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Abstract
The treatment of uncertainty in climate-change science is dominated by the far-reach-
ing influence of the ‘frequentist’ tradition in statistics, which interprets uncertainty in 
terms of sampling statistics and emphasizes p-values and statistical significance. This is 
the normative standard in the journals where most climate-change science is published. 
Yet a sampling distribution is not always meaningful (there is only one planet Earth). 
Moreover, scientific statements about climate change are hypotheses, and the frequen-
tist tradition has no way of expressing the uncertainty of a hypothesis. As a result, in 
climate-change science, there is generally a disconnect between physical reasoning and 
statistical practice. This paper explores how the frequentist statistical methods used in 
climate-change science can be embedded within the more general framework of prob-
ability theory, which is based on very simple logical principles. In this way, the physical 
reasoning represented in scientific hypotheses, which underpins climate-change science, 
can be brought into statistical practice in a transparent and logically rigorous way. The 
principles are illustrated through three examples of controversial scientific topics: the 
alleged global warming hiatus, Arctic-midlatitude linkages, and extreme event attribu-
tion. These examples show how the principles can be applied, in order to develop better 
scientific practice.

“La théorie des probabilités n’est que le bon sens reduit au calcul.” (Pierre-Simon Laplace, 
Essai Philosophiques sur les Probabilités, 1819).
“It is sometimes considered a paradox that the answer depends not only on the observa-
tions but on the question; it should be a platitude.” (Harold Jeffreys, Theory of Probability, 
1st edition, 1939).

Keywords  Climate change · Statistics · Uncertainty · Inference · Bayes factor · Bayes 
theorem
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1  Introduction

As climate change becomes increasingly evident, not only in global indicators but at the 
local scale and in extreme events, the challenge of developing climate information for 
decision-making becomes more urgent. It is taken as given that such information should 
be based on sound science. However, it is far from obvious what that means. As with 
many other natural sciences, controlled experiments on the real climate system cannot be 
performed, and climate change is by definition statistically non-stationary. Together this 
means that scientific hypotheses cannot be tested using traditional scientific methods such 
as repeated experimentation. (Experiments can be performed on climate simulation mod-
els, but the models differ from the real world in important respects, and often disagree with 
each other.) On the global scale, it is nevertheless possible to make scientific statements 
with high confidence, and to speak of what can be considered to be effectively climate 
change ‘facts’ (e.g. the anthropogenic greenhouse effect, the need to go to net-zero green-
house gas emissions in order to stabilize climate), which are sufficient to justify action on 
mitigation. This is because the process of spatial aggregation tends to reduce the relevant 
physical principles to energetic and thermodynamic ones which are anchored in fundamen-
tal theory (Shepherd 2019), and to beat down much of the climate noise so that the signals 
of change emerge clearly in the observed record (Sippel et al. 2020).

Yet for many aspects of climate-change science, there is no consensus on what con-
stitutes fundamental theory, the signals of change are not unambiguously evident in the 
observed record, and climate models provide conflicting results. This situation occurs with 
so-called climate ‘tipping points’, due to uncertainties in particular climate feedbacks (Len-
ton et al. 2008). It also occurs on the space and time scales relevant for climate adaptation, 
where atmospheric circulation strongly determines climatic conditions, yet there is very 
little confidence in its response to climate change (Shepherd 2014). These uncertainties 
compound in the adaptation domain, where human and natural systems play a key role 
(Wilby and Dessai 2010).

This situation of ambiguous possible outcomes is illustrated by Fig. 1, which shows the 
precipitation response to climate change across the CMIP5 climate models as presented by 
IPCC (2013). Stippling indicates where the multi-model mean change is large compared 
to internal variability, and 90% of the models agree on the sign of change, whilst hatch-
ing indicates where the multi-model mean change is small compared to internal variabil-
ity. These metrics embody the concept of ‘statistical significance’, which underpins the 
usual approach to uncertainty in climate-change science. Yet they are seen to be agnostic 
over many populated land regions, including most of the Global South, which are neither 
hatched nor stippled. Zappa et al. (2021) have shown that in those regions, the models sug-
gest precipitation responses that are potentially large but are non-robust (i.e. uncertain in 
sign), and that the same situation holds with the CMIP6 models.

It follows that if climate-change science is to be informative for decision-making, it must 
be able to adequately reflect the considerable uncertainty that can exist in the information. 
The traditional language of science is usually framed in terms of findings, which for cli-
mate change might be explanations of past behaviour (attribution), or predictions of future 
behaviour (known as ‘projections’ when made conditional on the future climate forcing). 
To give just one example, the title of Sippel et al. (2020) is “Climate change now detect-
able from any single day of weather at global scale”. In the peer-reviewed literature, these 
findings are generally presented in a definitive, unconditional manner (op. cit., where it is 
indeed justified); some journals even insist that the titles of their articles are worded that 
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way. Caveats on the findings are invariably provided, but it is not straightforward to convert 
those to levels of confidence in the finding. When made quantitative, the uncertainties are 
represented through some kind of error bar, usually around a best estimate. As Stirling 
(2010) has argued, such ‘singular, definitive’ representations of knowledge are inappropri-
ate and potentially highly misleading when the state of knowledge is better described as 
‘plural, conditional’, as for mean precipitation changes in the unmarked regions in Fig. 1. 
There are many methods available for dealing with ‘plural, conditional’ knowledge within 
a decision framework (Weaver et  al. 2013; Rosner et  al. 2014), so there is certainly no 
requirement for climate information to be expressed in a ‘singular, definitive’ manner in 
order to be useable.

