dashed) raw temperature PDF at (a) central-east North America, (b) the eastern
tropical Pacific cold tongue, (c) the northern part of South Asia, and (d) middle South America, based on 26 CMIP5 RCP8.5 ensemble
members at the 850-hPa level during DJF. The associated region-averaged standard deviation, skewness, and kurtosis changes are de-
noted Ao, AS, and AK, respectively, and shown in the upper-left corner of each panel. (e)—(h) The approximated PDFs based on the three-
Gaussian model for the same regions, respectively. The thin solid (dashed) blue, green, and red lines are the historical (projected)
Gaussians representing the cold, near-zero, and warm anomalies, respectively. The sum of the three Gaussians for the historical (pro-
jected) simulations is shown by the black solid (dashed) line in each panel, which roughly recovers the shape of the corresponding raw
PDF. The parameters used for finding the three Gaussians are derived from the mean, variance, skewness, a, and b, calculated for each

region of interest separately (see section 6 in the online supplemental material for more details).

extreme end in the projected climate, the kurtosis change is
overall negative due to the strong decrease in py.

In the northern part of South Asia (Fig. 10g), there is a
negative skewness in the historical simulations (7. = 5.2, T,, =
3.0, and p. = 0.09, p,, = 0.17). In the projected climate, the
means of both cold and warm anomalies intensify (but cold
anomalies slightly more) and become less frequent (7. = 5.8,
T, =3.8,and p. = 0.09, p,, = 0.13), consistent with the negative
skewness change (AS = —0.09). In addition, the frequency of
the T, Gaussian increases in the future climate (from py = 0.72
to pp = 0.77) and the width of the Gaussians decreases (from
0 =2.4to ¢ =2.0), consistent with the positive kurtosis change
(AK = 0.31) and negative variance change (Ao = —0.16). Even
though the mean intensities of both cold and warm anomalies
intensify, not much overall change is found in the extremes of
the PDF since the width of the Gaussians decreases.

Finally, in middle South America (Fig. 10h), the negative skew-
ness (T.=3.7,T,, = 2.7,p. = 0.06, p,, = 0.09) becomes less negative
(AS = 0.16) as mean cold anomalies slightly weaken and mean
warm anomalies intensify (7. = 3.5, T,, = 3.3, p. = 0.07, p,, = 0.07),
so the asymmetry decreases. In addition, the frequency of the
Ty Gaussian slightly decreases (from py = 0.84 to py = 0.8), and the
width of the Gaussians slightly increases (from ¢ = 1.6 tog = 1.78),
consistent with the negative kurtosis change (AK = —0.19) and the
small variance increase (Ao = 0.16) found in this region.

The advantage of the three-Gaussian paradigm is that it allows
for a clear visualization of the PDF and its projected changes in
terms of the changes in the cold, near-zero, and warm anomalies,
separately. Such changes in the frequency and magnitude of cold
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and warm anomalies are generally easier to interpret and com-
municate than changes in skewness and kurtosis.

7. Summary and discussion

In this work, a simple model based on Hughes et al. (2010) and
David et al. (2017) is used to capture the essence of atmospheric
temperature variability and its projected changes, including the
higher-order moments (which are often ignored). In this model,
the temperature PDF is represented by three Gaussians, rep-
resenting the cold, near-zero, and warm anomalies. The cold and
warm Gaussians represent the larger temperature fluctuations
associated with synoptic-scale weather systems, while the near-
zero Gaussian represents small deviations from the mean
temperature. The three-Gaussian model captures the observed
relationship between kurtosis and skewness squared. Moreover,
the coefficients of the relation K =aS® + b can be estimated
directly from data. From a, b, and the first three moments de-
scribing the temperature PDF, the parameters describing the
three Gaussians can be found. This allows for a simpler visual-
ization and interpretation of the PDF in different regions.

A number of models with increasing complexity were pre-
sented. First was the simple two-state Bernoulli distribution,
which assumes that anomalies can have a fixed amplitude of either
T,, or T,. The Bernoulli distribution is helpful for capturing the
observed skewness structure (Tamarin-Brodsky et al. 2020) but
fails to correctly capture the temperature kurtosis. Physically, this
is because none of the distribution is assumed to lie around the
mean, and also because the localization of the signal around 7, T,
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makes the tails short compared to a Gaussian (hence it always
gives negative excess kurtosis). Nonetheless, its simplicity [Eqs.
(2) and (3)] is helpful and can be useful for studying temperature
skewness and variance in different applications (e.g., Tamarin-
Brodsky et al. 2020). A slightly more complex model (referred
to here as the modified three-parameter Bernoulli distribution)
also includes the mean value 7)), which gives more realistic
excess kurtosis values because it now also accounts for the
weight of the distribution around the mean. Finally, the modified
three-parameter Bernoulli distribution was extended to include
noise by allowing the 7, Ty, and T, anomalies to fluctuate around
their means. This is a much more physically realistic model, re-
ferred to here as the three-Gaussian model, which recovers by
construction not just the first three moments of the temperature
PDF, but also the observed relationship between kurtosis and
skewness squared (and thus also recovers the approximated kur-
tosis by construction). The Gaussians allow the tails of the distri-
butions to be captured as well, and thus kurtosis can also be
accounted for. While the simpler two-Gaussian model of Hughes
et al. (2010) also predicts a squared relationship between kurtosis
and skewness, it is shown here that it underrepresents kurtosis (and
therefore does not match the actual PDFs as well) since it does not
account for the weight of the distribution around the mean.