There are many reasons for this situation, some of which are non-scientific (e.g. the 
reward system, both for authors and for journals). My goal here is to focus on one of the 
scientific reasons, namely the statistical practice that characterizes most climate-change 
science, which is still dominated by procedures that originate from the so-called ‘frequen-
tist’ tradition in statistics. This tradition interprets uncertainty in terms of sampling statis-
tics of a hypothetical population, and places a strong emphasis on p-values and statistical 
significance. It does not provide a language for expressing the probability of a hypothesis 
being true, nor does it provide a home for the concept of causality. Yet scientific reason-
ing is about hypotheses (including the ‘findings’ mentioned earlier), and reasoning under 
uncertainty is simply a form of extended logic, generalizing the true/false dichotomy of 
Aristotelian logic to situations where a hypothesis has a probability of being true that lies 

Fig. 1   Projected changes in precipitation (in %) over the twenty-first century from the CMIP5 models under 
a high climate forcing scenario (RCP8.5). Stippling indicates where the multi-model mean change is large 
compared with natural internal variability in 20-year means (greater than two standard deviations) and 
where at least 90% of models agree on the sign of change. Hatching indicates where the multi-model mean 
change is small compared with internal variability (less than one standard deviation). From the Summary 
for Policymakers of IPCC (2013)
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between 0 and 1 (Jeffreys 1961; Jaynes 2003). Moreover, the concept of causality is central 
to physical science, as well as to decision-making since otherwise there is no connection 
between decisions and consequences, and causality has a logical formulation as well (Pearl 
and Mackenzie 2018; Fenton and Neil 2019). Those elements of physical reasoning are 
part of scientific practice in climate-change science, but are not connected to statistical 
practice in an explicit way. Thus, it seems crucial to bring these elements into the treatment 
of uncertainty.

In lay terms, probability is the extent to which something is likely to happen or to be the 
case. This includes frequency-based (or long-run) probabilities — the frequentist paradigm 
— as a special case, but it applies to single-outcome situations as well, such as a scien-
tific hypothesis concerning climate change, where probability is interpreted as degree of 
belief. (For scientists, the word “belief” may cause some discomfort, but we can interpret 
belief as expert judgement, which is a widely accepted concept in climate-change science, 
including by the IPCC (Mastrandrea et  al. 2011).) The two concepts of uncertainty are 
quite distinct, yet are commonly confused, even by practicing climate scientists. Even the 
use of frequency-based probabilities requires a degree of belief that they may be appropri-
ately used for the purpose at hand, which is a highly non-trivial point when one is making 
statements about the real world. Jeffreys (1961) and Jaynes (2003) both argue that whilst 
the frequentist methods generally produce acceptable outcomes in the situations for which 
they were developed (e.g. agricultural trials, quality control in industry), which are char-
acterized by an abundance of data and little in the way of prior knowledge, they are not 
founded in rigorous principles of probability (the ‘extended logic’ mentioned above, which 
is so founded (e.g. Cox 1946)), and are not appropriate for the opposite situation of an 
abundance of prior knowledge and little in the way of data. For climate-change science, 
especially (although not exclusively) in the adaptation context, we are arguably in the lat-
ter situation: we have extensive physical knowledge of the workings of the climate system 
and of the mechanisms involved in climate impacts, and very little data that measures what 
we are actually trying to predict, let alone under controlled conditions. This motivates a 
reappraisal of the practice of statistics in climate-change science. In this I draw particularly 
heavily on Jeffreys (1961), since he was a geophysicist and thus was grappling with scien-
tific problems that have some commonality with our own.

This paper is aimed at climate scientists. Its goal is to convince them that the frequentist 
statistical methods that are standard in climate-change science should be embedded within 
a broader logical framework that can connect physical reasoning to statistical practice in 
a transparent way. Not only can this help avoid logical errors, it also provides a scientific 
language for representing physical knowledge even under conditions of deep uncertainty, 
thereby expanding the set of available scientific tools. In this respect, making explicit and 
salient the conditionality of any scientific statement is a crucial benefit, especially for adap-
tation where a variety of societal values come into play (Hulme et al. 2011). Note that I am 
not arguing for the wholesale adoption of Bayesian statistical methods, although these may 
have their place for particular problems (see further discussion in Sect. 4). Rather, I am 
simply arguing that we should follow Laplace’s dictum and embed our statistical calcula-
tions in common sense, so as to combine them with physical reasoning. Section 2 starts by 
reprising the pitfalls of ‘null hypothesis significance testing’ (NHST); although the pitfalls 
have been repeatedly pointed out, NHST continues to be widespread in climate-change sci-
ence, and its dichotomous misinterpretation reinforces the ‘singular, definitive’ representa-
tion of knowledge. Section 2 goes on to discuss how the concept of frequency fits within 
the broader concepts of probability and inference. Section 3 examines a spectrum of case 
studies: the alleged global warming hiatus, Arctic-midlatitude linkages, and extreme event 
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attribution. Together these illustrate how the principles discussed in Sect. 2 can be applied, 
in order to improve statistical practice. The paper concludes with a discussion in Sect. 4.

2 � Back to basics

The ubiquitous use of NHST has been widely criticized in the published literature (e.g. 
Amrhein et  al. 2019). To quote from the abstract of the psychologist Gerd Gigerenzer’s 
provocatively titled paper ‘Mindless statistics’ (2004):

Statistical rituals largely eliminate statistical thinking in the social sciences. Rituals 
are indispensable for identification with social groups, but they should be the subject 
rather than the procedure of science. What I call the ‘null ritual’ consists of three 
steps: (1) set up a statistical null hypothesis, but do not specify your own hypothesis 
nor any alternative hypothesis, (2) use the 5% significance level for rejecting the null 
and accepting your hypothesis, and (3) always perform this procedure.

Gigerenzer refers to the social sciences, but is it actually any different in climate sci-
ence1? Nicholls (2000) and Ambaum (2010) both provide detailed assessments showing 
the widespread use of NHST in climate publications. This practice does not appear to have 
declined since the publication of those papers; indeed, my impression is that it has only 
increased, exacerbated by the growing dominance of the so-called ‘high-impact’ jour-
nals which enforce the statistical rituals with particular vigour, supposedly in an effort to 
achieve a high level of scientific rigour. Ambaum (2010) suggests that the practice may 
have been facilitated by the ready availability of online packages that offer significance 
tests as a ‘black box’ exercise, even though no serious statistician would argue that the 
practice of statistics should become a ‘black box’ exercise. I would add that Gigerenzer’s 
insightful comment about “identification with social groups” may also apply to climate 
scientists, in that statistical rituals become a working paradigm for certain journals and 
reviewers. I suspect I am not alone in admitting that most of the statistical tests in my own 
papers are performed in order to satisfy these rituals, rather than as part of the scientific 
discovery process itself.

Gigerenzer (2004) shows that NHST, as described above, is a bastardized hybrid of Fis-
cher’s null hypothesis testing and Neyman–Pearson decision theory, and has no basis even 
in orthodox frequentist statistics. According to Fischer, a null hypothesis test should only 
be performed in the absence of any prior knowledge, and before one has even looked at 
the data, neither of which applies to the typical applications in climate science. Violation 
of these conditions leads to the problem known as ‘multiple testing’. Moreover, failure to 
reject the null hypothesis does not prove the null hypothesis, nor does rejection of the null 
hypothesis prove an alternative hypothesis. Yet, these inferences are routinely made in cli-
mate science, and the oxymoronic phrase “statistically significant trend” is commonplace.

Amrhein et  al. (2019) argue that the main problem lies in the dichotomous inter-
pretation of the result of a NHST — i.e. as the hypothesis being either true or false 
depending on the p-value — and they argue that the concept of statistical significance 
should be dropped entirely. (Their comment gathered more than 800 signatories from 

1  I sometimes use the term “climate science”, because the points I make are applicable to climate science 
in general, but use “climate-change science” when I wish to emphasize that particular aspect of climate sci-
ence.
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researchers with statistical expertise.) Instead, they argue that all values of a sampling 
statistic that are compatible with the data should be considered as plausible; in particu-
lar, two studies are not necessarily inconsistent simply because one found a statistically 
significant effect and the other did not (which, again, is a common misinterpretation in 
climate science). This aligns with Stirling’s (2010) warning, mentioned earlier, against 
‘singular, definitive’ representations of knowledge when the reality is more complex, 
and all I can do in this respect is urge climate scientists to become aware of the sweep-
ing revolution against NHST in other areas of science. Instead, I wish to focus here on 
bringing physical reasoning into statistical practice, which is of particular relevance to 
climate-change science for the reasons discussed earlier.

Misinterpretation of NHST is rooted in the so-called ‘prosecutor’s fallacy’, which is 
the transposition of the conditional. The p-value quantifies the probability of observ-
ing the data D under the null hypothesis H that the apparent effect occurred by chance. 
This is written P(D|H) , sometimes called the likelihood function, and is a frequentist 
calculation based on a specified probability model for the null hypothesis, which could 
be either theoretical or empirical. (As noted earlier, the specification of an appropri-
ate probability model is itself a scientific hypothesis, but let us set that matter aside for 
the time being.) However, one is actually interested in the probability that the apparent 
effect occurred by chance, which is P(H|D) . The two quantities are not the same, but are 
related by Bayes’ theorem:

To illustrate the issue, consider the case where H is not the null hypothesis but is rather 
the hypothesis that one has a rare illness, having tested positive for the illness (data D ). 
Even if the detection power of the test is perfect, i.e. P(D|H) = 1, a positive test result may 
nevertheless indicate only a small probability of having the illness, i.e. P(H|D) being very 
small, if the illness is sufficiently rare and there is a non-negligible false alarm rate, such 
that P(H) ≪ P(D). This shows the error that can be incurred from the transposition of the 
conditional if one does not take proper account of prior probabilities. In psychology, it is 
known as ‘base rate neglect’ (Gigerenzer and Hoffrage 1995).

The example considered above of the medical test is expressed entirely in frequentist 
language, because the probability of the test subject having the illness (given no other 
information, and before taking the test), P(H), is equated to the base rate of the illness 
within the general population, which is a frequency. However, this interpretation is not 
applicable to scientific hypotheses, for which the concept of a ‘long run’ frequency is non-
sensical. To consider this situation, we return to the case of H being the null hypothesis 
and write Bayes’ theorem instead as

Equation (2) is mathematically equivalent to Eq. (1) but has a different interpretation. 
Now the probability of the apparent effect having occurred by chance, P(H|D), is seen 
to be the prior probability of there being no real effect, P(H), multiplied by the factor 
P(D|H)∕P(D) . The use of Bayes’ theorem in this way is often criticized for being sensitive 
to the prior P(H). However, expert (prior) knowledge is also used in the formulation (1) 
to determine how to control for confounding factors and for other aspects of the statistical 
analysis, and it is widely used in climate-change science to determine how much weight to 

(1)P(H|D) =
P(H)

P(D)
P(D|H).

(2)P(H|D) =
P(D|H)

P(D)
P(H).
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place on different pieces of evidence. It is thus a strength, rather than a weakness, of Bayes’ 
theorem that it makes this aspect of the physical reasoning explicit.

The factor P(D|H)∕P(D) in Eq. (2) represents the power of the data for adjusting one’s 
belief in the null hypothesis. But whilst P(D|H) is the p-value, we have another factor, 
P(D) ; how to determine it? This can only be done by considering the alternative hypoth-
eses that could also account for the data D . We write ¬H as the complement of H , so that 
P(¬H) = 1 − P(H) . (In practice, ¬H should be enumerated over all the plausible alternative 
hypotheses.) From the fundamental rules of probability,

which can be substituted into Eq.  (2). Thus, we can eliminate P(D) , but only at the cost 
of having to determine P(D|¬H). In that case, it is simpler to divide Eq. (2) by the same 
expression with H replaced by ¬H , which eliminates P(D) and yields the ‘odds’ version of 
Bayes’ theorem:

This states that the odds on the data occurring by chance — the left-hand side of Eq. (4) 
— equal the prior odds of the null hypothesis multiplied by the first term on the right-hand 
side of Eq. (4), which is known as the Bayes factor (Kass and Raftery 1995) and was heav-
ily used by Jeffreys (1961). The deviation of the Bayes factor from unity represents the 
power of the data for discriminating between the null hypothesis and its complement. (Note 
that Eq.  (4) holds for any two hypotheses, but its interpretation is simpler when the two 
hypotheses are mutually exclusive and exhaustive, as here.) One of the attractive features 
of the Bayes factor is that it does not depend on the prior odds, and is amenable to frequen-
tist calculation when the alternative hypothesis can be precisely specified.