The three-Gaussian model is also found to be helpful for
gaining a better understanding of future temperature variability
changes. It is shown that kurtosis changes are mainly dominated
by skewness squared changes, which implies that we can un-
derstand most of the projected 850-hPa kurtosis changes during
winter by simple meridional advection arguments (as these
dominate skewness changes). In addition, we show how the
three-Gaussian model can be helpful for gaining a simpler inter-
pretation of future temperature variability changes. Specifically, it
translates changes in skewness and kurtosis, which are less intui-
tive, to changes in the averaged magnitude and frequency of cold,
near-zero, and warm anomalies relative to the shifted mean,
which can be more easily visualized and communicated.

The relation to extremes can be understood as in the fol-
lowing example. In a region with a positively skewed temper-
ature PDF, the three-Gaussian decomposition shows that the
mean warm anomalies have a greater magnitude, but occur less
frequently than the mean cold anomalies (e.g., Fig. 7f).
Nonetheless, because the warm Gaussian is centered around a
larger mean value, the warm extremes (at the far right tail of
the warm Gaussian) will have a higher likelihood than extreme
cold anomalies. In other words, in such a positively skewed
region, the mean warm anomalies are stronger and less fre-
quent than the mean cold anomalies, but extreme warm
anomalies are both more intense and more frequent.

Similarly, we can consider the future changes in temperature
extremes relative to the new mean. For example, if the new
mean warm state becomes of greater magnitude but is less fre-
quent than the new mean cold state, the warm extremes could
nevertheless become more frequent. Such a region will therefore
exhibit a positive skewness change (e.g., middle South America;
Fig. 10h). This highlights that the response of the mean warm
and cold anomalies can be different from the response of the
extremes, and thus care should be taken when considering future
changes in warm and cold temperature anomalies.
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The model presented here is arguably a good compromise
between simplicity and accuracy of representation of the full
PDF. It could be made more accurate by allowing the width of
the Gaussians to differ between cold, near-zero, and warm
anomalies, which would involve more complex mathematical
expressions, but could improve the results in terms of recov-
ering the correct PDF shape. While motivated by physical con-
siderations, the simplifying choice Ty = 0 (i.e., that one of the
Gaussians is centered around the mean) is another potential
limitation of the model, as it forces the equality p,,T,, = p.T.,
which clearly dominates the PDF and its future changes (e.g., it
predicts a frequency increase of mean cold anomalies relative to
mean warm anomalies in regions where 7/T,, decreases, such as
central-east North America; Fig. 10e). Nonetheless, the re-
markable fit between the idealized and raw PDFs (e.g., in Fig. 7
or Fig. 10), as well as the good agreement between the simulated
and predicted changes in kurtosis, provides confidence that these
are reasonable simplifications. The introduction of additional
degrees of freedom would require identifying additional con-
straints, increasing the danger of overfitting.

Note that some sensitivity to the exact a and b parameters
derived from the K versus S* scatterplots was found (in some
regions, the @ and b parameters did not give reasonable results and
were therefore discarded). Hence, the exact parameters describ-
ing the three Gaussians in each region (i.e., T}y, T¢, Pw» Pes Po, and
0) should be taken more qualitatively rather than quantitatively.
Adding more data points (e.g., by using ensembles of GCM
simulations) could improve the estimated a and b, from which the
projected changes in the Gaussians can be derived more accu-
rately. Note also that our results concentrated on DJF, but the
three-Gaussian decomposition should also work in other seasons
(e.g., June—August) as it does not rely on any special assumptions.

As shown in this work, the third and fourth temperature
variability moments (i.e., skewness and kurtosis) are crucial for
gaining a complete picture of the underlying PDF. Similarly,
the higher-order temperature variability changes must be taken
into account for correctly capturing the projected changes in
extremes. Future work should further illustrate the role of dif-
ferent processes, such as advection and regional surface feed-
backs, in generating these important temperature skewness and
kurtosis changes, from which changes in the magnitude and
frequency of temperature anomalies can be understood.
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