The formulation (4) represents in a clear way the aphorism that ‘strong claims require 
strong evidence’: if the prior odds of the null hypothesis are very high, then it requires a 
very small Bayes factor to reject the null hypothesis. But Eq. (4) makes equally clear that 
the power of the data is represented not in the p-value P(D|H) but rather in the Bayes fac-
tor, and that failure to consider the Bayes factor is a serious error in inference. To quote 
Jeffreys (1961, p. 58):

We get no evidence for a hypothesis by merely working out its consequences and 
showing that they agree with some observations, because it may happen that a wide 
range of other hypotheses would agree with those observations equally well. To get 
evidence for it we must also examine its various contradictories and show that they 
do not fit the observations.

Thus, for both reasons, the p-value P(D|H) on its own is useless for inferring the prob-
ability of the effect occurring by chance, and thus for rejecting the null hypothesis, even 
though this is standard practice in climate science. Rather, we need to consider both the 
prior odds of the null hypothesis, and the p-value for the alternative hypothesis, P(D|¬H) . 
We will discuss the implications of this in more detail in Sect. 3 in the context of specific 
climate-science examples. Here, we continue with general considerations. With regard to 
the difference between the p-value P(D|H) and the Bayes factor, Bayesian statisticians have 
ways of estimating P(D|¬H) in general, and the outcome is quite shocking. Nuzzo (2014), 
for example, estimates that a p-value of 0.05 generally corresponds to a Bayes factor of 
only 0.4 or so, almost 10 times larger. The reason why the p-value can differ so much 

(3)P(D) = P(D|H)P(H) + P(D|¬H)P(¬H),

(4)
P(H|D)

P(¬H|D)
=

P(D|H)

P(D|¬H)

P(H)

P(¬H)
.
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from the Bayes factor is because the latter penalizes imprecise alternative hypotheses, 
which are prone to overfitting. The difference between the two is called the ‘Ockham fac-
tor’ by Jaynes (2003, Chapter 20), in acknowledgement of Ockham’s razor in favour of par-
simony: “The onus of proof is always on the advocate of the more complicated hypothesis” 
(Jeffreys 1961, p. 343). The fact that such a well-established principle of logic is absent 
from frequentist statistics is already telling us that the latter is an incomplete language for 
describing uncertainty.

It follows that in order for a p-value of 0.05 to imply a 5% likelihood of a false alarm 
(i.e. no real effect) — which is the common misinterpretation — the alternative hypothesis 
must already be a good bet. For example, Nuzzo (2014) estimates a 4% likelihood of a false 
alarm when P(H) = 0.1 , i.e. the null hypothesis is already considered to be highly improb-
able. For a toss-up with P(H) = 0.5 , the likelihood of a false alarm given a p-value of 0.05 
rises to nearly 30%, and it rises to almost 90% for a long-shot alternative hypothesis with 
P(H) = 0.95 . Yet despite this enormous sensitivity of the inferential power of a p-value to 
the prior odds of the null hypothesis, nowhere in any climate science publication have I 
ever seen a discussion of prior odds (or probabilities) entering the statistical interpretation 
of a p-value.

In fact, in much published climate science, the alternative hypothesis to the null is 
already a good bet, having been given plausibility by previous research or by physical argu-
ments advanced within the study itself. In other words, the statistical analysis is only con-
firmatory, and the p-value calculation performed merely as a sanity check. However, it is 
important to understand the prior knowledge and assumptions that go into this inference. 
For transparency, they should be made explicit, and a small p-value should in no way be 
regarded as a ‘proof’ of the result.

There is an exception to the above, when the data does strongly decide between the two 
hypotheses. This occurs in the case of detection and attribution of anthropogenic global 
warming, where the observed warming over the instrumental record can be shown to be 
inconsistent with natural factors, and fully explainable by anthropogenic forcing (e.g. 
IPCC 2013). In that case, the Bayes factor is very small, and a strong inference is obtained 
without strong prior assumptions (mainly that all potential explanatory factors have been 
considered). However, this ‘single, definitive’ situation is generally restricted to thermody-
namic aspects of climate change on sufficiently coarse spatial and temporal scales (Shep-
herd 2014).

A similar issue arises with confidence intervals. The frequentist confidence interval 
represents the probability distribution of a sampling statistic of a population parameter. 
However, it does not represent the likely range of the population parameter, known as the 
‘credible interval’ (Spiegelhalter 2018). To equate the two, as is commonly done in climate 
science publications, is to commit the error of the transposed conditional. In particular, it 
is common to assess whether the confidence interval around a parameter estimate excludes 
the null hypothesis value for that parameter, as a basis for rejecting the null hypothesis. 
This too is an inferential error. However, the confidence interval can approximately cor-
respond to the credible interval if a wide range of prior values are considered equally likely 
(Fenton and Neil 2019, Chap. 12), which is effectively assuming that the null hypothesis 
value (which is only one such value) is highly unlikely. Thus, once again, provided we are 
prepared to acknowledge that we are assuming the null hypothesis to be highly unlikely, the 
use of a frequentist confidence interval may be acceptable.

There is one more general point that is worth raising here before we go on to the exam-
ples. In most climate science, the use of ‘statistical rituals’ means that particular statis-
tical metrics (such as the p-value) are used without question. However, statisticians well 



Climatic Change           (2021) 169:2 	

1 3

Page 9 of 19      2 

appreciate that every statistical metric involves a trade-off, and that the choice will depend 
on the decision context. For example, in forecasts, there is a trade-off between discrimina-
tion and reliability, and in parameter estimation, there is a trade-off between efficiency and 
bias. There is no objective basis for how to make those trade-offs. Part of better statistical 
practice in climate-change science is to recognize these trade-offs and acknowledge them 
in the presentation of the results.

3 � Examples

3.1 � The alleged global warming hiatus

The alleged global warming ‘hiatus’ was the apparent slowdown in global-mean warming 
in the early part of the twenty-first century. Looking at it now (Fig. 2), it is hard to see why 
it attracted so much attention. Yet it was the focus of much media interest, and a major 
challenge for the IPCC during the completion of the AR5 WGI report, in 2013. There are 
good scientific reasons to try to understand the mechanisms behind natural variability in 
climate, and there was also a question at the time of whether the climate models were over-
estimating the warming response to greenhouse gases. However, the media attention (and 
the challenge for the IPCC) was mostly focused on whether climate change had weakened, 
or even stopped — as many climate sceptics claimed (Lewandowsky et al. 2016). We focus 
here on that specific question.

Given that there is high confidence in the basic physics of global warming, a reason-
able null hypothesis would have been that the hiatus was just the result of natural vari-
ability. Then the logical thing to have done would have been to determine the Bayes factor 
comparing the hypothesis of continued climate change to that of a cessation to climate 
change. If the Bayes factor was of order unity, then the data would not have differentiated 

Fig. 2   NASA GISTEMP time series of estimated observed annual global mean surface air temperature 
expressed as anomalies relative to the 1951–1980 reference period. The red line is a smoothed version of 
the time series. The grey band (added here) indicates the time period 1998–2012, which was defined as the 
hiatus period in Box TS.3 of IPCC (2013). From https://​data.​giss.​nasa.​gov/​giste​mp/, downloaded 31 May 
2021

https://data.giss.nasa.gov/gistemp/
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between the two hypotheses; in other words, the hiatus would have been entirely consistent 
with natural variability together with continued long-term climate change, and there would 
have been no need to adjust the prior hypothesis (which would have to have been given an 
extremely high likelihood, given previous IPCC reports).

Yet such an approach was not taken. Instead, there were many published studies exam-
ining the statistical significance of the observed trends, and much attention in the techni-
cal summary of the AR5 WGI report (Box TS.3 of IPCC 2013) was devoted to the hia-
tus, which was defined by IPCC to be the period 1998–2012 (grey shading in Fig. 2). The 
fact that small adjustments to the data sets could make the difference between statistical 
significance or not (Cowtan and Way 2014) should have raised alarm bells that this fre-
quentist-based approach to the data analysis, with multiple testing together with transpos-
ing the conditional to make inferences about physical hypotheses, was ill-founded. Com-
pletely ignoring all the knowledge from previous IPCC reports in the statistical assessment 
was also somewhat perverse, given that our confidence in the physics of anthropogenic 
global warming does not rest on observed warming alone, let alone warming over a 14-year 
period.

Rahmstorf et al. (2017) revisited the hiatus controversy, and deconstructed many of the 
published analyses of the hiatus, showing how they fell into many of the pitfalls discussed 
in Sect.  2. A particularly egregious one is the selection bias that arises from selectively 
focusing on a particular period and ignoring the others (also known as the ‘multiple testing 
problem’), which is apparent by eye from Fig. 2. They also showed that a more hypothe-
sis-driven approach to the data analysis would have deduced that there was nothing unu-
sual about the hiatus, which is equivalent to saying that the Bayes factor would have been 
close to unity. (That is even before bringing prior odds into the picture.) An independent 
and very interesting confirmation of this result is the study of Lewandowsky et al. (2016), 
which took the observed global-mean temperature time series (up to 2010), relabelled it 
as “World Agricultural Output”, and asked non-specialists whether they saw any weaken-
ing of the trend. The answer was a resounding no. This appears to show the power of the 
human brain for separating signal from noise, much more reliably than frequentist-based 
analysis methods.

I cannot resist pointing out that Fig. 10.6 of the IPCC AR5 WGI report showed clearly 
that the hiatus was entirely explainable from a combination of ENSO variability and the 
decline in solar forcing, even in the presence of continued anthropogenic warming. To this 
day, I still cannot understand why the IPCC chose to ignore this piece of evidence in its 
discussion of the hiatus, relying instead on purely statistical analyses without the incor-
poration of the huge amount of knowledge within the WGI report itself. When I asked 
someone about this, the answer I got was that Fig. 10.6 did not “prove” the case. But that’s 
not the point. Given all the knowledge that existed, it was surely sufficient to show that no 
other explanation was needed. To again draw on Jeffreys (1961, p. 342):

Variation is random until a contrary is shown; and new parameters in laws, when 
they are suggested, must be tested one at a time unless there is specific reason to the 
contrary.

3.2 � Arctic‑midlatitude connections

The Arctic amplification of global warming is a robust aspect of climate change, and the 
observed decline in Arctic sea-ice extent is its poster-child. The sea-ice decline is largest 
in the summer season, but the additional warmth in that season is absorbed by the colder 
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ocean and released back to the atmosphere during winter, when the atmosphere is colder. 
Hence, Arctic amplification is mainly manifest in the winter season. Based on observed 
trends, Francis and Vavrus (2012) made the claim that Arctic amplification led to a wav-
ier jet stream, causing more extreme winter weather at midlatitudes, including (somewhat 
counterintuitively in a warming climate) more cold spells. This claim has subsequently 
generated heated debate within the scientific community, and is an extremely active area of 
research (e.g. Screen et al. 2018; Cohen et al. 2020).

In contrast to the example of the hiatus, here, the prior knowledge is not very strong. 
Much of the evidence that is cited in favour of the claim of Arctic-to-midlatitude influence 
is from congruent trends in observational time series. However, the waviness of the jet 
stream will itself induce Arctic winter warming through enhanced poleward heat transport 
(see Shepherd 2016a), so any attempt to isolate the causal influence of Arctic warming 
on midlatitude weather must control for this opposing causal influence. Kretschmer et al. 
(2016) used the time lags of the various hypothesized physical processes to do this from 
observations, using a causal network framework, and inferred a causal role for sea ice loss 
in the Barents–Kara seas inducing midlatitude atmospheric circulation changes that are 
conducive to cold spells. This approach builds in prior knowledge to constrain the statisti-
cal analysis. Mostly, however, researchers have used frequentist-based methods applied to 
the change in long-term trends since 1990, when Arctic warming appeared to accelerate. 
This places a lot of weight on what from a climate perspective are relatively short time 
series (which is similar to the hiatus situation). Moreover, climate change affects both mid-
latitude conditions and the Arctic, representing a common driver and thus a confounding 
factor for any statistical analysis (Kretschmer et al. 2021). The theoretical arguments for a 
wavier jet stream are heuristic, and more dynamically based considerations are inconclu-
sive (Hoskins and Woollings 2015). Climate models provide inconsistent responses, and 
there are certainly good reasons to question the fidelity of climate models to capture the 
phenomenon, given the fact they are known to struggle with the representation of persistent 
circulation anomalies such as blocking. Overall, there are certainly sufficient grounds to 
develop plausible physical hypotheses of Arctic-midlatitude linkages, even if not through 
the Francis and Vavrus (2012) mechanism. Indeed, several large funding programmes have 
been established to explore the question.

Yet with all this uncertainty, it is difficult to understand how the published claims can 
be so strong, on both sides. Whilst the whiplash of conflicting claims may help generate 
media attention, it must be very confusing for those who want to follow the science on this 
issue. Adopting a more ‘plural, conditional’ perspective would surely be helpful, and much 
more representative of the current state of knowledge. Kretschmer et al. (2020) examined 
the previously hypothesized link between Barents–Kara sea-ice loss (where the changes 
are most dramatic) and changes in the strength of the stratospheric polar vortex — known 
to be a causal factor in midlatitude cold spells (Kretschmer et al. 2018) and a major driver 
of uncertainty in some key wintertime European climate risks (Zappa and Shepherd 2017) 
— across the CMIP5 models. They found that the link in the models was so weak as to 
be undetectable in the year-to-year variability, which means that it will be difficult to find 
Bayes factors between the hypothesis of a causal influence and the null hypothesis of no 
such influence that are very informative. Yet even such a weak link had major implica-
tions for the forced changes, given the large extent of projected Barents–Kara sea-ice loss 
(essentially 100%) compared to other changes in the climate system. Returning to Eq. (4), 
the weakness of the link may help explain why the scientific findings in this subject seem 
to be so closely linked to scientists’ prior beliefs. There would be nothing wrong with that 
so long as those beliefs were made explicit, which would happen naturally if scientists also 
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considered all plausible alternative hypotheses, as Eq. (4) obliges them to do. (The quote 
given earlier from Jeffreys (1961, p. 58) is relevant here.) Alternatively, one can present the 
different hypotheses in conditional form, as storylines, allowing the user of the informa-
tion to impose their own beliefs (Shepherd 2019). This is useful for decision-making since 
within probability theory, beliefs can incorporate consequences (Lindley 2014).  Once 
again, there is a relevant quote from Jeffreys (1961, p. 397):

There are cases where there is no positive evidence for a new parameter, but impor-
tant consequences might follow if it was not zero, and we must remember that [a 
Bayes factor] > 1 does not prove that it is zero, but merely that it is more likely to be 
zero than not. Then it is worth while to examine the alternative [hypothesis] further 
and see what limits can be set to the new parameter, and thence to the consequences 
of introducing it.

3.3 � Extreme event attribution

Since weather and climate extremes have significant societal impacts, it is no surprise that 
many of the most severe impacts of climate change are expected to occur through changes 
in extreme events. If climate is understood as the distribution of all possible meteorologi-
cal states, then the effect of climate change on extreme events is manifest in the changes in 
that distribution. This is the subject of a large literature. Over the last 20 years, the differ-
ent topic of extreme event attribution has emerged, which seeks to answer the question of 
whether, or how, a particular extreme event can be attributed to climate change. In contrast 
to the two previous examples, which concerned clear climate-science questions, here, it is 
far from obvious how to even pose the question within a climate-science framework, since 
every extreme event is unique (NAS 2016). This ‘framing’ question of how to define the 
event raises its own set of issues for statistical practice and scientific reasoning.

The most popular approach, first implemented by Stott et al. (2004) for the 2003 European 
heat wave, has been to estimate the probability of an event at least as extreme as the observed 
one occurring (quantified in a return period), under both present-day and pre-industrial condi-
tions, and attributing the change in probability to climate change. This is done by defining an 
‘event class’ (typically univariate, and at most bivariate) which is sufficiently sharp to relate 
to the event in question, but sufficiently broad to allow a frequency-based calculation of prob-
ability. Clearly, there is a trade-off involved here, which will depend on a variety of pragmatic 
factors. For example, in Stott et al. (2004), the event was defined by the average temperature 
over a very large region encompassing Southern Europe, over the entire summer period (June 
through August), for which the observed extreme was only 2.3 °C relative to preindustrial 
conditions, and around 1.5 °C relative to the expected temperature in 2003. Such an anomaly 
was very rare for that highly aggregated statistic, but clearly nobody dies from temperatures 
that are only 1.5 °C above average. Given that this ‘probabilistic event attribution’ (PEA) is 
based on a frequentist definition of probability, along with related concepts such as statistical 
significance, it is worth asking how a widening of the perspective of probability and reason-
ing under uncertainty, along the lines described in this paper, might enlarge the set of scien-
tific tools that are available to address this important scientific topic.

The first point to make is that from the more general perspective of probability theory 
discussed in Sect. 2, there is no imperative to adopt a frequentist interpretation of probabil-
ity. As Jeffreys says (1961, p. 401), ‘No probability….is simply a frequency’. A frequency 
is at best a useful mathematical model of unexplained variability. The analogy that is often 
made of increased risk from climate change is that of loaded dice. But if a die turns up 6, 
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whether loaded or unloaded, it is still a 6. On the other hand, if an extreme temperature 
threshold is exceeded only very rarely in pre-industrial climate vs quite often in present-
day climate, the nature of these exceedances will be different. One is in the extreme tail of 
the distribution, and the other is not, so they correspond to very different meteorological 
situations and will be associated with very different temporal persistence, correlation with 
other fields, and so on. Since pretty much every extreme weather or climate event is a com-
pound event in one way or another, this seems like quite a fundamental point. It is perfectly 
sensible to talk about the probability of a singular event, so we should not feel obliged to 
abandon that concept.

The fact is that climate change changes everything; the scientific question is not 
whether, but how and by how much. When the null hypothesis is logically false, as here, 
use of NHST is especially dangerous. Following Ockham’s razor, the more relevant ques-
tion is whether a particular working hypothesis (which would then be the null hypothesis) 
is enough to provide a satisfactory answer to the question at hand. As noted, most extreme 
weather and climate events are associated with unusual dynamical conditions conducive to 
that event, which we denote generically by N . The event itself we denote by E . An example 
event might be a heat wave, for which N could be atmospheric blocking conditions; or a 
drought, for which N could be the phase of ENSO. The effect of climate change can then 
be represented as the change in the joint probability P(E,N) between present-day, or fac-
tual (subscript f  ) conditions, and the same conditions without climate change, which are a 
counter-factual (subscript c ), expressed as a risk ratio. From NAS (2016),

This simple equation, which is based on the fundamental laws of probability theory, 
shows that the risk ratio factorizes into the product of two terms. The first is a ratio of con-
ditional probabilities, namely the change in probability for a given dynamical conditioning 
factor N . The second expresses how the probability of the conditioning factor might itself 
change.

The scientific challenge here is that for pretty much any relevant dynamical conditioning 
factor for extreme events, there is very little confidence in how it will change under climate 
change (Shepherd 2019). This lack of strong prior knowledge arises from a combination of 
small signal-to-noise ratio in observations, inconsistent projections from climate models, 
and the lack of any consensus theory. If one insists on a frequentist interpretation of this 
second factor, as in PEA, then this can easily lead to inconclusive results, and that is indeed 
what tends to happen for extreme events that are not closely tied to global-mean warming 
(NAS 2016). But there is an alternative. We can instead interpret the second factor on the 
right-hand side of (5) as a degree of belief — which is far from inappropriate, given that 
the uncertainty here is mainly epistemic — and consider various hypotheses, or storylines 
(Shepherd 2016b). The simplest hypothesis is that the second factor is unity, which can be 
considered a reasonable null hypothesis. One should of course be open to the possibility 
that the second factor differs from unity, but in the absence of strong prior knowledge in 
that respect, that uncertainty would be represented by a prior distribution centred around 
unity. The advantage of this partitioning is that the first term on the right-hand side of 
Eq. (5) is generally much more amenable to frequentist quantification than is the second, 
and if the dynamical conditioning is sufficiently strong, it tends to focus the calculation on 
the thermodynamic aspects of climate change about which there is comparatively much 
greater confidence.

(5)
Pf (E,N)

Pc(E,N)
=

Pf (E|N)

Pc(E|N)

Pf (N)

Pc(N)
.
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It seems worth noting that this approach is very much in line with the IPCC’s guidance 
on the treatment of uncertainty (Mastrandrea et al. 2011), which only allows a probabilistic 
quantification of uncertainty when the confidence levels are high.

This approach is actually used implicitly in much PEA. For example, in the analogue 
method (e.g. Cattiaux et al. 2010), atmospheric circulation regimes are used for N , and when 
using large-ensemble atmosphere-only models (as in Stott et al. 2004), sea-surface tempera-
ture anomalies are used for N . Both methods have been considered as perfectly acceptable 
within the PEA framework (Stott et al. 2016), despite effectively assuming that the second 
factor in Eq. (5) is unity. This assumption is very often not even discussed, and if it is, the 
argument is typically made that there is no strong evidence in favour of a value other than 
unity (see e.g. van Oldenborgh et al. 2021 for a recent example). Yet for some reason, when 
exactly the same approach was proposed for the detailed dynamical situation of a highly unu-
sual meteorological configuration (Trenberth et al. 2015), it was argued by the PEA commu-
nity that it was invalid scientific reasoning. For example, Stott et al. (2016, p. 33) say:

By always finding a role for human-induced effects, attribution assessments that only 
consider thermodynamics could overstate the role of anthropogenic climate change, 
when its role may be small in comparison with that of natural variability, and do not 
say anything about how the risk of such events has changed.

There is a lack of logical consistency here. First, since climate change has changed eve-
rything, at least to some degree, there is nothing logically wrong with “always finding a 
role for human-induced effects”. Second, this approach is not biased towards overstating 
the role of anthropogenic climate change, as it could equally well understate it. As Lloyd 
and Oreskes (2018) have argued, whether one is more concerned about possible overstate-
ment or understatement of an effect is not a scientific matter, but one of values and deci-
sion context. Third, “small compared with natural variability” can be consistent with an 
effect of anthropogenic climate change. For example, in van Garderen et al. (2021), global 
spectral nudging was used to apply the storyline approach to the 2003 European and 2010 
Russian heat waves. The study clearly showed that the anthropogenic warming was small 
in magnitude compared to the natural variability that induced the heat waves, but the high 
signal-to-noise ratio achieved through the approach provided a quantitative attribution at 
very fine temporal and spatial scales, potentially allowing for reliable impact studies (and 
avoiding the need to choose an arbitrary ‘event class’, which blurs out the event). Finally, 
whilst it is true that the approach does not say anything about how the risk of such events 
has changed, I am not aware of a single PEA study that has a definitive attribution of 
changes in the conditioning factor N leading to the event, so they are subject to exactly 
the same criticism. Instead, the attribution in PEA studies is invariably explained in terms 
of well-understood thermodynamic processes. That seems like a pretty good justification 
for the storyline approach. In this way, the two approaches can be very complementary 
(see Table 2 of van Garderen et al. 2021). And if there are strong grounds for considering 
changes in dynamical conditions (as in Schaller et al. 2016, where the change in flood risk 
in the Thames Valley changed sign depending on the modelled circulation changes), then 
probability theory, as in Eq. (5), provides the appropriate logical framework for consider-
ing this question in a hypothesis-driven manner, through storylines of circulation change 
(Zappa and Shepherd 2017). In such cases, a ‘plural, conditional’ perspective is called for.

Yet again, there is a relevant quote from Jeffreys (1961, p. 302):

In induction there is no harm in being occasionally wrong; it is inevitable that we 
shall be. But there is harm in stating results in such a form that they do not represent 
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the evidence available at the time when they are stated, or make it impossible for 
future workers to make the best use of that evidence.

4 � Discussion

In an application where there is little in the way of prior knowledge, and a lot of data, 
the Bayes factor rapidly overpowers the influence of the prior knowledge, and the result 
is largely insensitive to the prior. However, many aspects of climate-change science, 
especially (although not exclusively) in the adaptation context, are in the opposite situa-
tion of having a large amount of prior knowledge, and being comparatively data-poor (in 
terms of data matching what we are actually trying to predict). In particular, the observed 
record provides only a very limited sample of what is possible, and is moreover affected by 
sources of non-stationarity, many of which may be unknown. Larger data sets can be gen-
erated from simulations using climate models, but those models have many failings, and it 
is far from clear which aspects of model simulations contain useful information, and which 
do not. Physical reasoning is therefore needed at every step. In such a situation, using sta-
tistical methods that eschew physical reasoning and prior knowledge — “letting the data 
speak for itself”, some might say — is a recipe for disaster. Statistical practice in climate-
change science simply has to change.

A statistician might at this point argue that the answer is to use Bayesian statistics. 
Indeed, Bayesian methods are used in particular specialized areas of climate science, such 
as inverse methods for atmospheric sounding (Rodgers 2000) including pollution-source 
identification (Palmer et  al. 2003), sea-level and ice-volume variations on palaeoclimate 
timescales (Lambeck et al. 2014), and climate sensitivity (Sherwood et al. 2020). Mostly, 
this involves introducing prior probability distributions on the estimated parameters, but 
Sherwood et al. (2020) discuss the constraints on climate sensitivity in terms of the confi-
dence that can be placed in physical hypotheses. There have been brave attempts to employ 
Bayesian methods more widely, e.g. in the UK climate projections (Sexton et  al. 2012). 
The difficulty is that Bayesian calibration for climate-change projections requires know-
ing the relationship between model bias in present-day climate (which is measurable) and 
the spread in a particular aspect of model projections. Such a relationship is known as an 
‘emergent constraint’ (Hall et al. 2019), and it has been recognized from the outset that in 
order to be predictive, it must be causal. Given the huge number of potential relationships, 
data mining can easily lead to spurious but apparently statistically significant relationships 
(Caldwell et al. 2014), and correlations can also reflect common drivers. Indeed, several 
published emergent constraints have subsequently been debunked (by Pithan and Maurit-
sen 2013; Simpson and Polvani 2016; Caldwell et al. 2018), and the field is something of a 
Wild West. Hall et al. (2019) emphasize the crucial importance of anchoring emergent con-
straints in physical mechanisms, and argue that emergent constraints are most likely to be 
found when those mechanisms are direct and linear. This may help explain why it has been 
so challenging to find emergent constraints for circulation aspects of climate change (rel-
evant for adaptation), since there is no consensus on the relevant mechanisms and the cir-
culation responses appear to involve multiple interacting factors, and potential nonlinearity.

For climate information to be useable, its uncertainties must be comprehensible and 
salient, especially in the face of apparently conflicting sources of information, and the con-
nection between statistical analysis and physical reasoning must be explicit rather than 
implicit. This argues for bringing the Bayesian spirit of hypothesis testing more explicitly 
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into our scientific reasoning, forgoing the ‘mindless’ performance of statistical rituals as 
a substitute for reasoning, resisting true/false dichotomization, and being ever vigilant for 
logical errors such as multiple testing and the transposed conditional. As a recent Nature 
editorial states (Anonymous 2019), “Looking beyond a much used and abused measure 
[statistical significance] would make science harder, but better.” Yet we can still use famil-
iar statistical tools, such as p-values and confidence intervals, so long as we remember 
what they do and do not mean. They are useful heuristics, which researchers have some 
experience interpreting. And we need to make sure that we are not chasing phantoms.

Neuroscience has shown that human decision-making cannot proceed from facts alone 
but involves an emotional element, which provides a narrative within which the facts obtain 
meaning (Damasio 1994). Narratives are causal accounts, which in the scientific context 
can be regarded as hypotheses. To connect physical reasoning and statistical practice, these 
narratives need to run through the entire scientific analysis, not simply be a ‘translation’ 
device bolted on at the end. To return to the quote from Jeffreys at the beginning of this 
piece, we need to recognize that data does not speak on its own; there is no answer without 
a question, and the answer depends not only on the question but also on how it is posed.
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